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Abstract: This review summarises the state-of-the-art medloggles used for designing

homogeneous catalysts and optimising reaction tondi €.g. choosing the right solvent).

We focus on computational techniques that can cem@ht the current advances in high-
throughput experimentation, covering the literaturethe period 1996-2006. The review
assesses the use of molecular modelling tools, fraescriptor models based on
semiempirical and molecular mechanics calculatidos2D topological descriptors and

graph theory methods. Different techniques are @etgbased on their computational and
time cost, output level, problem relevance and ilitgbWe also review the application of

various data mining tools, including artificial mal networks, linear regression, and
classification trees. The future of homogeneouslysis discovery and optimisation is
discussed in the light of these developments.
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1. Introduction
1.1 Combinatorial Methods in Homogeneous Catalysis

The chemical industry is under increasing presgutewer costs, develop environmentally friendly
processes and products, and shorten the time tketndris drives research and development groups
to generate more ideas, improve success ratesstamten lead and development times, all while
lowering research costs. These issues were ficstugtiered in the pharmaceutical industry, wherg lon
development times and high research costs foraeddkielopment of new approaches that accelerated
the drug discovery process. Companies are embramgresearch methods that are changing the
basic ways of research. These include combinatm@yjelthesis and high-throughput screening
techniques, often characterized by the use of rba@nd specialised software. In homogeneous
catalysis, the application of combinatorial methdolscatalyst discovery is an iterative process that
involves three steps (Scheme 1).
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Scheme 1. Flowchart for iterative optimisation in homogensaatalysis, using a combination of
parallel synthesis, screening and modelling.
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The first step is the rapid synthesis of a librairgatalyst candidates with related structuresIHik
is done by finding an appropriate synthetic methath few steps of high product/intermediate
conversion that can be implemented on a robot-sgikr. In the second step, the catalyst candidates
are tested in parallel for a desired property. Thighe ‘figure of merit’ (FOM). Typical FOMs careb
product selectivity, turnover frequency, enantiesgVity and price/activity quotients. The thirapgtis
the data analysis, relating the chemical propedfabe system to the figure of merit. In this wiye
search for a new homogeneous catalyst is similaserching for an optimal region in a multi-
dimensional space. Combinatorial techniques atedwd problems where the parameter space is too
large to be addressed efficiently using conventiomethods, and where the outcome is the resulhof a
unpredictable interdependence among the varialdese an initial hit is identified in the first
screening, new libraries may be constructed thaptasmaller regions of the space around this hit.

In homogeneous catalysis, the active site is miteh @ metal ion stabilized by an organic ligand.
Library synthesis is done using combinatorial orgaynthesis followed by metal complexation. This
approach can utilize both solid-phase and soluioase synthetic methods, including parallel
synthesis, split-pool techniques, encoding/decartiant techniques and polymer-supported reagents.
Methods such as split-pool are much faster thaditioaal serial synthesis. They enable the
preparation of large numbers of compounds. Howethery offer less control over the purity of the
compounds entering the screen. To address thegations, there are intermediate methods which are
based on parallel or array synthesis in a spatadigressable format. This type of synthesis isnofte
done in 96-well plates, with one compound per waeilj is usually coupled to automated screening.

The catalyst screening (or assay) can be eithatlplbor sequential: in a parallel assay, all thtad
are collected at once, whereas in the other casedsta point is obtained independently. Continuous
assays have the advantage of allowing the mongarfna reaction in real time; others require some
action for gathering the data, such as taking goggnmn which case the method is discontinuous. The
experimental methods also vary in their precisfoom a qualitative indication to detailed quantitat
analysis of all species present. There is a trdidbetween quantitative precision and assay ting an
cost. A full combinatorial workflow will most oftehave a hierarchy of parallel assays, starting with
qualitative initial screen of many candidates andirg with an in-depth analysis of a few promising
ones.

