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Abstract: A series of 3-hydroxypyridine-4-one and 3-hydroxypyran-4-one derivatives 
were subjected to quantitative structure-antimicrobial activity relationships (QSAR) 
analysis. A collection of chemometrics methods, including factor analysis-based multiple 
linear regression (FA-MLR), principal component regression (PCR) and partial least 
squares combined with genetic algorithm for variable selection (GA-PLS) were employed 
to make connections between structural parameters and antimicrobial activity. The results 
revealed the significant role of topological parameters in the antimicrobial activity of the 
studied compounds against S. aureus and C. albicans. The most significant QSAR model, 
obtained by GA-PLS, could explain and predict 96% and 91% of variances in the pIC50 
data (compounds tested against S. aureus) and predict 91% and 87% of variances in the 
pIC50 data (compounds tested against C. albicans), respectively.  
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1. Introduction 
 

Quantitative structure activity relationships (QSAR) studies, as one of the most important areas in 
chemometrics, give information that is useful for molecular design and medicinal chemistry [1-5]. 
QSAR models are mathematical equations constructing a relationship between chemical structures and 
biological activities. These models have another ability, which is providing a deeper knowledge about 
the mechanism of biological activity. In the first step of a typical QSAR study one needs to find a set 
of molecular descriptors with the higher impact on the biological activity of interest [6-9].     A wide 
range of descriptors has been used in QSAR modeling. These descriptors have been classified into 
different categories, including constitutional, geometrical, topological, quantum chemical and so on. 
There are several variable selection methods including multiple linear regression (MLR), genetic 
algorithm (GA), partial least squares (PLS), principle component or factor analysis (PCA/FA), and so 
on. [7-9]. MLR yields models that are simpler and easier to interpret than PCR and PLS, because these 
methods perform regression on latent variables that don’t have physical meaning. Due to the co-
linearity problem in MLR analysis, one may remove the collinear descriptors before MLR model 
development. MLR equations can describe the structure activity relationships well but some 
information will be discarded in MLR analysis. On the other hand, factor analysis–based methods such 
as PLS regression can handle the collinear descriptors and therefore better predictive models will be 
obtained by PLS method [10].  

It is almost 120 years since physicians revealed that the coincidence of blood and bacteria in a 
wound may cause a life-threatening infection. It has also been shown that blood or hemoglobin 
enhance the lethality of intraperitoneal or subcutaneous inocula of bacteria such as Escherichia coli.  
The effective component of hemoglobin is iron, and various soluble iron compounds exert an 
equivalent effect [11]. Administration of iron compounds to the host can increase the virulence of 
Escherichia coli, Listeria monocytogenes, Salmonella typhimurium and other pathogens [12]. In fact, 
iron is an essential element required for the growth and virulence of virtually all microbial pathogens 
[13, 14]. The availability of iron is critically important in host-parasite interactions [15]. Vertebrate 
hosts withhold iron from microbial invaders as a major defence mechanism against infection [13, 15]. 
This task is achieved by sequestration of iron with iron-binding proteins, the most abundant, 
haemoproteins [16]. Some natural antibiotics, called siderophores, are low-molecular-weight chelating 
agents that form stable complexes with iron [17, 18]. There are many reports of the antimicrobial 
activity of chelating agents with different chemical structures [19-22]. Kojic acid (5-hydroxy-2-
hydroxymethyl-pyran-4-one) and its 3-hydroxypyranones derivatives are examples of these 
compounds [19]. The bidentate chelating ligand 3-hydroxypyranone, which has a catechol-like 
function, forms stable complexes with several metal ions such as Fe3+. In vitro antibacterial and 
antifungal activities of 3-hydroxy-pyridinones, bioisoster derivatives of 3-hydroxypyranones with 
metal chelating ability have been described. They have an inhibitory effect on the growth of 
Escherichia coli, Listeria inocua and Staphylococcus aureus [22]. More recently antibacterial and 
antifungal activities of carboxamide derivatives of 3-hydroxypyranones, 5-hydroxypyranones and 5-
hydroxypyridinones have been reported [23, 24]. 

