Trimethyl 2-Hydroxy-2-(2-methoxy-2-oxoethyl)-4-(4-methylphenyl)-6-oxo-1,3,5cyclohexanetricarboxylate

Edmont V. Stoyanov

Faculty of Pharmacy, Medical University of Sofia, Dunav 2, BG-1000 Sofia, Bulgaria Tel.: (+359 2) 988 3142; Fax: (+359 2) 987 9874; E-mail: estoyanov@yahoo.com

Received: 26 September 2002 / Accepted: 17 October 2002 / Published: 13 April 2003
Keywords: Michael addition, cyclohexanone, dimethyl acetonedicarboxylate, cyclization
Aromatic aldehydes react with dimethyl acetonedicarboxylate in molar ratio $1: 2$ with spontaneous intermolecular Michael addition to give polysubstituted cyclohexanones [1]. We report now the synthesis of an analogous product from 4-methylbenzaldehyde.

To a solution of 4-methylbenzaldehyde ($1.20 \mathrm{~g}, 10 \mathrm{mmol}$) and dimethyl acetonedicarboxylate ($3.48 \mathrm{~g}, 20$ mmol) in 25 ml ethanol, 0.3 ml piperidine was added. The reaction mixture was left to stay at room temperature for 3 days. The separated crystals were filtered off, washed with cold ethanol, recrystallized from dioxane and air-dried. Yield: $3.18 \mathrm{~g}(71 \%)$.

Colorless crystals, m. p. 149-150 ${ }^{\circ} \mathrm{C}$ (dec.) from dioxane.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): 2.23 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}$), 2.43 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=17.0 \mathrm{~Hz}, \underline{\mathrm{HCH}}$), 2.96 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=17.0$ $\mathrm{Hz}, \mathrm{HCH}), 3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{H}-3), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94(\mathrm{t}, \mathrm{J} 1=\mathrm{J} 2=12.2 \mathrm{~Hz}, \mathrm{H}-4), 4.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{H}-5), 4.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 5.40(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 7.06\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 2^{\prime}\right.$ and $6^{\prime} \mathrm{H}$ arom.), 7.19 (d, 2H, J=8.0 Hz, 3^{\prime} and $5^{\prime} \mathrm{H}$ arom.).
${ }^{13} \mathrm{C}$ NMR (75 MHz, d_{6}-DMSO): 41.4, 42.8, 51.1, 51.5, 51.6, 51.7, 54.3, 61.2, 62.8, 66.3, 74.3, 128.1 (2 xC), 128.9 (2 xC), 136.2, 136.6 (2 xC), 167.7, 168.2, 169.5, 169.8.

FT IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3511, 2953, 1729, 1516, 1495, 1364.
ESI MS [FIA in $\left.\mathrm{MeOH}, \mathrm{CH}_{3} \mathrm{COONH}_{4} / \mathrm{CH}_{3} \mathrm{COOK}\right]: 468.2\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 489.2[\mathrm{M}+\mathrm{K}]^{+}$.

Reference

1. Haensel, W.; Haller, R. Arch. Pharm. (Weinheim Ger.) 1970, 303, 334-338.

Sample Availability: Available from the authors and from MDPI.
© 2003 MDPI. All rights reserved.