Although high-throughput screening technologiehi@mogeneous catalysis are fairly recent, they
already resulted in a number of important hits. SEheclude catalysts for oxidations reactions,[2]
Suzuki,[3, 4] Heck and Sonogashira cross-coupkn@][Ulimann ether formation,[7] hydrogenation,
[8] and cross-coupling via C-H activation[9, 10Jable 1 shows some examples of catalysts and
reaction conditions that were optimized by highstlghput screening techniques. Sigman and
Jacobsen[11] developed a Schiff base ligand foatflyenmetric Strecker reaction. The catalyst, ia thi
case, was immobilized into a PEG-grafted polystyragsin. It included a linker to the resin, an amin
acid, a second linker and the metal binding mostgwn in Table 1, entry 1. Burgessal.[12]
discovered a new catalyst for intramolecular C-Kemtion reaction by high-throughput catalyst
screening. Rh-carbenes derived frardiazo esters allow for the synthesis of indolylidgtives (entry
2). Long and co-workers[10] screened several ti@ncatalysts for asymmetric hetero-Diels-Alder
reactions. Diol-type ligands were the most actind aelective (entry 3). The Heck coupling reaction
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was optimized using a fluorence-based high-througbpreening by Shaughnessal. (entry 4).[13]

A ferrocene based catalyst was found to be the mciste. Kagan’s group investigated an alternate
screening approach, the ‘one-pot multi-substrateening concept.[14] As a test reaction, the astho
chose the reduction of various aromatic ketonesth® corresponding alcohols with a chiral

oxazaborolodine (entry 5).

Table 1. New catalysts discovered or optimized using higioughput methods.
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4R = L-Menthyl; DDQ = 2,3-dichloro-5,6-dicyano-1b&nzoquinone.
°R = Ph; R’ = alkyl, aryl.

1.2 Computational Approachesin Catalysis Research

Theoretical calculations of catalyst systems hanmvg explosively over the past two decades,
advancing from questions of academic interest harsgpcommercial problems. This growth has dealt
in large measure with ligand modification in orderachieve the desired activity and selectivity. In
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some cases, the models have led to the produdtiexcellent catalysts. Some of the new metallocene
catalysts, for example, exhibit turnover frequesadhet rival those of enzymes.[15]

A major challenge for theoretical modelling of niatatalyzed reactions is choosing the
computational model system. Experimental systerolsidie catalyst precursors, solvents, counterions
and substrates. Modelling such a complex systewtetail is impractical. Moreover, in most cases,
transition metal atoms are involved, requiring medef d-electrons or molecular mechanics
forcefields parameterized for that metal. Catalgsals with kinetics, so identifying transitionts&is
important in determining the activation energy aeaction rates. All these factors cannot be inaude
in a single model. Instead, one must compromisecaiodse a smaller model system that (hopefully)
mimics the real one.

In combinatorial design one seeks the quickest Yeaycalculating molecular descriptors, the
properties that represent uniquely each structawelved in the reaction. These parameters are then
used to predict the experimental catalyst actwiti@ a Quantitative Structure-Activity Relationship
(QSAR) equation. QSAR relates the descriptors éditjure of merit (FOM)Ab initio calculations are
too costly for screening large libraries of cattdysrherefore, one must rely on soft computational
methods. Using these methods, one can calculaty praperties for each separate structure (ligand,
metal atom, or substrate) rather than modellingaits together as in QM studies. This yields gdar
number of parameters that must be ranked and ateceto the figure of merit. A disadvantage of this
approach is that there is no guarantee that theehiacludes all the important parameters. One way t
solve this is simply to calculate as many descripts possible and then use selection algorithrds an
‘chemical intuition’ to find the most relevant onés contrast to QM calculations, where the resaifes
obtained by comparing differences in energies, ehssucture-activity relationships are purely
empirical correlations. However, they have a chamiceaning and can be used to explain reaction
mechanisms and predict catalytic properties otigirtandidates.

Another key point is the proper treatment of caialgiversity.[16-18] QSAR methods need
experimental values for creating a model. Therefareinitial set of reactions must be selected from
the catalyst space. This step, which involves #lection of a suitable synthetic method and proper
building blocks, should also deal with the conagfptolecular diversity. It is not clear what “cajst
diversity” actually is or how one should define fhe catalyst space is both large and multi-
dimensional, and sampling it is a complex problé&ime concept of a search in the ‘diversity space’ is
mirrored by that of searching for energy minimahwitthe conformational space of molecules. Thus,
there are strong parallels between stochastic rdstlamd parallel combinatorial search methods.
Equivalents to the random search methods, such @#evCarlo, simulated annealing and genetic
algorithms must be used in such situations. In lzigomplex systems, it is easy to be biased by
conventional wisdom. To study such problems, ithisrefore essential to generate new information
covering as wide a range of the space as posdihis.could involve an initial low resolution search
for preliminary solutions, with subsequent in-depthdy of promising regions. Additionally, one can
cross-breed divergent hits that may seem uncorhexttérst sight. This last approach uses genetic
algorithms and allows predictive models to be cotaponally generated, using artificial neural
networks.
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2. Descriptors and Molecular Modelling for Homogeneous Catalysis
2.1 3D-Descriptors