Few reports of antimicrobial studies of 3-hydroxypyridine-4-one and 3-hydroxypyran-4-one 
derivatives are available [19, 21-25] and in those they were not the subject of QSAR studies. 
Preliminary QSAR models for a series of such derivatives have been investigated by Fassihi et al. [25]. 
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The antimicrobial activity against C. albicans, S. aureus and P. aeroginosa was the subject of MLR 
analysis in this preliminary study. MLR models revealed the best relationship between the 
antimicrobial activity and structural properties against S. aureus and C. albicans. In the present paper, 
more than 600 topological, geometrical, constitutional, functional group, electrostatic, quantum and 
chemical descriptors were used, for the development of QSAR equations, different methods were 
applied for the antimicrobial activity of the studied compounds against S. aureus and C. albicans. 
These methods where: (i) genetic algorithm - partial least squares (GA-PLS), (ii) MLR with factor 
analysis as the data pre-processing step for variable selection (FA-MLR) and (iii) principal component 
regression analysis (PCRA). The correlation coefficient (r), standard error of regression (SE), r2cv (Q2) 
and RMScv (STD(r)) were employed to judge the validity of regression equation.  
 
2. Experimental Section 
 
2.1. Software 
 

The two-dimensional structures of molecules were drawn using the Hyperchem 7.0 software. The 
final geometries were obtained with the semi-empirical AM1 method in the Hyperchem program. The 
molecular structures were optimized using the Polak-Ribiere algorithm until the root mean square 
gradient was 0.01 kcal mol-1. The resulted geometry was transferred into Dragon program package, 
which was developed by Milano Chemometrics and QSAR Group [26]. The z-matrix of the structures 
was provided by the software and transferred to the Gaussian 98 program. Complete geometry 
optimization was performed taking the most extended conformation as starting geometries. Semi-
empirical molecular orbital calculation (AM1) of the structures was preformed using Gaussian 98 
program [27]. MATLAB software (version 7.1 Math Work Inc.) was used for the PLS regression 
method.  

 
2.2. Data set and descriptor generation 
 

The biological data used in this study are antimicrobial activity, (in terms of -log MIC), of a set of 
3-hydroxypyridine-4-one and 3-hydroxypyran-4-one derivatives [23, 24, 25]. The structural features of 
these compounds are listed in Table 1 and then used for subsequent QSAR analysis as dependent 
variables. The large number of molecular descriptors was calculated using Hyperchem, Dragon 
package and Gaussian 98. Some chemical parameters including molecular volume (V), molecular 
surface area (SA), hydrophobicity (LogP), hydration energy (HE) and molecular polarizability (MP) 
were calculated using Hyperchem Software. Dragon software calculated different functional groups, 
topological, geometrical and constitutional descriptors for each molecule. 

Gaussian 98 was employed for calculation of different quantum chemical descriptors including, 
dipole moment (DM), local charges, HOMO and LOMO energies. Hardness (η), softness (S), 
electronegativity (χ) and electrophilicity (ω) were calculated according to the method proposed by 
Thanikaivelan et al. [28]. 

Constitutional, topological, geometrical, functional group, quantum and physicochemical indices 
were used in this study; brief description of some of them is listed in Table 2. 
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Table 1. Chemical structure of the compounds used in QSAR analysis. 

XR6 R2

R3

O
R5

 

 

N
N

N O O

CH3

Ra is , Rb is , Rc is , Rd is , Re is
 

 

Compound X R2 R3 R5 R6 

1 NH CH3 OH CH2-Ra H 
2 NH C2H5 OH CH2-Ra H 
3 NH CH3 OH CH2-N(CH3)2 H 
4 NH C2H5 OH CH2-N(CH3)2 H 
5 NH CH3 OH CH2-N(C2H5)2 H 
6 NH C2H5 OH CH2-N(C2H5)2 H 
7 N-Ph CH3 OH H H 
8 N-m-OH-Ph CH3 OH H H 
9 N-C3H7 CH3 OH H H 

10 N-C4H9 CH3 OH H H 
11 O CH2Cl H OH H 
12 O CH3 H OH H 
13 O CH2OH OH H CH3

 

14 O CH2OH OCH2Ph H CH3 
15 O CHO OCH2Ph H CH3 
16 O COOH OCH2Ph H CH3 
17 O CONHRb OCH2Ph H CH3 
18 O CONHRc OCH2Ph H CH3 
19 O CONHRd OCH2Ph H CH3 
20 O CONHRb OH H CH3 
21 O CONHRc OH H CH3 
22 O CONHRd OH H CH3 
23 O CH2OH H OCH2Ph H 
24 O COOH H OCH2Ph H 
25 O CONHPh H OCH2Ph H 
26 N-CH3 CONHPh H OCH2Ph H 
27 N-CH3 CONHPh H OH H 
28 O CONH-Re H OCH2Ph H 
29 N-CH3 CONH-Re H OCH2Ph H 
30 N-CH3 CONH-Re H OH H 
31 O CH2OH H OH H 
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Table 2. Brief description of some descriptors used in this study. 

