Synthesis of N-acetyl-N-(3,5-dioxo-10-oxa-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]dec-4-yl)-acetamide

Marta Struga ${ }^{1 \boldsymbol{*}}$, Jerzy Kossakowki ${ }^{1}$, Barbara Miroslaw ${ }^{2}$, Anna E. Koziol ${ }^{2}$

1 The Medical University, Department of Medical Chemistry, 3 Oczki Str., 02-007 Warsaw, Poland;
Tel/Fax: (+4822)-628-06-79
2 Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

* Author to whom correspondence should be addressed. E-mail: strugam@wp.pl

Received: 27 September 2006 / Accepted: 16 January 2007 / Published: 31 May 2007
Keywords: 4-amino-10-oxa-4-aza-tricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-dione, acylation
Various imide derivatives of 10-Oxa-4-aza-tricyclo[5.2.1.0 ${ }^{2,6}$]decane-3,5-dione have been reported and shown to exhibit a wide spectrum of biological activities including antitumor properties [1].

4-Amino-10-oxa-4-aza-tricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5-dione (1) was used as a starting material. This compound was obtained in Diels-Alder reaction of furan and furan-2,5-dione [2] and next treated with hydrazine (80% aqueous solution) [3]. Compound 2 was obtained in acylation reaction of compound 1. The reduction of compound 2 occurred during the acylation.
N-acetyl-N-(3,5-dioxo-10-oxa-4-aza-tricyclo[5.2.1.0 ${ }^{2,6}$]dec-4-yl)-acetamide (2).
0.01 Mole of the compound 1 and 10 ml of acetic anhydride were heated while boiling for 6 h under reflux condenser. The reaction mixture was filtered off and the solvent was removed under a reduced pressure. The residue was crystallized from ethanol. Next it was purified by column chromatography (silica gel) using chloroform/methanol (19:1) as eluent.

White crystals, yield 78 \%.
Melting point: $128^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 4.96(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{O}) ; 3.1$ (s, 2H, CH-C=O); 2.59 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); 2.11 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$); $1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 174.3,136.1,79.8,45.0,38.8$.

ESI MS: $\mathrm{m} / \mathrm{z}=289.2[\mathrm{M}+\mathrm{Na}]^{+}(100 \%)$.

Elemental Analysis: Calculated for C12H14N2O5 (266.25) calculated: C, $54.13 \% ; \mathrm{H}, 5.30 \%$; N, 10.52 \%. Found: C, 54.18 \%; H, 45.32 \%; N, 10.72 \%.

Crystal data for (2): $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O} 5, M . W .=266.25$, crystal system orthorhombic, space group Pbca with unit cell dimensions $a=6.977(1), b=16.658(3), c=21.361(4) \mathrm{A}$ and $V=2482.6(7) \mathrm{A}^{-3} ; \mathrm{Z}=8, d($ calc $)=$ $1.425 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~m}=0.952 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=1120$.
Cis, exo configuration at the ring junction; the N, N-diacetyl fragment is planar with perpendicular orientation to the imid ring plane; the $\mathrm{C}=\mathrm{O}$ bonds of acetyl groups are anti.

The diffraction data were collected at 275 K on a KM-4 diffractomater using the crystal of dimensions $0.22^{\prime} 0.15^{\prime} 0.11 \mathrm{~mm}$ and CuKa radiation. Within the q range of 5.3 to $72.2^{\circ}, 2445$ reflections were collected. The structure was solved by direct methods and refined by full-matrix least-squares on F^{2} (programs SHELXS97 and SHELXL97 [4, 5]). The refinement of 175 parameters converged at final R indices:
$R_{1}=0.0311, w R_{2}=0.0889$ (for 1039 observed reflections, $I>2 \mathrm{~s}(I)$) and $R_{1}=0.1377, w R_{2}=0.1188$ (all data), and Goof $=0.996$. The extinction coefficient was $0.0032(3)$, residual electron density $\operatorname{Dr}(\max)=$ 0.20 and $\operatorname{Dr}(\min)=-0.18 \mathrm{e} \mathrm{A}^{-3}$.

Figure 1. Perspective view of molecular structure of compound 2

$\mathrm{N}(1)-\mathrm{N}(2)$	$1.383(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.525(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.393(3)$	$\mathrm{C}(3)-\mathrm{C}(8)$	$1.542(3)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.396(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.529(3)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.416(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.537(3)$
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.420(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.521(3)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.205(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.542(3)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.201(2)$	$\mathrm{C}(10)-\mathrm{C}(12)$	$1.490(3)$
$\mathrm{O}(3)-\mathrm{C}(4)$	$1.440(2)$	$\mathrm{C}(11)-\mathrm{C}(13)$	$1.486(3)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.442(3)$	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	$122.5(2)$
$\mathrm{O}(4)-\mathrm{C}(10)$	$1.198(2)$	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(2)$	$123.2(2)$
$\mathrm{O}(5)-\mathrm{C}(11)$	$1.199(2)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$114.0(2)$
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.489(3)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(10)$	$93.2(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.508(2)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	$90.6(2)$

Table 1. Bond lengths (\AA)

References:

1. Walter, W.G. J. Pharm. Sci. 1989, 78, 66.
2. Kwart, H.; Burchuk, J. J. Am. Chem. Soc. 1952, 74, 3094.
3. Struga, M.; Mirosław, B.; Wawrzyca-Gorczyca, I.; Kossakowski, J.; Kozioł, A.E. Polish J. Chem. 2007, 81, 51.
4. G.M. Sheldrick, SHELXS-93: Program for crystal structure solution; University of Göttingen, Germany, 1993.
5. G.M. Sheldrick, SHELXL-97: Program for the refinement of crystal structures from diffraction data; University of Göttingen, Germany, 1997.
© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