The first set of stereo-electronic descriptors giesil for catalysis was proposed by Tolman in the
70’s.[19-22] He studied the-basicity andrt-acidity of phosphorous ligands by looking at thretshing
frequencies of the co-ordinated carbon monoxidaniig in complexes such as NiL(GO@J CrL(CO},
where L is the phosphorous ligand. Tolman charaeérthe steric bulk of a monophosphine ligand by
measuring its cone angl®)( For symmetrical ligands (those carrying the saubstituents)f is
defined as the apex angle of a cylindrical conehvan origin 2.28A from the center of the
phosphorous atom. The cone sides are tangent tathder Waals surfaces of the outermost atoms of
the ligand substituents. For asymmetrical phosghifielman suggested that the ‘effective cone angle’
is the average the three semicone angles the angles formed by the Metal-P axis and theet-S
axis, where P-S is tangent to the vdW surfaceebtitermost atom in each of the substituents).

Many attempts were undertaken to define a reliadeic parameter.[23] Tolman’s cone angle
model is simple and generally applicable. Howeitehas several limitations. Substituents groups on
ligands bound to the same metal center can sometmesh with one another, permitting closer
packing of ligands than would be expected from cangle values. Moreover, when the ligand
environment is crowded, low-energy bending distmigi can occur. Another problem stems from the
fact that ligands rarely form a perfect cone (eldgen the substituents on the ligating atom aresafit
from each other); in some cases the sterics nean#tal centre are important, while in others thik b
formed far from the metal centre plays a deterntimale. On the basis of these considerations skvera
modifications and extensions of the cone angle ephavere made. These elaborations include
mathematical methods,[24, 25] calculations baseX-oay structural data,[17, 26-28] and solid cone
angle measures.[29-38] Whitt al. wrote a program (Steric®) for calculating therit size of
molecules around a point (e.g. the metal atom)yoprojection on a directional area (e.g. the XY
plane). Parameters derived from the first case ¥i@Migand from the metal atom and are applicable
in situations where the sterics around a point aémenimportant (e.g. in stereoselective synthesis o
metal coordination). Ligand sterics can be alsowei as a radial distribution function. In this
approach, one measures the size of the ligand agngwing sphere centered on the metal atom. This
creates a steric profile where the radius of theesp is correlated to the bulk of the ligangs.R
denotes the radius of the sphere where the ligasalisl angle is maximal. Examples where the
molecular orthogonal projection is of interest armlecule-surface interactions andstacking
interactions. The program also calculates thecsterie of conformer averages. This value is obthine
from a weighted average of conformer sterics, te@hts being calculated from the energies obtained
using another program that generates conformer 8ajare 1 shows a steric profile of the RMé
ligand calculated using the Steric software.[39]
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Figure 1. Some steric descriptors calculated with the 8&program. (top) Steric profile for the
monophosphine PRMe ligand. R is the radius of the growing sphemteed on the metal atomq&
is the distance between the Pd atom and the buliiess-section of the ligan@m,ax is the solid angle

at this cross-section. (bottom) 3D representatidheligand steric parametep

Cooneyet al. developed a two dimensional stereo-electronic foapharacterizing phosphines and
phosphates using semi-empirical PM3tm methods (Sgare 2).[40] Semi-empirical Quantum
Mechanics (SEQM) methods are faster thamnitio calculations. Moreover, they are easily applied to
medium size libraries (100—1000 compounds). In doatbrial design this work fits well because it
relies on fast and reliable calculations of paramsethat are known to affect the catalytic proagfss
transition metal catalyzed reactions. Using a sen@D plot, the catalyst designer can achieve the
maximum degree of chemical diversity among libagad therefore enrich the ligand set with new
diverse structures. In this way “empty holes” ie #xperimental space are filled by virtual ligarats
highly populated areas can be reduced by discadiipficate molecules. The result is a highly dieers
ligand library.
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Figure 2. (top) Descriptors calculated for phosphines attians-Rh(PE2(CO)CI catalyst (values
taken from Coonewt al.). The deformation coordinate’$ employed as steric measure. For the same
PM3(tm)-optimized geometry, the IR spectrum was akculated yielding the SEP parameter (CO
stretching frequency). (bottom) Stereoelectronip siaowing the distribution of ligands in the 2-
dimensional descriptors space.

