(\pm)-2- ${ }^{\text {t }}$ Butyl-7-methoxy-1-oxaspiro[4,5]deca-6,9-diene-8-one

Guy L. Plourde

University of Northern British Columbia, Department of Chemistry, 3333 University Way, Prince George, British Columbia, Canada, V2N 4Z9
Tel: 250-960-6694, Fax: 250-960-5545, E-mail: plourde@unbc.ca
Received: 7 July 2002 / Accepted: 15 October 2002 / Published: 6 April 2003

The discussion and purpose for the synthesis of this compound has been reported elsewhere [1]. To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of (\pm)-1-(4-hydroxy-3-methoxyphenyl)-4,4-dimethyl-3-pentanol ($216 \mathrm{mg}, 0.91 \mathrm{mmol}$) in acetone (25 mL) was added in one portion $\mathrm{Pb}(\mathrm{OAc}) 4(1.3 \mathrm{~g}, 2.9 \mathrm{mmol}, 3.1 \mathrm{eq})$. The resulting orange mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The precipitate was filtered through celite and ethylene glycol (10 drops) was added. The solution was stirred at room temperature for 20 h and filtered through celite. The solvent was evaporated in vacuo to afford a racemic mixture of diastereomers ($81 / 19$ ratio).
Chromatography on silica gel ($30 \% \mathrm{EtOAc} /$ hexanes) afforded 3 fractions [total of $148 \mathrm{mg}(69 \%)$], 49 mg as the diastereomeric mixture, 33 mg of the minor isomer as a clear oil, and 66 mg of the major isomer as a white solid (mp: $60-61^{\circ} \mathrm{C}$).

IR cm ${ }^{-1}$: Major (KBr): 1677 (CO), Minor (neat): 1682 (CO).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ d: Major: $0.95\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.02(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-4), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=5.8,9.0 \mathrm{~Hz}, \mathrm{H}-2$), 5.77 (d, 1H, J=2.7 Hz, H-6), 6.13 (d, 1H, J=10.0 Hz, H-9), 6.80 (dd, 1H, J=2.7, $10.0 \mathrm{~Hz}, \mathrm{H}-10)$; Minor: $0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.0(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-4), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=5.9,8.7 \mathrm{~Hz}, \mathrm{H}-2), 5.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{H}-6), 6.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{H}-9), 6.89(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7,9.9 \mathrm{~Hz}$, $\mathrm{H}-10$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ d: Major: $25.8\left({ }^{\mathrm{t}} \mathrm{Bu} \mathrm{CH}_{3}\right), 27.6(\mathrm{C}-3), 33.6\left({ }^{\mathrm{t}} \mathrm{Bu} \mathrm{C}\right), 38.3(\mathrm{C}-4), 54.9\left(\mathrm{OCH}_{3}\right), 79.4$ (C-5), 88.9 (C-2), 117.4 (C-6), 126.1 (C-9), 149.5 (C-7), 151.0 (C-10), 181.0 (CO); Minor: 26.1 (${ }^{\mathrm{t}} \mathrm{Bu}$ $\left.\mathrm{CH}_{3}\right), 27.5(\mathrm{C}-3), 33.8\left({ }^{\mathrm{t}} \mathrm{Bu} \mathrm{C}\right), 38.1(\mathrm{C}-4), 55.0\left(\mathrm{OCH}_{3}\right), 79.6(\mathrm{C}-5), 88.8(\mathrm{C}-2), 117.4(\mathrm{C}-6), 126.3(\mathrm{C}-9)$, 149.7 (C-7), 151.0 (C-10), 181.3 (CO).

MS m/e (rel \%): Major: 236 [M+] (100), 221 (16), 180 (59), 179 (38), 153 (98), 137 (31), 119 (17);
Minor: $236[\mathrm{M}+]$ (36), 193 (5), 179 (11), 166 (13), 153 (100), 147 (7).
Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$: C 71.14, H 8.55; found: C 71.39, H 8.82.

Acknowlegment

The author is thankful for the financial support provided by the University of Northern British Columbia.

Reference

1. Plourde G.L. Tetrahedron Letters 2002, 43, 3597-3599.
© 2003 MDPI. All rights reserved.
