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Abstract:



The deactivation of triplet excited state riboflavin by polyphenols, e.g. rutin and catechin, was studied on the basis of density functional theory calculations. The results show that the H-atom transfer pathway is more feasible on thermodynamic grounds in comparison with the direct energy transfer or direct electron transfer pathways involved in the triplet excited state riboflavin deactivation by rutin/catechin. The findings are helpful to understand the protective effect of polyphenols against the riboflavin induced photosensitizing damage.
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1. Introduction


Numerous endogenous photosensitizers, among which riboflavin has attracted much attention, can photogenerate various reactive oxygen species (ROS, e.g. 1O2 and O2˙−) [1, 2]. It has been reported that riboflavin is an efficient ROS-generator [1, 3, 4] and can cause photosensitizing DNA damage [5, 6]. Polyphenolic compounds, e.g. rutin and catechin (Figure 1), are ideal antioxidants with strong free radical-scavenging ability. Recently, it was reported that rutin and catechin play dual roles in protecting from the photosensitizing damage caused by riboflavin, that is, as ROS scavengers and triplet excited (T1) state riboflavin quenchers [7]. The free radical-scavenging mechanisms of rutin and catechin have been investigated before [8], however, more effort is needed to elucidate the deactivating mechanisms of T1 state riboflavin by rutin/catechin. In recent years, density functional theory (DFT) calculations have been widely used to study both the photosensitization and deactivation mechanisms of excited state photosensitizers [4, 9–12]. Therefore, in the present study, we attempt to explore how T1 state riboflavin was deactivated by rutin/catechin by means of theoretical calculations.


Figure 1. Molecular structures of riboflavin, rutin and catechin.



[image: Ijms 09 01908f1]







2. Theoretical Methods


The calculation procedures are as follows. First, the geometries of riboflavin, rutin and catechin were fully optimized by DFT [14, 15] and B3LYP functional [16–18] with 6–31G(d,p) Gaussian basis set in vacuo. Then, the lowest T1 excitation energies (ET1) of the three molecules were estimated by time-dependent DFT (TD-DFT) [19–21] with the same basis set. Moreover, in view of the fact that the diffusion functions are crucial for treatment of anion and cation radicals, the vertical electron affinities (VEA) and vertical ionization potentials (VIP) of riboflavin, rutin and catechin were calculated by using a combined DFT method labeled as B3LYP/6–31+G(d,p)/B3LYP/6–31G(d,p), which means that B3LYP/6–31+G(d,p) was used to perform a single-point calculation using B3LYP/6–31G(d,p)-optimized geometries [10]. The O-H bond dissociation enthalpy (BDE) of rutin/catechin and H-atom affinity (HAA) of riboflavin were obtained by a hybrid method combining DFT and semiempirical method AM1, labeled as (RO)B3LYP/6–311+G(2d,2p)/AM1, which takes advantages of accuracy and economy [8]. The solvent (benzene and water) effects were taken into account by employing the self-consistent reaction field (SCRF) method with polarizable continuum model (PCM) [22–24] for the single point calculations. All the calculations were accomplished using the Gaussian 03 package of programs [25].




3. Results and Discussion


As we know, the ground state photosensitizer is initially excited to the singlet excited state upon irradiation and then may intersystem cross to the relatively long-lived T1 state. T1 state riboflavin can react with molecular oxygen to photogenerate various ROS [1, 3, 4] and at the same time, it can be deactivated by antioxidants through the following possible pathways:



The first deactivating pathway may proceed through the direct energy transfer between T1 state riboflavin (RF) and polyphenols (PhOH) (Equation 1).


[image: there is no content]



(1)







The second deactivating pathway involves the electron transfer between T1 state riboflavin and polyphenols (Equation 2).
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Moreover, as the polyphenolic antioxidants are ideal H-atom donors [8], T1 state riboflavin may be deactivated by polyphenols through a H-atom transfer process (Equation 3).
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Therefore, the corresponding electronic parameters of riboflavin, rutin and catechin, including ET1, VEA, VIP, O-H BDE and HAA, were estimated and listed in Table 1, according to which, the deactivating reactions of T1 state riboflavin by rutin/catechin were analyzed.



Table 1. Theoretically estimated lowest triplet excitation energy (ET1, in eV), vertical electron affinity (VEA, in eV) and vertical ionization potential (VIP, in eV) of polyphenols (rutin and catechin) and riboflavin in benzene and water.