The concept of ligand sterics was extended alsbidentate ligands. In this case the critical
parameter for catalysis is the bite angle, whiclasoees the P-M-P angle (Figure 3 top). This angte c
be measured by experiments or calculated with mtdeenodelling techniques. It correlates well with
the product yield for several catalytic reactioh%:p1] The value is a compromise between the
ligand’s preferred bite angle and the type and remalbd orbitals available from the metal. In the pot
of soft computing techniques the bite angle cateuarequires special attention. The inclusiontd t
metal centre in molecular mechanics requires tisggdeofad hoc forcefields that can treat the metal-
phosphorous bond. Given that the possible comloinatbf metal-ligand is far too low explored in this
sense, an approximation is made assuming the neetad a dummy atom and fixing the distance
between the metal centre and the ligating atomh Suncapproximation emphasizes the effect of the
ligand structure on the bite angle. This is closedality, as demonstrated by Dierkasal.[48] A
statistical analysis of crystal structures retrctevfeom the Cambridge Structural Database (CSD)
showed that bite angles concentrate in a narrotllision for most ligands, with standard deviation
between 1.5-3.0 degrees. No restrictions were iggpas the nature of the transition metal, its
oxidation state or other ligands coordinated todame metal centre. This observation indicates that
the P-M-P angle, in monomeric complexes, is matldiermined by the P—P distance defined by the
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ligand backbone. If the metal and ligand requiretsi@o not match, di- or poly-nuclear complexes
may form.

A bidentate ligand can be further characterizedemms of flexibility (Figure 3, bottom). This
parameter measures the range of the bite angle vdien the ligand adopts geometries with energies
slightly above that of the minimized structure. Tligand flexibility is a theoretical parameter. It
cannot be measured experimentally, unlike the ditgle. We interpret the ligand flexibility as the
ability of the ligand to change its bite angle (ammhsequently its coordination state) in the cowfse
the catalytic cycle.

E /kcalmol?

90 100 110 120 130

Bite angle a /°

Figure 3. (top) The bite angleyf is the angle formed when a bidentate ligand doatds to a metal
centre; (bottom) A flexibility profile showing thenergy change vs. the bite angle. In this example,
square planar co-ordination structures=(90°) are disfavored (10 kcal above the minimum).
Tetrahedral and trigonal bipyramidal structurescdoser to the minimum and therefore more likely.

Sousa and Gasteiger published an elegant numeapploach for modelling chirality in
homogeneous catalysis.[52, 53] They representadlithinot by means of a single value, but using a
spectrum-like, fixed-length code. This code incldideformation about the chiral centers geometry,
properties of atoms in their neighborhood and btamgjths. Using the addition of diethyl zinc to
benzaldehyde reaction as a case study, the caddcidated on a set of chiral catalysts and adzhtiv
while 3D structures are generated using the Casofavare.[54] The authors were able to predict
catalyst enantioselectivities and which of the emantiomers was preferred for a particular reaction

2.2 The CoMFA Method

Since its introduction several years ago, the Coatp@ Molecular Field Analysis (CoMFA)
method has become one of the most powerful toalQBMAR and drug design.[55] In fact, COMFA
has pioneered a new paradigm of three-dimensioB&8R)studies, where properties of molecules are
related to their specific structural and electrde&tures and their spatial arrangement. Thus, culde
modification to improve biological performance atalyst activity can be more rooted in the actual
chemistry of the molecules (e.g. by focusing omexige reaction step that needs to be optimizdiaen
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process). More importantly, CoMFA allows the stud\steric factors that affect asymmetric reactions,
an important aspect in homogeneous catalysis.

