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Abstract: The study of topological indices – graph invariants that can be used for describing
and predicting physicochemical or pharmacological properties of organic compounds – is
currently one of the most active research fields in chemical graph theory. In this paper we
study the Schultz index and find a relation with the Wiener index of the armchair polyhex
nanotubes TUV C6[2p, q]. An exact expression for Schultz index of this molecule is also
found.
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1. Introduction

Topological indices are a convenient method of translating chemical constitution into numerical val-
ues that can be used for correlations with physical, chemical or biological properties. This method has
been introduced by Harold Wiener as a descriptor for explaining the boiling points of paraffins [1–3].
If d(u, v) is the distance of the vertices u and v of the undirected connected graph G (i.e., the number of
edges in the shortest path that connects u and v) and V (G) is the vertex set of G, then the Wiener index
of G is the half sum of distances over all its vertex pairs (u, v):

W (G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

d(u, v).

A unified approach to the Wiener topological index and its various recent modifications is presented.
Among these modifications particular attention is paid to the Hyper-Wiener, Harary, Szeged, Cluj and
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Schultz indices as well as their numerous variants and generalizations [4–10]. The Schultz index of the
graph G was introduced by Schultz [14] in 1989 and is defined as follows:

S(G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

(deg(u) + deg(v))d(u, v),

where deg(u) is the degree of the vertex u.
The main chemical applications and mathematical properties of this index were established in a series of
studies [12–15]. Also a comparative study of molecular descriptors showed that the Schultz index and
Wiener index are mutually related [16–18].
Carbon nanotubes, the one-dimensional carbon allotropes, are intensively studied with respect to their
promise to exhibit unique physical properties: mechanical, optical electronic etc. [19–21]. In [19],
Diudea et al. obtained the Wiener index of TUV C6[2p, q], the armchair polyhex nanotube (see Figure
1). Here we find a relation between the Schultz index and Wiener index of this molecule. By using this
relation we find an exact expression for the Schultz index of the same. The Appendix includes a Maple
program [22] to produce the graph of TUV C6[2p, q], and to compute the Schultz index of the graph.

2. Schultz index of armchair polyhex nanotubes

Throughout this paper G := TUV C6[2p, q] denotes an arbitrary armchair polyhex nanotube in terms
of its circumference 2p and their length q, see Figure 2. At first we consider an armchair lattice and
choose a coordinate label for it, as illustrated in Figure 2. The distance of a vertex u of G is defined as

d(u) =
∑

x∈V (G)

d(u, x),

the summation of distances between v and all vertices of G. By considering this notation the following
lemma gives us a relation between the Schultz and Wiener index of G.

Figure 1. A TUV C6[2p, q] Lattice with p = 5 and q = 7.

k�1
k�2

k�3
k�4

k�5
k�6

k�7

x11 x13 x15x10 x12 x14x17 x19x16 x18

x26 x28x27 x29 x20 x22 x24x21 x23 x25

Lemma 1. For the graph G = TUV C6[2p, q] we have

S(G) = 6W (G)− 2
∑

u∈level 1

d(u).
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Figure 2. An armchair polyhex nanotube [19].

Figure 3. Distances from x01 to all vertices of TUV C6[2p, q] with p = 5 and q = 7.
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Proof: For each k such that 1 ≤ k ≤ q put Ak := {u ∈ V (G) | u ∈ level k}( see Figure 2). Then

S(G)=
1

2

∑
u∈V (G)

∑
v∈V (G)

(deg(u) + deg(v))d(u, v)

=
1

2

∑
u∈V (G)

∑
v∈V (G)

deg(u)d(u, v) +
1

2

∑
u∈V (G)

∑
v∈V (G)

deg(v)d(u, v)

=
1

2

∑
u∈V (G)

∑
v∈V (G)

deg(u)d(u, v) +
1

2

∑
v∈V (G)

∑
u∈V (G)

deg(v)d(u, v)

=
1

2

∑
u∈V (G)

deg(u)
∑

v∈V (G)

d(u, v) +
1

2

∑
v∈V (G)

deg(v)
∑

u∈V (G)

d(u, v)

=
1

2

∑
u∈V (G)

deg(u)d(u) +
1

2

∑
v∈V (G)

deg(v)d(v)

=
∑

u∈V (G)

deg(u)d(u)
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But

deg(u) =


2 if u ∈ A1 ∪ Aq

3 if otherwise.

Also in the graph G it is clear that
∑

u∈A1
d(u) =

∑
u∈Aq

d(u). Therefore

S(G)=
∑

u∈V (G)

deg(u)d(u) =
∑

u∈A1∪Aq

deg(u)d(u) +
∑

u∈V (G)\(A1∪Aq)

deg(u)d(u)

=
∑

u∈A1∪Aq

2d(u) +
∑

u∈V (G)\(A1∪Aq)

3d(u)

=3
∑

u∈V (G)

d(u)− 2
∑

u∈A1

d(u)

= 6W (G)− 2
∑

u∈A1

d(u).

