
Int. J. Mol. Sci. 2007, 8, 1001-1012 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 
© 2007 by MDPI 

www.mdpi.org/ijms/ 

Full Research Paper 

Application of Osthol Induces a Resistance Response Against 
Powdery Mildew in Pumpkin Leaves  

Zhiqi Shi 1,2,#,*, Fei Wang 2,#, Wei Zhou 2, Peng Zhang 3 and Yong Jian Fan 1 

1 Department of Plant Protection of Nanjing Agricultural University, Nanjing210095, China;  

E-mail: shizhiqi@jaas.ac.cn; yjfan@jaas.ac.cn 

2 Food Safety institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;  

E-mail: zhmdwf@jaas.ac.cn; zhouw811@jaas.ac.cn; shizhiqi@jaas.ac.cn 

3 Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;  

E-mail: jszhangpeng@jaas.ac.cn 

* Author to whom correspondence should be addressed. Tel.: +86-025-84391863; Fax: +86-025-

84391260; E-mail: shizhiqi@jaas.ac.cn;  

# Both Authors contributed equally to this work. 

Received: 30 May 2007; in revised form: 20 August 2007 / Accepted: 6 September 2007 /  

Published: 14 September 2007 

 

Abstract: Plants can defend themselves against fungal infection by natural means induced 

by biotic and abiotic elicitors. Osthol is a natural compound extracted from dried fruits of 

Cnidii Monnieri Fructus. In this study, it has been shown to not only be a fungicide with 

acceptable curative properties (control efficacy of 68.72), but it also showed a significant 

prophylactic effect (with control efficacy of 77.36) against pumpkin powdery mildew at a 

concentration of 100 µg·mL-1. In pumpkin leaves with/or without inoculation of 

Sphaerotheca fuliginea, osthol treatment induced the accumulation of chitinase and 

peroxidase and enhanced the transcription of chitinase gene in non-inoculated leaves. The 

potentiation of phenylalanine amonia-lyase activity in leaves by osthol application and 

following inoculation was absent in that with inoculation or osthol treatment, indicating 

that induced PAL in osthol-pretreated plants was inoculation-mediated. In conclusion, this 

natural compound could induce resistance response in the plant against powdery mildew. 

Keywords: Osthol, coumarinic compound, induced resistance response, Cucurbita 

moschata, Sphaerotheca fuliginea, chitinase, POD, PAL 
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1. Introduction  

Plants have constitutive and induced mechanisms to defend themselves against pathogenic agents. 

The induced mechanism has been widely studied, and many abiotic or biotic components have been 

exploited for their eliciting properties to induce resistance [1,2]. 

Pathogenesis-related proteins consist of enzymes including chitinase peroxidase, phenylalanine 

amonia-lyase and certain other proteins which accumulate to high levels following pathogen attacks. 

Their induction has been correlated with greater resistance to subsequent pathogen attack [3]. 

Chitinases catalyze the hydrolysis of β-(1-4) linkages in the linear homopolymer, chitin. A role for 

chitinases in plant defense against fungal attack is suggested by the absence of chitin in higher plants, 

its presence in fungal cell walls [4], and the finding that plant chitinases inhibit spore germination and 

mycelia growth of certain fungi in vitro [5,6]. Chitinases are constitutively expressed at low levels in 

leaves and at high levels in roots [7]. Increased levels of the gene expression or the enzymic activity 

have been observed in leaves after inoculation with pathogenic microbe [8-10].  

Osthol is a coumarinic compound (7-methoxy-8-[3-methylpent-2-enyl] coumarin), extracted from 

dried fruits of Cnidii monnieri Fructus. Traditionally, osthol is used as an external medicine for the 

treatment of eczema, cutaneous pruritus and Ttrichomonas vaginalis, and an internal medicine for 

frigidity [11,12]. Recent pharmacological studies have revealed it to possess antiallergic [13], 

antiosteoporotic [14] and anti-inflammatory activities [15]. Its antifungal activity was proven on 

Alternaria alternate, A. ergillus sp., Cryptococuus neoformans, etc. [16]. Our previous studies also 

showed that osthol has a wide antifungal activity, with the EC50 value ranging from 21.15 µg·mL-1 to 

61.62 µg·mL-1 against Rhizoctonia solani, Colletotrichum mllsae, Phytophora capsici and other 

phytopathogenic fungi [17]. Coumarin, as an allelochemical, sufficiently affects the overall root growth 

and morphology and the root type at the concentration of 0.25 mM [18,19], but no evidence concerning 

about the increased resistance in host plant responses to coumarinic compounds has been reported.  