Lipkowitz and Pradhan used the CoMFA method fodmténg theee in the Diels-Alder reaction of
N-2-alkenoyl-1,3-oxazolidine-2-one with cyclopentate (Figure 4, top).[56-59] The ligands used are
bisoxazolidines or phosphinoxazolidines which am®wn to induce asymmetry during the above
reaction. The CoMFA approach for ligand QSAR isdoh®n the assumption that non-covalent
interactions affect the catalytic activity and #fere should correlate with the steric and eledtron
fields of these molecules. To develop the numernieptesentation of those fields, all the molecules
under investigation are first structurally alignedd the steric and electrostatic fields around them
sampled with probe atoms (Figure 4, bottom). Thiddne by moving a positively charged §arbon
atom on a rectangular grid that encompasses tipeealimolecules. In most cases the molecular feeld i
developed from the quantum-chemically calculatesimat partial charges of the molecule under
investigation. MNDO, AM1, and PM3 Mulliken chargbeave been used for this purpose. A table of
thousands of columns is formed thereafter fromritmnerical values of the fields at each grid point
which is subsequently analyzed using multivaridtdisical analyses, such as partial least-squares
(PLS) analysis. The model is a linear relationdtepveen the FOMe and the intensity of the steric
and electronic fields. The result of the molecalggnment is a schematic representation simildhab
of the pharmacophore in drug design. In the workipkowitz and Pradhan this kind of stereotypical
ligand allows to identify regions of the ligand wlé¢he steric bulk needs to be increased or ditméus
to achieve higlee.

Figure 4. (top) Scheme of the Diels-Alder reaction betwlep-alkenoyl-1,3-oxazolidine-2-one with
cyclopendadiene.; (bottom) Alignment of all 23 kiapoline and phosphinooxazoline ligands used in
the CoMFA study. Regions of space where steric bhiduld enhance or decrease stereoinduction are
plotted using iso-value contour maps. Placemebutdy groups near the green region and/or removal
of steric bulk near the yellow region should inaesmthese for those catalysts that are not very
selective.
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2.3 The Ligand Repulsive Energy Method

Some ligands possess several energetically acteessibformations with significantly different
steric properties; others show important structetenges when moving from free to metal-bound
conformations. In such cases, one needs to dediddnwonformer is the appropriate one to study (i.e
a descriptor related to the ligand’s energy is megl). The ligand repulsive energygjEmethod can
answer this question.[60] This methodology reliasqoantifying the van der Waals repulsive energy
variation as a function of the ligand-metal/comptkstance (eq 1). In this equatioggl is the pure
repulsive form of the vdW potential angis the bond length between the metal and theitigattom
on a ligand (the negative sign ensures that astéree bulk of the ligand increasds; also increases).
As the ligand-metal/complex distanae,changes, the amount of non-bonded repulsion lestwiee
ligand and the environment also changes. Note Eha@alues are based on computations involving
energies and forces, whereas the cone and solelamyles are geometric constructs. Neverthelgss,
correlates well with both.

— OE qw &
ER - re( ar ] (1)

The concept of ligand repulsive energy was usedntterstand the binding selectivity of [CpRe-
(NO)(PPR)]"* towards prochiral alpha-olefins using a molecut&chanics-based steric model (Figure
5). Gillespieet al. examined the steric interplay between ligandshenRe atom and the substituent on
the prochiral alpha-olefin (Rand R) in order to rank the relative importance of tiee f ligands in
terms of binding selectivities.[61, 62] The authomncluded that the size of the phosphine is more
important than the size of the cyclopentadienyg imdetermining which face of the prochiral olein
bound by an enantiomerically pure organometalliwiseacid. The study is a part of the so caliied
novo ligand design pyramid, where sterics and energetickhe system are studied using different
levels of computational theory, from MM &b initio passing by SEQM and QM.

Cp
Rq

RZ R3
PhsP” [ "NO
4

Figure 5. Newman projection of ffCsHs)Ref?-olefin)-(PPh)(NO)]* as viewed down the olefin
centroid-Re axis.