This completes the proof.

To compute the d(u) in the graph G, when u is a vertex in level 1, we first prove the following lemma.

Lemma 2. The sum of distances of one vertex of level 1 to all vertices of level k is given by

wk :=
∑

x∈ level k

d(x10, x) =
∑

x∈ level k

d(x11, x)

...

=


2p2 + k2 − 2k − 2p + 1 + H(p, k) if 1 ≤ k < p

p(p + 2k − 2) if k ≥ p,

where

H(p, k) =


2p− 1 if k + p is even

2p if k + p is odd.

Proof: We calculate the value of wk. We consider that the tube can be built up from two halves collapsing
at the polygon line joining x10 to xq,0 (see Figure 2). The right part is the graph G1 which consists of
vertical polygon lines 0, 1, . . . , p and x10 is one of the vertices in the first row of the graph G1. The left
part is the graph G2 which consists of vertical polygon lines (p + 1), (p + 2), . . . , 2p− 1. We change the
indices of the vertices of G2 in the following way:

V (G2) = {x̂ji | x̂j,i = xj,2p−i ∈ V (G)}

(See Figure 3)
We must consider two cases:

Case 1: If k ≥ p. In the graphs G1 and for 0 ≤ i < k we have

d(x10, xk,i) = k + i− 1.
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Also in the graphs G2 and for 1 ≤ i < k we have

d(x10, x̂k,i) = k + i− 1.

So

∑
x∈ level k

d(x10, x) = 2
p−1∑
i=1

(k + i− 1) + (0 + k − 1) + (p + k − 1) = p(p + 2k − 2).

Case 2: If k < p. First suppose that 1 ≤ i < k. In the graphs G1 and G2 we have

d(x10, xk,i) = k + i− 1 = d(x10, x̂k,i) = k + i− 1.

Now suppose that k ≤ i ≤ p. Then in the graph G1 we can see that if k is odd, then

d(x10, xk,i) =


2i if i is even

2i− 1 if i is odd

and if k is even, then

d(x10, xk,i) =


2i− 1 if i is even

2i if i is odd.

Also in G2 we have

d(x10, x̂k,i) =


2i if i is even

2i + 1 if i is odd

if k is odd and

d(x10, x̂k,i) =


2i + 1 if i is even

2i if i is odd

if k is even.
All of this distances give us

∑
x∈ level k

d(x10, x) = 2p2 + k2 − 2k − 2p + 1 + H(p, k).

For other vertices we can convert those to x10 by changing transfer vertices and apply a similar argument
by choosing suitable G1 and G2 and compute wk.

By a straightforward computation (if irem means the positive integer remainder) we can see:

H(p, k) = 2p− 1 + irem(k + p, 2)

= 2p− 1 +
1

2
+

1

2
(−1)k−irem(p,2)+1,
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where

irem(p, 2) =


0 if p is even

1 if p is odd.

So, by Lemma 1, when 1 ≤ k ≤ p, we have

wk = 2p2 + k2 − 2k +
1

2
+

1

2
(−1)k−irem(p,2)+1. (1)

Also in the graph G,

d(x10) =
∑

x∈level 0

d(x10, x) +
∑

x∈level 1

d(x10, x) + · · ·+
∑

x∈level q

d(x10, x)

= w1 + w2 + · · ·+ wq.

So

d(x10) = d(x11) = · · · = d(x2p−1,1) = w1 + w2 + · · ·+ wq.

This leads us to the following corollary:

Corollary 1. For each vertex u on level 1 we have

d(u) = w1 + w2 + · · ·+ wq.

Now suppose that p > q. Then by lemma 2 and equation (1) we have

d(u) =
q∑

k=1

(
2p2 + k2 − 2k +

1

2
+

1

2
(−1)k−irem(p,2)+1

)

= 2p2q +
q3

3
− q2

2
− q

3
+

1

4
(−1)−irem(p,2)+1+q +

1

4
(−1)−irem(p,2).

Also if p ≤ q, then by Lemma 1 and equation (1) we have

d(u) = w1 + w2 + · · ·+ wp−1 + wp + wp+1 + · · ·+ wq

=
p−1∑
k=1

(
2p2 + k2 − 2k +

1

2
+

1

2
(−1)k−irem(p,2)+1

)
+

q∑
k=p

p(p + 2k − 2)