Descriptor 
Type 

Molecular Description 

Constitutional 

Mean atomic van der Waals volume (Mv) (scaled on Carbon atom), no. of heteroatoms, no. of 
multiple bonds (nBM), no. of rings, no. of circuits, no of H-bond donors, no of H-bond 
acceptors, no. of Nitrogen atoms (nN), chemical composition, sum of Kier-Hall 
electrotopological states (Ss), mean atomic polarizability (Mp), number of rotable bonds (RBN), 
mean atomic Sanderson electronegativity (Me), etc.  

Topological 

Narumi harmonic topological index (HNar), Total structure connectivity index (Xt), information 
content index (IC), mean information content on the distance degree equality (IDDE), total walk 
count, path/walk-Randic shape indices (PW3, PW4, PW5, Zagreb indices, Schultz indices, 
Balaban J index (such as MSD) Wiener indices, Information content index (neighborhood 
symmetry of 2-order) (IC2), Ratio of multiple path count to path counts (PCR), Lovasz-Pelikan 
index (leading eigenvalue) (LP1), total information content index (neighborhood symmetry of 1-
order) (TIC1), reciprocal hyper-detour index (Rww), Average connectivity index chi-5 (X5A), 
piID (conventional bond-order ID number), etc. 

Geometrical 
3D Petijean shape index (PJI3), Asphericity (ASP), Gravitational index, Balaban index, Wiener 
index, Length-to-breadth ratio by WHIM (L/Bw), etc. 

Quantum 

Highest occupied Molecular Orbital Energy (HOMO) , Lowest Unoccupied Molecular Orbital 
Energy (LUMO), Most positive charge (MPC), Sum of square of positive charges (SSPC), Sum 
of square of negative charges (SSNC), Sum of positive charges (SUMPC), Sum of negative 
charges (SUMNC), Sum of absolute of charges (SAC), Standard deviation (Std), Total dipole 
moment (DMt), Molecular dipole moment at X-direction (DMX), Molecular dipole moment at Y-
direction (DMY), Molecular dipole moment at Z-direction (DMZ), Electronegativity (χ= -0.5 
(HOMO-LUMO)), Electrophilicity (ω= χ2/2 η) , Hardness (η = 0.5 (HOMO+ LUMO)), Softness 
(S=1/ η). 

Functional 
group 

Number of total secondary C(sp3) (nCs), Number of total tertiary carbons (nCt), Number of H-
bond acceptor atoms (nHAcc), Number of secondary amides (aliphatic) (nCONHR), Number of 
unsubstituted aromatic C (nCaH), Number of ethers (aromatic) (nRORPh), Number of ketones 
(aliphatic) (nCO), Number of tertiary amines (aliphatic) (nNR2), Number of phenols (nOHPh), 
Number of total primary C(sp3) (nCp), etc. 

Chemical 
LogP (Octanol-water partition coefficient), Hydration Energy (HE), Polarizability (Pol), Molar 
refractivity (MR), Molecular volume (V), Molecular surface area (SA). 

 
2.3. Data screening and model building 
 

The calculated descriptors were collected in a data matrix whose number of rows and columns were 
the number of molecules and descriptors, respectively. Genetic algorithm - partial least squares (GA-
PLS), MLR with factor analysis as the data pre-processing step for variable selection (FA-MLR) and 
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principal component regression analysis (PCRA) methods were used to derive the QSAR equations 
and feature selection was performed by the use of genetic algorithm (GA). The genetic algorithms are 
efficient methods for function minimization. In descriptor selection context, the prediction error of the 
model built upon a set of features is optimized [29]. 

In this study, to model the structure-antimicrobial activity relationships better, genetic algorithm-
partial least square (GA-PLS) was employed [30, 31]. Partial least squares (PLS) linear regression is a 
recent technique that generalizes and combines features from principal component analysis and 
multiple regressions. PLS is a method suitable for overcoming the problems in MLR related to 
multicollinear or over-abundant descriptors [10].  