Pumpkin powdery mildew (caused by Sphaerotheca fuliginea) heavily affects yield and quality of 

pumpkins (Cucurbita moschata Duch) produced for market every year. During our study of antifungal 

activity of osthol against powdery mildew on pumpkin we found that this natural compound can act as 

not only a curative fungicide, but also as a preventative agent. We also analyzed the expression of 

chitinases and other pathogenesis-related protein in tissues of pumpkins treated by osthol. 

2. Results and Discussion  

2.1 Results 

2.1.1 Effect of osthol on powdery mildew infection of pumpkin 

Seven days after inoculation, the powdery mildew disease index on every plant was estimated. The 

water control plants had a disease index of 72.35, significantly higher than those of 15.56 and 22.63 for 

osthol applications before and after inoculation. However, there were no significant differences 

between the curative and preventive effects of osthol against powdery mildew on pumpkin. The 

concentration of 100 µg·mL-1 showed the best control efficacy whatever the time of inoculation  

(Table 1). 



Int. J. Mol. Sci. 2007, 8                      1003 

 

 

Table 1. Assessment of the efficacy of osthol against powdery mildew on cucumber leaves 

Treatment Mean (Disease index) a Control efficacy b 

Osthol (100 µg·mL-1) before inoculation 15.56 c 77.36 

Osthol (50 µg·mL-1) before inoculation 42.22 b 41.64 

Osthol (100 µg·mL-1) after inoculation 22.63 c 68.72 

Osthol (50 µg·mL-1) after inoculation 50.78 b 29.81 

Water control 72.35 a  

Disease assessment was carried out 5 days after the inoculation. The interval between the osthol application 

and fungal inoculation was 2 days. 

a values represent means of Disease Index made on 10 plants. Mean values followed by the same letter in 

each column do not differ statistically. Data were subjected to one-way analyses of variance and mean 

separation was performed using LSD tests (a=0.05). 
b Control efficacy was determined from disease index ( 100

controlwater 
 treatmentosthol -controlwater × ). 

2.1.2 Enzyme Assays 

Enzyme activities of chitinase, peroxidase (POD) activity and phenylalanine amonia-lyase (PAL) in 

pumpkin leaves were assayed using colloidal chitin, H2O2 and L-phenylalanine as substrates, 

respectively. Although inoculations were carried out 2 days after the osthol application, the activities 

were measured from the first day of osthol application.  

Figure 1. Chitinase activity in pumpkin leaves upon osthol application and/or S. fuliginea 
inoculation. Non-osthol-treated and non-inoculated plants (WO), plants treated with 
osthol and non-inoculated (SO), non-osthol-treated plant inoculated (WI) and osthol-
treated plant inoculated with S. fuliginea (SI). Each value is the mean ± S.E. for n=3. 
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Overall, osthol treatments markedly increased chitinase activity in leaves of pumpkin, compared to 

the remaining treatments (Figure 1). In plants (SI) treated with osthol and inoculated by S. fuliginea, 

increased chitinase activity by two days (1.56) after osthol treatment, reaching the maximum level 

(3.29) after four days, followed by plants (SO) treated with osthol but non-inoculated and control 

plants. Activity of chitinase in inoculated leaves (WI) showed a slow increase, and the activity kept a 

low level in leaves of non-osthol-treated and non-inoculated pumpkin (WO) throughout the 

experimental period. 