2.4 2D and 1D Descriptors

Ideally, the descriptors used for model developm&muld be rapid to calculate and easy to
interpret. 3D descriptors offer the most realistvay to represent a chemical system but their
computational time depends on the geometry optioizastep, and therefore on the size and degrees
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of freedom of the chemical system. When the sizeoaibinatorial libraries is large, the calculatmin
3D descriptors becomes too time consuming and ftreresimpler parameters such as 1D and 2D
descriptors are calculated. These descriptorsemeed from the connectivity tables of molecules an
pertain to size, flexibility, electron distributicand physicochemical properties of molecules. 2B an
1D descriptors are three orders of magnitude fakger MM forcefields derived descriptors. One can
compute descriptors for a million ligands usingdiogical descriptors in 10 h using a desktop P wit
a 2.5 GHz processor, compared to 1000 with MM mathand only 10 with PM3 semiempirical
methods. If the number of possible structural wemns in the catalyst system is huge, only 2D abd 1
descriptors are able to represent the catalystespHoe time advantage of using 2D descriptors,
however, is offset by several limitations. Firsgntormational information is neglected. Second,
chirality cannot be treated. Finally, although 2Bscriptors account for specific physicochemical
properties of molecules, there is no mechanistarpmetation for them.

In a recent work, we developed a simple set of ltapoal descriptors focusing on the P-P
connectivity patterns of bidentate ligands like giptuines and phosphites.[63] The descriptors indude
all P-P connectivity paths, from the shortespi(B) to the longestApip), as well as their weighted
versions (e.g. by MW or atom electronegativity).eThtudy revealed that some descriptors are
correlated to ligand properties such as the bitgleaand the flexibility that require a more severe
calculation (i.e. they require an energy minimiaatstep that is avoided during the calculation [Bf 2
descriptors). In Figure 6 (bottom) we see how 2Bcdptors perform compared to bite angle and
flexibility values obtained respectively by X-ragtd and PM3 semiempirical calculations. The value
of 2D descriptors is that they can be used as arslty measure in a large catalyst library, which i
turn can serve as a basis for a more detailed isalging 3D descriptors.
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Figure 6. (top). Molecular graph and adjacency matrix & EHOP ligand. [P;-poandA py.poare
respectively the shortest and longest P—P conniggpaths. The adjacency matrix of a molecular
graph is a matrix with rows and columns labelediaph vertices (i.e. the atoms), with a 1 or 0 in
position {4, v;) according to whethes orv; are adjacent or not. (bottom) Observed and pretliote
angle and flexibility values for a set of biphospihand biphosphite ligands. The empty dots and the
grey line represent respectively the bite anglefemability values calculated on a set of 80 liglan
metal complexes retrieved from the CSD. Black doid the black line represent the same values
predicted using a 2D-descriptor QSAR model.

Chavaliet al. demonstrated that 2D connectivity indexes areulidef generating structure-property
correlations for biological and chemical propertieseactions catalysed by transition metals.[6], 6
These tools were applied in the Computer Aided klder Design (CAMD) environment, a powerful
computational tool used in product design. The wethses optimization techniques coupled with
molecular design and property estimation methodserating those molecular structures that match a
desired set of properties. Structure-propertiegticeiships are developed based on literature dae.
figures of merit include: electronegativity, toxicand density of the catalyst. The authors preseot
examples concerning epoxidation reactions with tmbdyum catalysts.
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2.5 Modelling the Chemical and Physical Properties of Solvents

Solvents are known to affect a chemical reactiond @rocesses in many ways. Chemists
characterize solvent activity on reaction rateseirms of polarity, acidity or solubility with anagh
substance, whereas from a process point of viesvirtbdynamic properties such as the boiling point
or the vapor pressure are more important. It issadbve to use a combination of both properties to
represent solvent effects although physical proggeere more related to the process optimizati@h an
therefore obey constrains related to reactor dgsigblems.

Solvent effects can be described using the diétegpiproach or the chemical approach. The former
pictures the solvent as a homogeneous dielectritirmum, meaning that the solvent molecules have
zero size and cannot move. The latter is more Hemgtd short-range phenomena and accounts for
local solute-solvent interactions.