Application of PLS method thus allows the construction of larger QSAR equations while still 
avoiding over-fitting and eliminating most variables. This method is normally used in combination 
with cross-validation to obtain the optimum number of components [32, 33]. The PLS regression 
method used was the NIPALS-based algorithm existed in the chemometrics toolbox of MATLAB 
software (version 7.1 Math Work Inc.). In order to obtain the optimum number of factors based on the 
Haaland and Thomas F-ratio criterion, leave-one-out cross-validation procedure was used [34]. 

In our previous study the classical approach of multiple regression technique was used for 
developing QSAR relation [25]. Here, FA-MLR was also performed on the dataset. Factor analysis 
(FA) was used to reduce the number of variables and to detect structure in the relationships between 
them. This data-processing step is applied to identify the important predictor variables and to avoid 
collinearities among them [35]. Principle component regression analysis, PCRA, was also tried for the 
dataset along with FA-MLR. With PCRA collinearities among X variables are not a disturbing factor 
and the number of variables included in the analysis may exceed the number of observations [36]. In 
this method, factor scores, as obtained from FA, are used as the predictor variables [35]. In PCRA, all 
descriptors are assumed to be important while the aim of factor analysis is to identify  
relevant descriptors. 

 
3. Results and Discussion  
 
3.1. GA-PLS 
 

In PLS analysis, the descriptors data matrix is decomposed to orthogonal matrices with an inner 
relationship between the dependent and independent variables. Therefore, unlike MLR analysis, the 
multicolinearity problem in the descriptors is omitted by PLS analysis. Because a minimal number of 
latent variables are used for modeling in PLS; this modeling method coincides with noisy data better 
than MLR. In order to find the more convenient set of descriptors in PLS modeling, genetic algorithm 
was used. To do so, many different GA-PLS runs were conducted using different initial set of 
populations. The data set (compounds tested against S. aureus, n = 31) was divided into two groups: 
calibration set (n = 25) and prediction set (n = 6). Given 25 calibration samples; the leave-one-out 
cross-validation procedure was used to find the optimum number of latent variables for each PLS 
model. The most convenient GA-PLS model that resulted in the best fitness contained 17 indices, 5 of 
them being those obtained by MLR. The PLS estimate of coefficients for these descriptors are given in 
Figure 1. 
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Figure 1. PLS regression coefficients for the variables used in GA-PLS model 
(against S. aureus). 
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As it is observed, a combination of quantum, topological, geometrical, constitutional, and functional 
group descriptors have been selected by GA-PLS to account the antimicrobial activity of the studied 
compounds. The majority of these descriptors are topological indices. The resulted GA-PLS model 
possessed very high statistical quality R2 = 0.96 and Q2 = 0.91. The values of pMIC using PLS model 
(refined from cross-validation or external prediction set) along with the corresponding relative errors 
of prediction (REP) are shown in Table 3. Very small values of relative errors confirm the accuracy of 
the proposed GA-PLS model for modeling antimicrobial activity of the studied compounds. 

Table 3. Experimental and predicted activity of compounds against Staphylococcus aureus. 

Compound Experimental  
pMIC a 

Predicted 
pMIC 

REP b 
(%) 

1 3.29 3.3205 0.9173 
2 3.29 3.3007 0.3242 
3 3.29 3.2266 -1.9664 

  4* 3.29 3.3976 3.1675 
5 4.19 3.7498 -11.740 
6 3.29 3.3205 0.9173 
7 3.89 3.8255 -1.6850 
8 3.29 3.2698 -0.6172 
9 3.29 3.2886 -0.0440 

  10* 3.89 3.9283 0.9738 
11 3.59 3.6207 0.8470 
12 3.59 3.7254 3.6340 
13 3.59 3.5063 -2.3883 
14 3.59 3.6212 0.8627 

  15* 4.19 4.1563 -0.8119 
    



Int. J. Mol. Sci. 2008, 9             
 

2414

Table 3. Cont.  