Figure 2. Peroxidase activity in pumpkin leaves upon osthol application and/or S. 
fuliginea inoculation. Non-osthol-treated and non-inoculated plants (WO), plants treated 
with osthol and non-inoculated (SO), non-osthol-treated plant inoculated (WI) and osthol-
treated plant inoculated with S. fuliginea (SI). Each value is the mean ± S.E. for n=3. 
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After osthol application, the activities of POD in leaves of pumpkin began to rise (SI and SO) 

(Figure 2).  Especially, the following inoculation on the second day significantly (P ≤ 0.05) increased 

its activity, and on the fourth and eighth day, the activity of POD appeared two peaks (0.89 and 1.04) in 

osthol-treated and inoculated plants (SI).  During the whole sampling time, the POD activity of osthol-

treated plants with no inoculation (SO) was higher than non-treated and non-inoculated control (WO), 

and the activity peak appeared on the fourth day was much lower (0.63).  As to plants inoculated but 

not osthol-pretreated (WI), the POD activity was little changed during the first six days, showing no 

difference with the (WO) control, and then the activity showed a dramatically increase till the end of 

test sampling period. 

According to Figure 3, the activity of PAL in the control plant is very low (WO), and the 

inoculation of S. fuliginea or application of osthol caused no change in the basal level of PAL. 

However, the activity increased rapidly from second day (0.05) after inoculation of S. fuliginea in 

osthol-pretreated plant (SI), and reached the maximum level (0.075) on the sixth day. From the second 

day, its activity in SI plants maintaining higher all along then other treatments.  
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Figure 3. PAL activity in pumpkin leaves upon osthol application and/or S. fuliginea 
inoculation. Non-osthol-treated and non-inoculated plants (WO), plants treated with 
osthol and non-inoculated (SO), non-osthol-treated plant inoculated (WI) and osthol-
treated plant inoculated with S. fuliginea (SI). Each value is the mean ± S.E. for n=3. 
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2.1.3 Chitinase gene (Chitin) transcription 

To examine the expression of the Chitin gene response to the osthol treatment, we isolated total 

RNA from leaves of osthol-treated pumpkin. RT-PCR was used to generate cDNA and amplification 

products by using primers specific for Chitin and, as a control, primers corresponding to the actin 

cDNA. Using this approach, a fragment with lengths of 329 bp was obtained (accession number in the 

GenBank: EU056338). We found that Chitin could be constructively expressed (Figure 4B, Ck). But 

osthol treatment could also greatly increase the expression (Figure 4B, Os). 

2.2 Discussion 

In this study, we investigated the influence of pretreatment of pumpkin with osthol on the powdery 

mildew control and the activation of pathogenesis-related proteins. We confirmed that applications of 

osthol on pumpkin leaves both before and after inoculation reduced the disease index. Giving that the 

accumulation of these proteins after pathogen infection correlates with induced resistance [20], we 

used the activities of chitinase, POD and PAL as indicators of the activation of the defense response 

[21]. Osthol application by spraying proved to be the inducer of chitinase, POD accumulation. To our 

knowledge, this is the first report suggesting that a coumarinic compound could be a prophylactic agent 

against powdery mildew on pumpkin through stimulating a resistance response in the host plant. An 

induction period required by agents is an interval of time between application of the agent and the 

challenge from the pathogen. In most cases it was reported to lie between one and seven days [22]. In 

our study, in order to assess both the efficacies of protective and curative, the potentiation of defense in 

plants by osthol was assessed five days after the inoculation [23]. Longer periods provided no 

significant difference from the assessment data (data not shown).   



Int. J. Mol. Sci. 2007, 8                      1006 

 

 

Figure 4. Increase in expression of Chitin in osthol-treated pumpkin. Chitin was 
amplified by RT-PCR from total RNA derived from osthol-treated pumpkin (Os), with 
plant treated with water as control. The expected size of the resulting cDNA fragment 
was 329 bp (B). As an internal control, the actin transcript was also amplified by RT-PCR 
(A). Sizes of the molecular length standards (M) run in parallel are indicated at the left. 

 
 

The visual assessment of disease development as measured by mildew covering the leaf surface 

demonstrated both the protective and curative roles of osthol on pumpkin. In these experiments, osthol 

(100 µg·mL-1) -treated plants had a level of infection about 4-fold lower than untreated plants. The 

curative roles could be derived from fungicidal efficacy of the compound [17]. The protective roles 

suggested the resistance response in the plants induced by osthol application. 

