Synthesis of 4-(4-(dimethylamino)phenyl)-5-acetyl-6-phenyl-3,4-dihydropyrimidin-2(1H)-thione

Fatma Aydin

Canakkale Onsekiz Mart University, Department of Chemistry, 17020, Canakkale-Turkey
e-mail: faydin@comu.edu.tr
Received: September 2005 / Accepted: 13 October 2005 / Published: 28 February 2006
Keywords: Biginelli reaction, $\mathrm{KF} / \mathrm{Al}_{2} \mathrm{O}_{3}$, Benzoxyacetone, thiourea

4-(4-(dimethylamino)phenyl)-5-acetyl-6-phenyl-3,4-dihydropyrimidin-2(1H)-thione was prepared from benzoxyacetone (1) ($1.62 \mathrm{~g}, 10 \mathrm{mmol}$), N, N-dimethylaniline (2) ($1.21 \mathrm{~g}, 10 \mathrm{mmol}$) and thiourea (3) (1.140 $\mathrm{g}, 15 \mathrm{mmol}$) in dichloromethane (15 mL) as solvent using $\mathrm{KF} / \mathrm{Al}_{2} \mathrm{O}_{3}(5 \mathrm{~g})$ as a catalysis. The reaction mixture was heated under reflux conditions and stirred by using magnetic stirring until the one-pot addition was completed. The crude was filtered to remove residue on $\mathrm{KF} / \mathrm{Al}_{2} \mathrm{O}_{3}$ and washed with DCM . The crude product was purified by column chromatography (silica gel, ethylacetate n-hexane, $4: 1$, V/V as eluant) to give 4-(4-(dimethylamino)phenyl)-5-acetyl-6-phenyl-3,4-dihydropyrimidin-2(1H)-thione as pure yellow (4) ($2.98 \mathrm{~g}, 85 \%$ yield).

Melting point: $118-120^{\circ} \mathrm{C}$
UV (EtOH; $\left.\lambda_{\text {max }} \mathrm{nm}\right): 340$

IR (KBr, cm^{-1}): 3200 (N-H); 2951 (C-H Ar); 2853 (C-H); 2253; 1624; 1220
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.48\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right) 2\right) ; 3.00(1 \mathrm{H}, \mathrm{s}$, Benzyl-H); $2.48(2 \mathrm{H}$, brs, NH); $1.607\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 6.8(2 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H}) ; 7.1-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; 7.8(2 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=190(\mathrm{C}=\mathrm{O}) ; 184(\mathrm{C}=\mathrm{S}) ; 175(=\mathrm{C}-\mathrm{N}) ; 170(-\mathrm{C}-\mathrm{N}) ; 154,132,129,127$, 125, 111, 40, 25

MS (m/z): $351\left[\mathrm{M}^{+}\right] ; 350 ; 308 ; 231$.
Elemental Analysis: Calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}$: C, 68.41%; H, 6.08\%; N, 11.89\%; O, 4.58\%; S, 9.17\%. Found: C, 68.35\%; H, 6.03\%; N, 11.95\%; O, 4.55\%; S, 9.12\%.

References

1. Kappe, C. O., Tetrahedron, 1993, 49, 6937-6963
2. Kappe, C. O., Molecules, 1998, 3, 1-9
3. Lin, H.; Ding, J.; Chen, X. and Zhang, Z. Molecules 2000, 5, 1240-1243
4. Salehi, P.; Dabiri, M.; Zolfigol, M. A. and Fard, M. A. B. Tetrahedron Letters 2003, 44, 2889-2891.

Sample Availability: Available from MDPI.
© 2006 MDPI. All rights reserved.