Compound Experimental  
pMIC a 

Predicted 
pMIC 

REP b 
(%) 

16 3.59 3.5611 -0.8123 
17 3.59 3.6177 0.7647 
18 3.59 3.5548 -0.9915 

  19* 3.89 3.8950 0.1293 
20 4.19 4.0995 -2.2079 
21 3.59 3.7117 3.2787 
22 5.10 5.0840 -0.3141 
23 3.59 3.5533 -1.0318 

  24* 3.59 3.7223 3.5534 
25 3.89 3.9222 0.8214 
26 3.89 3.9779 2.2092 
27 4.80 4.8022 0.0453 
28 3.89 3.8591 -0.8011 
29 3.59 3.4907 -2.8470 

  30* 4.49 4.5105 0.4549 
31 3.59 3.4728 -3.3746 

a pMIC= -log (MIC), b REP = Relative Error Prediction 
*Compounds used as prediction set 

 

The data set (compounds tested against C. albicans, n = 28) was again divided into two groups: 
calibration set (n = 23) and prediction set (n = 5). Given 23 calibration samples; the leave-one-out 
cross-validation procedure was used to find the optimum number of latent variables for each PLS 
model. Here, the most convenient GA-PLS model contained 15 indices, five of them being those 
obtained by MLR. The PLS estimate of coefficients for these descriptors are given in Figure 2.  

Figure 2. PLS regression coefficients for the variables used in GA-PLS model  
(against C. albicans). 
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As it is observed, a combination of quantum, topological, geometrical and functional group descriptors 
have been selected by GA-PLS to account the antimicrobial activity of the compounds. The majority 
of these descriptors are topological indices again. The resulted GA-PLS model possessed very high 
statistical quality R2 = 0.91 and Q2 = 0.87. The values of pMIC using PLS model along with the 
corresponding REPs are shown in Table 4. Very small values of relative errors confirm the accuracy of 
the proposed GA-PLS model for modeling antimicrobial activity of the studied compounds. 

 
Table 4. Experimental and predicted activity of compounds against Candida  albicans. 

 
Compd. 

 
Experimental  

pMIC 
Predicted  

pMIC 
REP(%) 

2 3.29 3.4139 3.6304 
 4*  3.29 3.3893 2.9303 
5 3.89 3.8920 0.0514 
6 3.29 3.3591 2.0577 
7 3.29 3.3835 2.7631 
8 3.59 3.6477 1.5813 
9 3.29 3.3208 0.9272 

  10* 3.59 3.6196 0.8175 
11 3.89 3.9567 1.6857 
12 3.89 3.7481 -3.7870 
13 3.89 3.9092 0.4922 
14 3.89 3.7076 -4.9191 
15 3.89 3.8892 -0.0203 
16 3.89 3.8422 -1.2433 

  17* 4.49 4.3961 -2.1360 
18 4.49 4.4476 -0.9524 
19 3.89 3.7076 -4.9191 
20 3.89 3.8014 -2.3296 
21 3.89 3.9525 1.5813 
23 3.89 3.7450 -3.8727 

  24* 3.89 3.9056 0.3994 
25 3.89 3.9969 2.6755 
26 3.89 3.8489 -1.0691 
27 3.89 3.7573 -3.5304 
28 3.89 3.9503 1.5262 

  29* 3.89 3.9964 2.6619 
30 3.89 3.8978 0.2006 
31 3.89 3.8732 -0.4333 

*Compounds used as prediction set 
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3.2. FA-MLR and PCRA 
 

Table 5 shows the five factor loadings of the variables (after VARIMAX rotation) for the 
compounds tested against S. aureus. As it is observed, about 79% of variances in the original data 
matrix could be explained by selected four factors.  

 
Table 5.  Numerical values of factor loading numbers 1–4 for some descriptors after 
VARIMAX rotation (against S. aureus). 

 1 2 3 4 Commonality 
MPC 0.588 -0.105 0.587 -0.313 0.799 
DMy 0.195 -0.054 0.762 0.071 0.627 

HOMO 0.059 0.637 -0.013 0.620 0.794 
Electonegativity -0.643 -0.206 -0.199 -0.496 0.741 

Mv 0.751 -0.413 0.362 -0.259 0.934 
Me 0.001 -0.781 0.097 -0.298 0.708 

RBN 0.087 0.902 0.068 0.003 0.826 
HNar 0.866 0.051 0.217 -0.252 0.863 

Xt -0.645 -0.505 -0.307 0.081 0.772 
IDDE 0.746 0.359 0.215 0.324 0.837 
LP1 0.667 0.460 0.368 0.292 0.877 
TIC1 0.714 0.413 0.175 0.127 0.726 
PJI3 0.375 0.611 -0.315 -0.276 0.689 
nCS -0.559 0.578 -0.411 0.199 0.855 

nCaH 0.894 -0.140 -0.143 -0.079 0.845 
nCONHR 0.261 0.220 0.695 -0.906 0.765 

nCO -0.082 0.081 -0.214 0.853 0.787 
pMIC S. aureus 0.041 -0.116 0.898 -0.051 0.824 