Identifying induced proteins such as chitinase, peroxidase, PAL, etc., could provide and elucidate 

plant defense responses. We used enzyme assays and RT-PCR differential display of chitinase in 

osthol-treated cucumber plants to detect defense-response proteins and mRNA.  

Chitinases in plants showed a close relationship with resistance against pathogens. The enzymes 

also can be induced by wounding or by exposure to ethylene, fungal cell wall preparations, or abiotic 

elicitors such as salicylic acid (SA) and mercuric chloride [24,25]. The high peroxidase activities are 

usually associated with later stages of the infection process and are linked to lignification and 

generation of hydrogen peroxides that inhibit pathogens directly or generate other free radicals with 

antimicrobial effects [26,27]. In this paper, osthol treatment increased the activities of these enzymes in 

the pumpkin leaves. The following inoculation of caused to the highest chitinase and peroxidase 

activities in all treatments, indicating the strong resistance response in the host plant against S. 

fuliginea.  

PAL is the first and a key enzyme of the phenylpropanoid pathway that leads to the synthesis of 

benzoic acid, SA and a variety of other phenol defense-related plant secondary metabolites [28]. The 

activation of PAL activity is an early, common and important response of plant to biotic and abiotic 

stresses [29]. In this paper, PAL activity was not increased after inoculation or osthol treatment. 

However, which could be strong increased by treatment of osthol application and following 

inoculation. This indicated that the potentiation by osthol of PAL activity in pumpkin leaves was 

mediated by the inoculation. This may be results of a special signal pathway of PAL unlike that of 



Int. J. Mol. Sci. 2007, 8                      1007 

 

 

POD and chitinase. In previous research about the relationship of the induced resistance to phenol 

metabolism, Rémus-Borle et al. reported that response in wheat plants against Blumeria graminis f.sp. 

tritici  could be activated by silicon treatment. The presence of several antifungal compounds were not 

found in wheat plants that were treated with silicon but not inoculated nor were they found in 

inoculated plants that had not been pretreated with silicon [1,30]. It seems that osthol shares same 

signal transduction model with silicon to activate the phenol metabolism. 

Application of osthol induced a progressive and significant increase of the enzymes, chitinase and 

POD. Such responses were more dramatic in osthol-treated plants challenged with S. fuliginea, thus 

providing support to the concept that a triggering signal produced by inoculation is essential to further 

enhance synthesis and accumulation of defense relative products of chitinase, POD and PAL [27]. 

Plants can be induced to become more resistant to disease through various biotic or abiotic elicitors 

[31]. Various chemicals such as 2,6-dichloroisonicotinic acid (INA) and its derivatives, the benzo-

1,2,3-thiadiazole derivatives like S-methylbenzo-1,2,3-thiadiazole-7-carbothiate [32,33], various salts 

(phosphates, silicates and oxalates) [34,35], probenazole [36], D,L-β-aminobutyric acid (BABA)  

[37,38], 2,2-dichloro-3,3-dimethylcyclopropane carboxylic acid [39], salicylic acid (SA), jasmonic acid 

(JA), chitosan, etc. [35] have been discovered which seem to mimic the biological activation of 

resistance. However, coumarinic osthol was not reported. Of these compounds, only BABA has also 

been reported to display a curative effect [37, 38], properties similar to those now seen in osthol, but 

the mode of action of proposed resistance induction by BABA has not been clearly elucidated  

[23,40,41].  

Plant elicitors are of interest for their function to activate plants' own natural defenses against 

phytopathogens [27]. Osthol proved to be an efficient elicitor of defense mechanisms in pumpkin. 

Giving that osthol is an efficient fungicide, its application may be more convenient in the field to 

control powdery mildew and other potential pathogens. If integrated properly in plant health 

management programs, such compounds can prolong the useful life of both the resistance genes in 

plant and the fungicides [33]. 

