(\pm)-7-Methoxy-2-i propyl-1-oxaspiro[4,5]deca-6,9-diene-8-one

Guy L. Plourde

University of Northern British Columbia, Department of Chemistry, 3333 University Way, Prince George, British Columbia, Canada, V2N 4Z9
Tel: 250-960-6694, Fax: 250-960-5545, E-mail: plourde@unbc.ca
Received: 7 July 2002 / Accepted: 15 October 2002 / Published: 6 April 2003

The discussion and purpose for the synthesis of this compound has been reported elsewhere [1]. To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of (\pm)-1-(4-hydroxy-3-methoxyphenyl)-4-methyl-3-pentanol ($170 \mathrm{mg}, 0.76 \mathrm{mmol}$) in acetone (20 mL) was added in one portion $\mathrm{Pb}(\mathrm{OAc}) 4(1.2 \mathrm{~g}, 2.7 \mathrm{mmol}, 3.6 \mathrm{eq})$. The resulting orange mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The precipitate was filtered through celite and ethylene glycol (10 drops) was added. The solution was stirred at room temperature for 20 h and filtered through celite. The solvent was evaporated in vacuo to afford a racemic mixture of diastereomers ($71 / 29$ ratio).
Chromatography on silica gel ($30 \% \mathrm{EtOAc} /$ hexanes) afforded 3 fractions [total of 139 mg (83%)], 26 mg as the diastereomeric mixture, 44 mg of the minor isomer as a clear oil, and 72 mg of the major isomer as a white solid (mp: 77-78 ${ }^{\circ} \mathrm{C}$).

IR cm ${ }^{-1}$: Major (KBr): 1676 (CO), Minor (neat): 1682 (CO).
${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ d: Major: $0.94\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.01\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3)$, $2.15(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4$ and isopropyl CH$), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 5.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{H}-6)$, 6.12 (d, 1H, J=10.0 Hz, H-9), 6.79 (dd, 1H, J=2.7, $10.0 \mathrm{~Hz}, \mathrm{H}-10$); Minor: $0.94\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 2.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4$ and isopropyl CH$), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.90 (m, 1H, H-2), 5.67 (d, 1H, J=2.6 Hz, H-6), 6.13 (d, 1H, J=9.9 Hz, H-9), 6.87 (dd, 1H, J=2.6, 9.9 Hz, $\mathrm{H}-10$).
${ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ d: Major: $18.6\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 29.9(\mathrm{C}-3), 33.6\left({ }^{\mathrm{i}}\right.$ propyl CH$), 38.3(\mathrm{C}-4), 55.1$ $\left(\mathrm{OCH}_{3}\right), 79.6(\mathrm{C}-5), 86.5(\mathrm{C}-2), 117.4(\mathrm{C}-6), 126.2(\mathrm{C}-9), 149.9(\mathrm{C}-7), 151.2(\mathrm{C}-10), 181.3(\mathrm{CO}) ;$ Minor: $18.6\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right), 29.7(\mathrm{C}-3), 33.4$ (i propyl CH), $37.9(\mathrm{C}-4), 55.0\left(\mathrm{OCH}_{3}\right), 79.5(\mathrm{C}-5), 86.2(\mathrm{C}-2)$, 117.6 (C-6), 126.2 (C-9), 149.7 (C-7), 151.0 (C-10), 181.2 (CO).

MS m/e (rel \%): Major: $222\left[\mathrm{M}^{+}\right]$(32), 179 (32), 164 (66), 153 (100), 140 (74), 119 (75), 91 (53); Minor: $222\left[\mathrm{M}^{+}\right](22), 179$ (4), 166 (5), 153 (100), 125 (6), 91 (2).

Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$: C 70.23, H 8.17; found: C 70.12, H 8.21.

Acknowlegment

The author is thankful for the financial support provided by the University of Northern British Columbia.

Reference

1. Plourde G.L. Tetrahedron Letters 2002, 43, 3597-3599.
© 2003 MDPI. All rights reserved.
