4-Methyl- N-(2,2,4,4-tetrachloro-3-oxo-8-oxabicyclo[3.2.1.]oct-6-en-1-ylmethyl)-benzenesulfonamide

Holger Meining and Baldur Föhlisch*

Institut für Organische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
Fax: (+ 49) 711/6854269; e-mail: baldur.foehlisch@oc.uni-stuttgart.de
Received: 8 March 2004 / Accepted: 24 June 2004 / Published: 1 August 2005
Keywords: cycloaddition, ketones, sulfonamides, heterocycles

A mixture of N-furfuryl-p-toluenesulfonamide (1) ($2.51 \mathrm{~g}, 10 \mathrm{mmol}$) [1] and pentachloroacetone [2] (3.23 $\mathrm{g}, 14 \mathrm{mmol}$) was cooled in an ice bath. With magnetic stirring, a 2-molar solution of sodium 2,2,2trifluoroethoxide in 2,2,2-trifluoroethanol[3] ($7 \mathrm{~mL}, 14 \mathrm{mmol}$) was added dropwise, over 15 min . Stirring was continued for 15 min at $0^{\circ} \mathrm{C}$ and then at room temperature for $2-3$ hours[4]. The mixture was allowed to stir for a further 2 hours. Then, the heterogeneous mixture was poured on saturated brine (20 mL). The precipitate was dissolved by adding a little of dichloromethane and water, and the organic layer was separated. The aqueous layer was acidified with hydrochlorid acid to $\mathrm{pH} 4-5$ and then extracted with dichloromethane ($4^{\prime} 20 \mathrm{~mL}$). The combined dichloromethane solutions were washed with saturated brine $(20 \mathrm{~mL})$ and dried overnight with magnesium sulfate. After filtration, the solution was concentrated in a rotary evaporator. The remaining yellow mass was recrystallized from dry ethanol (10 mL) to yield 3.60 g (81%) of $\mathbf{2}$ as a colourless crystalline solid.

Melting Point: $162-163{ }^{\circ} \mathrm{C}$.
TLC (silica, hexane/tert-butylmethyl ether ($1: 1 \mathrm{v} / \mathrm{v}$): A pale yellow spot emerged after spraying the sheet with vanillin/sulfuric acid reagent followed by heating with a hot-air gun; $R_{\mathrm{f}}=0.27$. The starting material (1) showed a brownish violet spot at $R_{\mathrm{f}}=0.37$.
${ }^{1} \mathrm{H}-$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.45$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$); ABX sub-spectrum (14 lines) with $\delta_{\mathrm{A}}=$ $3.89, \delta_{\mathrm{B}}=3.65, \delta \mathrm{X}=5.10, J_{\mathrm{AB}}=(-) 14 \mathrm{~Hz}, J_{\mathrm{AX}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=3.6 \mathrm{~Hz}, 3 \mathrm{H}$, diastereotopic $\left.\mathrm{CH}_{2}-\mathrm{NH}\right)$; $5.16(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), \mathrm{AB}$ sub-spectrum with $\delta_{\mathrm{A}}=6.48(\mathrm{H}-6), \delta_{\mathrm{B}}=6.46(\mathrm{H}-7), J_{\mathrm{AB}}=5.5 \mathrm{~Hz}$, the lines of the A part are split into doublets with $J=1.7 \mathrm{~Hz}$; AA'BB' sub-spectrum with $\delta_{\mathrm{A}}=7.76, \delta_{\mathrm{B}}=$ $7.35, J_{\mathrm{AB}}=8.2 \mathrm{~Hz}\left(\mathrm{H}-2 / 6\right.$ and $\mathrm{H}-3 / 5$ from $\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR} /$ DEPT ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.6\left(+, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}\right) ; 42.2\left(-, \mathrm{CH}_{2}-\mathrm{N}\right) ; 81.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-4\right) ; 85.05$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-2\right) ; 87.9(+, \mathrm{C}-5) ; 93.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-1\right) ; 127.0$ (,$+ \mathrm{C}-2 / 6$ of the tosyl group); 130.0 (,$+ \mathrm{C}-3 / 5$ of the tosyl group); 134.4 (+, C-6); 135.7 (+, C-7); $136.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-4\right.$ of the tosyl group); $144.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-1\right.$ of the tosyl group); 183.9 (C $\mathrm{C}_{\mathrm{q}}, \mathrm{C}-3$).

IR $\left(\mathrm{CHCl}_{3}\right.$ film, $\left.\mathrm{cm}^{-1}\right)$: 3395, $3280(\mathrm{~N}-\mathrm{H}) ; 3110(=\mathrm{C}-\mathrm{H}) ; 1768$ with shoulder at $1750(\mathrm{C}=\mathrm{O}) ; 1600(\mathrm{C}=\mathrm{C})$; $1495(\mathrm{NH}) ; 1430,1340\left(\mathrm{SO}_{2}\right) ; 1163 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right)$.

Elemental Analysis: Calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{4} \mathrm{NO}_{4} \mathrm{~S}$ (445.15): C, 40.47%; $\mathrm{H}, 2.94 \% ; \mathrm{Cl}, 31.86 \%$; N : 3.15%; S, 7.20%. Found: C, 40.24%; H, 3.02\%; Cl, 31.63\%; N, 3.15\%; S, 7.15%.

References and Notes

1. a) Chooney, N.; Kuhnert, N.; Sammes, P. G.; Smith, G.; Ward, R. W. J. Chem. Soc., Perkin Trans 1, 2002, 1999-2005. b) Meining, H.; Föhlisch, B. Molbank 2005, M407.
2. Bugrova, L. V.; Rudnev, G. K.; Kristich, A. I.; Radchenko, V. I.; Mishchenko, L. F. Zh. Prikl. Khim. (Leningrad) 1973, 46, 1529-1533; J. Appl. Chem. USSR 1973, 2, 1627-1631.
3. a) Föhlisch, B.; Gehrlach, E.; Herter, R. Angew. Chem. 1982, 94, 144; Angew. Chem. Suppl. 1982, 94, 241; Angew. Chem., Int. Ed. Engl. 1982, 21, 137. b) Sendelbach, S.; Schwetzler-Raschke, R.; Radl, A.; Kaiser, R.; Henle, G. H.; Korfant, H.; Reiner, S.; Föhlisch, B. J. Org. Chem. 1999, 64, 3398-3408. 4. If $\mathbf{1}$ has not disappeared after that time (check by TLC), more pentachloroacetone ($0.7-1.2 \mathrm{~g}, 3-5$ mmol) was added, and the base solution in such amount that a test with wet pH indicator paper showed an alkaline reaction.

Sample Availability: Available from MDPI.
© 2005 MDPI . All rights reserved.