3. Experimental Section  

3.1 Plant material and osthol 

Pumpkin (C. moschata) seeds were obtained from Tomorrow Seed Company (Jiangsu province, 

P.R. China). Surface sterilization was performed by mixing with 70% (v/v) ethanol for 10 min on a 

magnetic stirrer. Then seeds were rinsed in distilled water for 1 min. Germination of the seeds was in 

100% humidity for 7 days in the dark. Geminated seeds with two cotyledons were transferred to 

Hoagland liquid medium grown further in a greenhouse maintained at 25 ºC with a relative humidity of 

80% and a photoperiod of 16/8 (light/dark) h/d. Experiments were carried out when seedlings were in 

four-leaf stage. Osthol (99.5%) used in this study was purchased from NICPBP (National Institute for 

the Control of Pharmaceutical and Biological Products, Beijing, P. R. China). Freshly prepared osthol 

at a concentration of 50 or 100 µg·mL-1 was applied in the assessment trial on osthol efficacy against 

powdery mildew. All the other reagents were of analytical grade. Our previous field study showed that 

the concentration of 100 µg·mL-1 could effectively control powdery mildew on pumpkin.  
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3.2 Treatment, pathogen inoculation and disease assessment 

A field isolate of S. fuliginea from an infected pumpkin seedling was used. Cultures of powdery 

mildew were maintained by transfer of conidia to fresh sterile seedlings every two or three weeks. One 

day before the inoculation, heavily infested leaves were shaken to displace older spores and ensure that 

conidia were freshly formed. Plants were randomly assigned to five groups of 10 replicates and were 

sprayed to run-off with (i) water (untreated control); 50 µg·mL-1 osthol treatments comprised (ii) 

“osthol” application two days before inoculation; and (iii) “osthol” application two days after 

inoculation 100 µg·mL-1 osthol treatments comprised (iv) “osthol” application two days before 

inoculation; and (v) “osthol” application two days after inoculation. Plants in treatments were 

inoculated by shaking sporulating colonies of pumpkin mildew over the leaves of plants to be infected. 

Disease assessment was carried out five days after the inoculation. The infection degree was assessed 

visually using a 0-5 scale: where 0 = no disease symptoms, 1 = less than 1/5 of the host surface covered 

by mycelia, 2 = 1/5-1/3 of the surface covered by mycelia, 3 = 1/3-1/2 of the surface covered by 

mycelia, 4 = 1/2-2/3 of the surface covered by mycelia, 5 = more than 2/3 of the surface covered by 

mycelia. Disease index of every plant was determined, according to the mathematical formula:  

Disease Index= 100
 

×
×

×∑
KN

ba
%. 

where a is the number of leaves with the corresponding infection degree, b is the infection degree of 

leaves (scale differences from 0-5), N is the total number of leaves counted in a plant, and K is the 

maximal value of lesion intensity (= 5 on the chosen scale) [42]. Data were subjected to one-way 

analyses of variance (ANOVA) and mean separation was performed using the least significant 

difference (LSD) test (a=0.05). 

3.3 Treatment and extraction of leaf material 

Four-leaf pumpkin plants were randomly assigned into four groups. The four treatments studied 

were plants sprayed with 100 µg·mL-1 osthol (referred to as SO), plants sprayed with water (referred to 

as WO), osthol-pretreated plants inoculated with S. fuliginea (inoculation was carried out on the 

second day of osthol treatment, referred to as SI) and non-osthol pretreated plants inoculated with S. 

fuliginea (inoculation was carried out on the second day, referred to as WI). When the osthol solution 

was sprayed on SO and SI plants, the same volume of water was sprayed on WO and WI plants. The 

top extended leaves were collected at time course of 1, 2, 3, 4, 6, 8 and 10 days after the treatment 

(inoculation was performed immediately after second collection of leaves). Leaf tissues (exactly 0.3 g) 

were ground in liquid nitrogen and homogenized in Tris-HCI (0.05 M, pH 8.0, 3 mL). The 

homogenates were centrifuged for 20 min at 3,500 g. The supernatants were used as enzyme sources 

for the following enzyme assay. 