%variance 29.87 20.10 17.15 12.12 79.24 
 
Based on the procedure explained in the experimental section, the following three-parametric 

equation was derived. 

pMIC = 4.786 (± 0.484) + 0.196 (± 0.063) DMy + 0.1666 (± 0.063) nCONHR – 0.130 (± 0.058) PJI3 
                    R2 = 0.73   S.E. = 0.31  F = 11.41   Q2 = 0.68   RMScv = 0.34   N = 31                 (1) 

Equation 1 could explain 73% of the variance and predict 68% of the variance in pMIC data. This 
equation describes the effect of geometrical (PJI3), functional group (nCONHR) and quantum (DMy) 
indices on antimicrobial activity. 

When factor scores were used as the predictor parameters in a multiple regression equation using 
forward selection method (PCRA), the following equation was obtained: 

pMIC = 3.756 (± 0.036) + 0.4000 (± 0.036) f3 
                            R2 = 0.81   S.E. = 0.19   F = 35.05   Q2 = 0.79   RMScv = 0.20   N = 31               (2) 
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Equation 2 also shows high equation statistics (81% explained variance and 79% predict variance in 
pMIC data). Since factor scores are used instead of selected descriptors, and any factor-score contains 
information from different descriptors, loss of information is thus avoided and the quality of PCRA 
equation is better than those derived from FA-MLR. 

As it is observed from Table 5, in the case of each factor, the loading values for some descriptors 
are much higher than those of the others. These high values for each factor indicate that this factor 
contains higher information about which descriptors. It should be noted that all factors have 
information from all descriptors but the contribution of descriptor in different factors are not equal. For 
example, factors 1 and 2 have higher loadings for topological, constitutional and functional group 
indices, whereas information about quantum and functional group descriptors is highly incorporated in 
factors 3 and 4. Therefore, from the factor scores used by equation E2, significance of the original 
variables for modeling the activity can be obtained. Factor score 1 indicates importance of Mv, HNar, 
nCaH and IDDE (topological, constitutional and functional group descriptors, respectively). Factor 
score 2 indicates importance of RBN and Me (constitutional descriptors), Factor score 3 and 4 signify 
the importance of DMy, and nCONHR (quantum and functional group descriptors, respectively). 

Table 6 shows the five factor loadings of the variables (after VARIMAX rotation) for the 
compounds tested against C. albicans. As it is observed, about 80% of variances in the original data 
matrix could be explained by selected five factors.  

 
Table 6.  Numerical values of factor loading numbers 1–5 for some descriptors after 
VARIMAX rotation (against C. albicans). 

 1 2 3 4 5 Commonality
Std -0.491 -0.431 -0.459 -0.107 0.095 0.657 

DMz -0.007 0.102 -0.209 0.860 0.322 0.898 
HOMO 0.240 0.811 -0.156 -0.349 0.014 0.861 

Electonegativity -0.706 -0.389 0.142 0.323 -0.310 0.871 
X5A -0.627 -0.664 -0.134 -0.102 0.129 0.879 
PW3 -0.166 0.594 -0.377 -0.158 0.893 0.584 
PW5 0.913 -0.079 0.055 0.135 -0.132 0.879 
IC2 0.579 0.272 -0.164 0.210 0.584 0.820 
piID 0.750 -0.070 -0.333 -0.190 -0.208 0.758 
ASP -0.075 0.087 0.866 -0.198 0.322 0.905 
L/Bw 0.064 0.117 0.926 -0.023 0.164 0.902 
nCp -0.206 0.754 -0.224 -0.097 -0.325 0.777 

nNR2 -0.366 0.722 0.148 0.287 -0.234 0.814 
nOHPh -0.191 -0.415 -0.165 -0.447 0.356 0.562 

nRORPh 0.571 -0.522 0.379 0.002 -0.341 0.858 
pMIC C. albicans 0.628 -0.627 -0.277 -0.107 0.602 0.872 