	
Compounds

	
Solvents

	
ET1

	
VIPS0

	
VEAS0

	
VEAT1a






	
Rutin

	
benzene

	
3.12

	
6.76

	

	




	
water

	
3.13

	
5.95

	

	




	
Catechin

	
benzene

	
3.62

	
6.49

	

	




	
water

	
3.63

	
5.82

	

	




	
Riboflavinb

	
benzene

	
2.10

	

	
–2.52

	
–4.62




	
water

	
2.09

	

	
–3.32

	
–5.41








aVEAT1 = VEAS0 – ET1;



bdata from ref [4].








Primarily, the ET1 of riboflavin, rutin and catechin have been calculated using TD-DFT methods, whose accuracy in estimating the T1 state properties of various photosensitizers has been verified [4, 9–13]. It can be seen that the theoretical ET1 of rutin/catechin is much higher than that of riboflavin (Table 1), implying that the direct energy transfer-based deactivating pathway (Equation 1) is not feasible on thermodynamic grounds in both solvents.



As to the direct electron transfer-based deactivating pathway (Equation 2), its feasibility depends on the VEA of T1 state riboflavin (VEAT1) and VIP of rutin/catechin. According to the theoretical results, the summation of VEAT1 of riboflavin and VIP of rutin/catechin is positive both in benzene and water, implying that the electron transfer-based deactivating pathway is also not favorable from the thermodynamic point of view.



Thirdly, rutin and catechin are excellent H-atom donating substrates [8]. To explore whether the H-atom transfer reaction from rutin/catechin to T1 state riboflavin (Equation 3) can occur or not, the O-H BDE of rutin and catechin, which has been successfully used to measure the molecular H-atom-donating ability [8], and the HAA of riboflavin, an appropriate theoretical parameter to characterize the molecular H-atom-abstracting ability [8], have been calculated. Despite the fact that rutin and catechin possess several phenolic hydroxyls that may donate H-atoms, previous studies demonstrated that the hydroxyl at position 4’ (Figure 1) is the most active one [26] and the corresponding O-H BDE in benzene and water is listed in Table 2. The theoretically estimated HAA of T1 state riboflavin at N1 (Figure 1), which has been reported to be the thermodynamically favorable position to accept a H-atom [27], is –97.24 kcal/mol in benzene and –106.19 kcal/mol in water (Table 2). As the summation of HAAT1 of riboflavin and the O-H BDE of rutin/catechin is negative in both solvents, the H-atom transfer-based quenching pathway is thermodynamically feasible. Therefore, the H-atom transfer-based T1 state riboflavin deactivating mechanism by rutin/catechin is proposed as illustrated in Figure 2.


Figure 2. Theoretically postulated H-atom transfer-based triplet excited state riboflavin deactivating pathway by rutin/catechin.
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Table 2. Theoretically estimated O-H bond dissociation enthalpy (BDE, in kcal/mol) of the phenolic compounds (rutin and catechin) and T1 sate H-atom affinity (HAAT1, in kcal/mol) of riboflavin in benzene and water.







	
Compounds

	
Solvents

	
O-H BDE

	
HAAT1a






	
Rutin

	
benzene

	
78.18

	




	
water

	
79.97

	




	
Catechin

	
benzene

	
78.97

	




	
water

	
80.73

	




	
Riboflavin

	
benzene

	

	
−97.24




	
water

	

	
−106.19








aHAAT1 = HAAS0 + ET1 .









4. Conclusions


In summary, through comparing the electronic parameters of riboflavin, rutin and catechin, including ET1, VEA, VIP, BDE and HAA, it can be inferred that the H-atom transfer pathway is more feasible on thermodynamic grounds relative to the direct energy transfer or direct electron transfer pathways responsible for the T1 state riboflavin deactivation by rutin/catechin. The results have important implications to design/screen better polyphenolic antioxidants as protectors against the photo-oxidative damage induced by riboflavin.







Acknowledgments


This work was supported by the National Natural Science Foundation of China (Grant No. 30700113) and the Natural Science Foundation of Shandong Province (Grant No. Y2007D53).




References and Notes


	1. 
Baier, J; Maisch, T; Maier, M; Engel, E; Landthaler, M; Bäumler, W. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys. J. 2006, 91, 1452–1459. [Google Scholar]

	2. 
Wondrak, GT; Jacobson, MK; Jacobson, EL. Endogenous UVA-photosensitizers: Mediators of skin photodamage and novel targets for skin photoprotection. Photochem. Photobiol. Sci 2006, 5, 215–237. [Google Scholar]

	3. 
Grzelak, A; Rychlik, B; Bartosz, G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic. Biol. Med 2001, 30, 1418–1425. [Google Scholar]

	4. 
Shen, L; Ji, HF; Zhang, HY. Computational note on the photosensitization mechanisms of riboflavin. J. Mol. Struct. (Theochem) 2007, 821, 171–172. [Google Scholar]