To investigate the expression of chitinase gene in pumpkin response to osthol treatment, inoculated 

plants was sprayed with 100 µg·mL-1 osthol. Four days after treatment, the top extended leaves were 

sampled for RT-PCR analysis. The non-inoculated plants sprayed with water served as control. RNA 

extraction was performed using Simply P Total RNA Extraction kit (Bloer Technology CO., Hangzhou, 
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P.R. China). The RNA was solubilized in sterilized distilled water and reprecipitated in 0.25 volume 

3.0 M potassium acetate and 2.5 volumes ethanol and stored at -80 ºC prior to quantification.  

3.4 Enzyme Assays 

3.4.1 Chitinase activity 

Chitinase activity was assayed by measuring the amount of the reducing end group, GlcNAc (N-

acetyl-b-D-glucosamine), produced from colloidal chitin. The assay mixture consisted of enzyme 

extract (0.3 mL) and 1.0% colloidal chitin (0.2 mL). After incubation at 37 ºC for 1 h, the mixture was 

inactivated in boiling water for 5 min. After centrifugation at 5,000 rpm for 10 min, supernatant liquid 

(0.2 mL) was kept in a boiling water bath for 3 min. After cooling down, potassium borate solution 

(0.8 M, 0.1 mL) and 1% DMAB (3 mL) were added in the supernatant. After incubation at 36 ºC for 20 

min, the value of absorbency for each treated sample was detected at 544 nm using a 

spectrophotometer. The activity was calculated from a standard curve based on known concentrations 

of N-acetyl-β-D-glucosamine. The chitinase activity was defined as the amount of liberated GlcNAc 

hour-1 gram fresh weight-1 [43].  

3.4.2 POD activity 

Peroxidase activity was determined at 30 ºC by a modified spectrophotometric method [44]. The 

reaction mixture consisted of plant extract (0.1 mL), 0.05 M guaiacol (1 mL), 50 mM sodium 

phosphate buffer (pH 6.0, 2.9 mL). The reaction was started by addition of 2% H2O2 (1 mL). The 

reaction was incubated in a water bath and absorbance at 470 nm was recorded every 15 s for one 

minute. Peroxidase activity was expressed as ∆ absorbance470 min-1 gram fresh weight-1. 

3.4.3 PAL activity 

Phenylalanine amonia-lyase activity was determined by the modified method of [45]. The reaction 

mixture contained leaf extract (0.3 mL), 0.2 M phenylalanine solution (1 mL) and 0.05 M borate buffer 

(pH 8.8, 2.7 mL). The reaction was quenched with 6 N HCl (0.1 mL). The production of cinnanate 

during 1 h at 30 ºC was measured by the absorbance change at 290 nm. PAL activities were expressed 

as ∆ absorbance (290 nm) min-1 gram fresh weight-1. In case of every enzyme under investigation of 

these trials, each treatment consisted of three replicates and three spectrophotometric readings were 

taken per replicate. The Tukey test was used for comparing means. 

3.5 RT-PCR 

In preparation for RT-PCR, RNA samples from the pumpkin were transcribed into DNA using 

First Strand cDNA Synthesis Kit (Toyobo Co., Japan). The resulting fist strand cDNA was used for 

PCR. PCR for chitinase gene (Chitin) was performed with the forward primer 5’-

ACTGCCGCTCAATCCTTC-3’ and the reverse primer 5’-ATGGCTTGTTTCCTTGTGGT-3’ (primer 

designed according to online sequence, E13289). The primers were synthesized by Nanjing Sunshine 

Biotechnology Co., Ltd. (P.R. China). Actin, constitutively expressed in the plant, was assayed as 
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internal control. The primer pairs: 5’-ATGCTGCTACTCGTAAACG-3’ (Forward), 5-

CAAATGGCTGTCTTGAATGC-3’ (Reverse) were used to detect actin transcript. Reaction mixture 

(50 µL) consisted of PCR Buffer (10x, 5µL), dNTP mixture (10 mM, 1µL), MgCl2 (25 mM, 3µL), 

Primer mix (10 µM each, 2.5µL), template DNA (cDNA, 1µL), Taq DNA Polymerase (0.5 µL) and 

autoclaved, distilled water. The following program was performed: 94 ºC for 3 minutes then followed 

by 27 cycles of 94 ºC for 1 min, 52 ºC for 40 seconds, and 72 ºC for 1 minute. The products are finally 

extended at 72 ºC for 5 min. PCR efficiency was tested by agarose gel electrophoresis.  
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