=
p3

3
+

p2

2
− p

3
− 1

4
(−1)−irem(p,2)+1+p − 1

2
− 1

4
(−1)−irem(p,2)+1 + p2q − pq + pq2

We summarize the above results in the following proposition

Corollary 2. For each vertex u on level 1, d(u) is given by

Case 1: p is even

d(u) =


2p2q + q3

3
− q2

2
− q

3
+ 1

4
+ 1

4
(−1)q+1 if p > q

p
6
[2p2 + 3p− 2 + 6pq − 6q + 6q2] if p ≤ q
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Case 2: p is odd

d(u) =


2p2q + q3

3
− q2

2
− q

3
− 1

4
+ 1

4
(−1)q if p > q

p3

3
+ p2

2
− p

3
− 1

2
+ p2q − pq + pq2 if p ≤ q

Theorem 1. The Wiener index of G := TUV C6[2p, q] nanotubes is given by

Case 1: p is even

W (G) =


p
12

[3(−1)q+1 + 3 + 24q2p2 − 8q2 + 2q4] if p > q

−p2

6
[8q − 4p + p3 − 4qp2 − 4q3 − 6q2p] if p ≤ q

Case 2: p is odd

W (G) =


p
12

[3(−1)q − 3 + 24q2p2 − 8q2 + 2q4] if p > q

−p
6

[−4p3q − 4pq3 − 6q2p2 + 3 + 8qp− 4p2 + p4] if p ≤ q

Proof: See [19].

Now we are in the position to prove the main result of this section.

Theorem 2. The Schultz index of G := TUV C6[2p, q] nanotubes is given by

Case 1: p is even

S(G) =


p
6
[−48p2q + 72p2q2 + 3(−1)q+1 + 3− 8q3 − 12q2 + 6q4 + 8q] if p > q

−p2

3
[−18q2p + 3p3 − 6p− 12p2q − 12q3 + 12q + 4p2 − 4 + 12pq + 12q2] if p ≤ q

Case 2: p is odd

S(G) =



p
6
[72q2p2 + 6q4 − 12q2 − 3 + 3(−1)q − 48p2q − 8q3 + 8q] if p > q

−p
3

[−12p3q − 12pq3 − 18p2q2 + 3 + 12pq − 6p2 + 3p4+

4p3 − 4p + 12p2q + 12pq2] if p ≤ q

Proof: According to Lemma 1 we must calculate 6W (G)−∑u∈level 1 d(u). But by corollary 1 we have

d(u) = w1 + w2 + · · ·+ wq.

Since there are 2p vertices on level 1 therefore

S(G) = 6W (G)− 4pd(u) (2)

Finally by replacing d(u) from corollary 1 in the equation (2) the result obtains.



Int. J. Mol. Sci. 2008, 9 2023

Table 1. Schultz index of short tubes, p > q.

p q S(G) p q S(G)

6 2 6912 5 2 4000

6 3 18366 5 3 10650

6 4 35424 5 4 20720

6 5 58656 9 5 193266

10 2 32000 9 6 288432

10 5 264160 9 7 404514

10 6 393440 9 8 542880

10 7 550560 15 8 2425440

10 8 736960 15 7 1823310

10 9 954400 15 6 1310160

Table 2. Schultz index of long tubes, p ≤ q.

p q S(G) p q S(G)

4 4 10816 3 4 4752

4 5 18304 3 5 8262

4 6 28352 3 6 13104

4 7 41344 3 7 19494

4 8 57664 3 8 27648

10 21 6810400 11 11 1954502

10 22 7641600 11 12 2371952

10 23 8536800 11 13 2839524

10 24 9498400 11 14 3359312

10 25 10528800 11 15 3935030
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3. Experimental Section

Tables 1 and 2 show the numerical data for the Schultz index in tubes TUV C6[2p, q] of various
dimensions.
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4. Appendix

The following code is the MAPLE program [22] used to produce the graph of TUHC6[2p, q] and to
compute the Schultz index of the graph.

> restart;with(networks):

> l:=proc(p,q) (*generating the graph *)

local G,i,j,k,ff,cc;G:=new();

for i from 0 to (2*p-1) do

for j from 1 to q do

addvertex(a[i,j],G);

end do;

end do;

for i from 0 to (2*p-1) do

for j from 1 to (q-1) do

addedge ({a[i,j],a[i,j+1]},G);

end do;

end do;

for i from 0 to (2*p-2)/2 do

for k from 1 to iquo(q,2) do

addedge({a[2*i,2*k-1],a[2*i+1,2*k-1]},G);

end do;

end do;

for i from 0 to (2*p-4)/2 do

for k from 1 to iquo(q,2) do

addedge({a[2*i+1,2*k],a[2*i+2,2*k]},G);

end do;

end do;

for ff from 1 to iquo(q,2) do

addedge({a[2*p-1,2*ff],a[0,2*ff]},G);

end do;

if irem(q,2)=1 then

for cc from 0 to 2*p/2-1 do

addedge({a[2*cc,q],a[2*cc+1,q]},G);end do;

end if ;return(G);

end proc:
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> m:=l(3,8):(#Graph G:=TUVC_6[2*3,8]#)

> t :=edges(m):

> ii:=vertices(m):

> T := allpairs(m,p):

> Sch:=proc(u)

local b,o,pp;

b:=0;

for o in ii do

for pp in ii do

b:=b+ T[(pp,o)]*(vdegree(o,m)+vdegree(pp,m));

end do;

end do;

return(b/2);

end proc:

> Sch(u); 27648(#The Schultz index of the graph #)

c© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/3.0/).
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