	5. 
Ito, K; Inoue, S; Yamamoto, K; Kawanishi, S. 8-Hydroxydeoxyguanosine formation at the 5′ site of 5′-GG-3′ sequences in double-stranded DNA by UV radiation with riboflavin. J. Biol. Chem. 1993, 268, 13221–13227. [Google Scholar]

	6. 
Joshi, PC. Comparison of the DNA-damaging property of photosensitised riboflavin via singlet oxygen (1O2) and superoxide radical O2-. mechanisms. Toxicol. Lett 1985, 26, 211–217. [Google Scholar]

	7. 
Becker, EM; Cardoso, DR; Skibsted, LH. Deactivation of riboflavin triplet-excited state by phenolic antioxidants: mechanism behind protective effects in photooxidation of milk-based beverages. Eur. Food. Res. Technol. 2005, 221, 382–386. [Google Scholar]

	8. 
Zhang, HY. Structure-activity relationships and rational design strategies for radical-scavenging antioxidants. Curr. Computer-Aided Drug Des. 2005, 1, 257–273. [Google Scholar]

	9. 
Shen, L; Ji, HF; Zhang, HY. A theoretical elucidation on the solvent-dependent photosensitive behaviors of C60. Photochem. Photobiol 2006, 82, 798–800. [Google Scholar]

	10. 
Shen, L; Ji, HF; Zhang, HY. A TD-DFT study on triplet excited-state properties of curcumin and its implications in elucidating the photosensitizing mechanisms of the pigment. Chem. Phys. Lett. 2005, 409, 300–303. [Google Scholar]

	11. 
Shen, L; Ji, HF; Zhang, HY. Hypericin anion is crucial to elucidating the pigment’s photosensitive features. Bioorg. Med. Chem. Lett 2006, 16, 1414–1417. [Google Scholar]

	12. 
Shen, L; Ji, HF. How α-tocopherol quenches triplet state riboflavin? Insights from theory. J. Photochem. Photobiol. A: Chem. 2008, 199, 119–121. [Google Scholar]

	13. 
Shen, L; Ji, HF. A theoretical study on the quenching mechanisms of triplet state riboflavin by tryptophan and tyrosine. J. Photochem. Photobiol. B: Biol. 2008, 92, 10–12. [Google Scholar]

	14. 
Hohenberg, P; Kohn, W. Inhomogeneous electron gas. Phys. Rev 1964, 136, B864–B871. [Google Scholar]

	15. 
Kohn, W; Sham, LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev 1965, 140, A1133–A1138. [Google Scholar]

	16. 
Lee, C; Yang, W; Parr, RG. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37, 785–789. [Google Scholar]

	17. 
Becke, AD. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar]

	18. 
Stephens, PJ; Devlin, FJ; Chabalowski, CF; Frisch, MJ. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar]

	19. 
Stratmann, RE; Scuseria, GE; Frisch, MJ. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218–8224. [Google Scholar]

	20. 
Bauernschmitt, R; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett 1996, 256, 454–464. [Google Scholar]

	21. 
Casida, ME; Jamorski, C; Casida, KC; Salahub, DR. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439–4449. [Google Scholar]

	22. 
Miertus, S; Scrocco, E; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar]

	23. 
Miertus, S; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys 1982, 65, 239–241. [Google Scholar]

	24. 
Cossi, M; Barone, V; Cammi, J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 1996, 255, 327–335. [Google Scholar]

	25. 
Frisch, MJ; Trucks, GW; Schlegel, HB; Scuseria, GE; Robb, MA; Cheeseman, JR; Montgomery, JA; Vreven, T; Kudin, KN; Burant, JC; et al. Gaussian 03 2003.

	26. 
Pannala, SA; Chan, TS; O′Brien, PJ; Rice-Evans, CA. Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem. Biophys. Res. Commun. 2001, 282, 1161–1168. [Google Scholar]

	27. 
Cardoso, DR; Olsen, K; Skibsted, LH. Mechanism of deactivation of triplet-excited riboflavin by ascorbate, carotenoids, and tocopherols in homogeneous and heterogeneous aqueous food model systems. J. Agric. Food Chem. 2007, 55, 6285–6291. [Google Scholar]















© 2008 by MDPI This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).







media/file4.png





nav.xhtml


  ijms-09-01908


  
    		
      ijms-09-01908
    


  




  





media/file3.png





media/file0.png
§reon

((|3H0H)3
CH,
HiC A NS N
3 Z o
8
P NH
HC™ 5 N"
o
riboflavin

rutin (Ru=rutoside) catechin





media/file1.png
§reon

((|3H0H)3
CH,
HiC A NS N
3 Z o
8
P NH
HC™ 5 N"
o
riboflavin

rutin (Ru=rutoside) catechin





media/file2.png