%variance 22.58 20.58 14.71 14.02 8.71 80.60 
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Based on the procedure explained in the experimental section, the following four-parametric 
equation was derived. 

pMIC = 5.980 (±0.695) + 0.182 (±0.022) piID – 0.167 (±0.024) nCp – 0.085 (±0.023) ASP 
– 0.058 (±0.023) PW3 

                 R2 = 0.81   S.E. = 0.17   F = 34.76   Q2 = 0.79      RMScv = 0.18       N = 28                     (3) 

Equation 3 could explain and predict 85% and 81% of the variance in pMIC data, respectively. This 
equation describes the effect of topological (piID and PW3), functional group (nCp) and geometrical 
(ASP) indices on the antimicrobial activity. 

When factor scores were used as the predictor parameters in a multiple regression equation using 
forward selection method (PCRA), the following equation was obtained: 

pMIC = 3.806 (±0.023) + 0.237 (±0.024) f1- 0.114 ((±0.024)  f3  + 0.081 (±0.024)  f2 - 0.065 (±0.024) f4 
                             R2 = 0.83   S.E. = 0.12   F = 38.05   Q2 = 0.81   RMScv = 0.12        N = 28          (4) 

Equation 4 shows also high equation statistics (88% explained variance and 83% predicted variance 
in pMIC data). It should be noted that the variables (factor scores) used in Equation 4 are perfectly 
orthogonal to each other. Since factor scores are used instead of selected descriptors, and any factor-
score contains information from different descriptors, loss of information is thus avoided and the 
quality of PCRA equation is better than those derived from FA-MLR. 

As it is observed from Table 6, in the case of each factor, the loading values for some descriptors 
are much higher than those of the others. Factors 1 and 2 have higher loadings for topological, 
quantum and functional group indices, whereas information about geometrical, quantum and 
topological descriptors is highly incorporated in factors 3, 4 and 5. Therefore, from the factor scores 
used by equation E4, significance of the original variables for modeling the activity can be obtained. 
Factor score 1 indicates importance of PW5, piID and electronegativity (topological and quantum 
descriptors). Factor score 2 indicates importance of HOMO nCp and nNR2 (quantum and functional 
group descriptor). Factor score 3 signifies the importance of ASP and L/Bw (geometrical descriptors) 
and factor score 4 and 5 signify the importance of quantum and topological descriptors (DMz  
and PW3).  

Comparison between the results obtained by GA-PLS and the other employed regression methods 
indicates higher accuracy of this method in describing antimicrobial activity of the studied compounds. 

Difference in accuracy of the different regression methods used in this study is visualized in Figures 
3 and 4 by plotting the predicted activity (by cross-validation) against the experimental values. 
Obviously, all linear models represented scattering of data around a straight line with slope and 
intercept close to one and zero, respectively. As it is observed, the plot of data resulted by GA-PLS 
represents the lowest scattering and that obtained by FA-MLR and PCR analysis have lower accuracy. 
It should be mentioned that the model which GA-PLS method provides is better than that MLR 
analysis provided in our previous study [25]. In fact, MLR analysis could explain and predict 55% and 
35% of variances in the pMIC data (compounds tested against S. aureus) and predict 82% and 73% of 
variances in the pMIC data (compounds tested against C. albicans). 

 
 
 



Int. J. Mol. Sci. 2008, 9             
 

2419

Figure 3. Plots of the cross-validated predicted activity against the experimental activity 
for the QSAR models obtained by different chemometrics methods (against S. aureus). 
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Figure 4. Plots of the cross-validated predicted activity against the experimental activity 
for the QSAR models obtained by different chemometrics methods (against C. albicans). 
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4. Conclusions 
 

Quantitative relationships between molecular structure and inhibitory activity of a series of 3-
hydroxypyridine-4-one and 3-hydroxypyran-4-one derivatives were discovered by a collection of 
chemometrics methods including GA-PLS, FA-MLR and PCRA. The results revealed the significant 
role of topological parameters in the antimicrobial activity of the studied compounds against S. aureus 
and C. albicans. A comparison between the different statistical methods employed indicated that GA-
PLS represented superior results and it could explain and predict 96% and 91% of variances in the 
pMIC data (compounds tested against S. aureus) and predict 91% and 87% of variances in the pMIC 
data (compounds tested against C. albicans). As it is observed, the plot of data resulted by GA-PLS 
represents the lowest scattering, and the impact of topological descriptors was the most. 
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