The dielectric approach correlates well with reawdi in which a charge is either developed or
localized (orvice versa) and where solvent molecules act by creating @ cagsolvation shell around
the activated complex. The chemical approach ralieempirical solvent parameters that measure
some solvent sensitive physical property of a madaite (e.g. solvatochromic or NMR shifts). Many
of these parameters can be grouped into two massest: one class is more concerned with cation, or
positive dipole’s end solvation, the other refle@mtson or negative dipole’s end solvation.[66-68ET
first class contains the Gutmann Donor Number (DB)[and the Kamlet-Taft Basicityy).[71] The
latter class includes scales such as the Gutmaceptar Number (AN),[70] the Dimroth-Reichardt
Polarity E(30) and the Kamlet-Taft PolarizabilityX).[72]

Solvation is not the only mode of action taken iy $olvent on chemical reactivity. Since chemical
reactions are accompanied by changes in volumen egactions with no alteration of charge
distribution are sensitive to the solvent. The entvdependence of a reaction where both reactadts a
products are neutral species is treated in ternteeosolvent cohesive energy density.(lts square
root is termed the Hildebrand solubility parameigrand measures the work necessary for creating a
suitable sized cavity for the solutd, is calculated by dividing the standard internakrgy of
vaporization by the molar volume of the liquid.

At first, solvent effects on reactivity were stutlian terms of some particular solvent parameter.
Later on, more sophisticated methods via multipatamequations were applied. Termed the linear
solvation energy relationship (LSER), it has therfof eq 2:

logk = (77 +dd)+aa +bB+hd, +c @)

where s, a, b, ¢ and h are solvent independentfideets characteristic of the reaction and
indicative of its sensibility to the accompanyirgvent properties, and is a polarizability correction
term. The scales implemented in the equation adcfmunsolvent properties like: bulk/cavityy),
dipolarity/polarizability ¢*), and acidity/basicityd/p).

Each of these descriptors was derived empiric#iilg: cavity term was usually the molar volume,
the other three terms were derived directly from-\¥ spectral shifts (hence the descriptors are
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sometimes referred to as the solvatochromic paesjetThe equation comprises several different
solvent effects although the regression equatigyhtnise just few of them.

The use of empirical scales, however, does notvalh@ prediction of new solvent properties, as it
requires the synthesis of these compounds in daodeneasure the descriptors. More recent studies
showed that it is possible to derive a theoreticaar solvation energy relationship (TLSER), where
the relationship attempts to maintain the sameadhearistics as the LSER, but under a theoretical
basis. Descriptors require the use of semi-empidcdigher computational levels but the regression
coefficients are usually good.[73-75]

More simple 2D descriptors are used to derive sulpdysical properties in QSPR studies. These
methods offer excellent results when datasets widgeneous compounds (i.e. hydrocarbons, alcohols
etc.) are analyzed. Examples include the boilinptpahe refractive index, the dipole moment and
other related physical properties.[76]

Another way for selecting good solvent candidagegy using the CAMD methodology.[77, 78]
CAMD works as follows: given a set of building bkscand a specified set of target properties, it
determines the molecular structure that matchesethmoperties. It involves the solution of two
problems: the forward problem requires the compartabf macroscopic properties for a given
molecular structure, while the backward problemunexs the identification of the appropriate
molecular structure satisfying the desired propsertiA variety of methods, including molecular
modelling, group contribution, and correlations thaen developed to address the forward problem.
The techniques for solving the backward problem lpardivided into two major classes. In the first
class, structures are composed exhaustively, ralydomheuristically, from a given set of chemical
groups. The compounds are then examined to deterihithey have the desired properties. In the
second class, a mathematical programming meth@ppsed to a problem in which the objective
function expresses the distance to the target canghoApplications of CAMD are found throughout
the literature. Most of them concern chemical eegimg and reactor design problems, but there are
also some recent applications to homogeneous setagd drug design.

2.6 Using Descriptors: Pros and Cons

The above descriptors are applied for developingangtative-structure activity/property
relationships in various areas (the CoMFA method,eixample, is widely used in drug design and
biochemical reactions). Descriptors derived fromamum mechanics, e.g. using semiempirical
methods, usually possess a definite physical mgafihus, they are especially useful for exploring
reaction mechanisms. Also, in contrast to empirscddstituent or solvent effect constants, QM-based
descriptors can be derived solely from the thecaktstructure of the molecule, provided that its
geometry has been optimized. This enables apmitaitof QSAR/QSPR correlation equations to
hypothetical structures that were never synthesikeavever, QM descriptors are not universal and,
depending on the chemical structures or process\viad, may have several limitations. First, all QM
calculation are performed on a single structureamtenergy minimum. This corresponds to the
hypothetical physical state of the gas at 0 K ag pressure. Also, the zero point vibrations ef th
molecule are neglected. Therefore 3D descriptansaaaccount for entropic and temperature effects.
Most QM modelling packages have an option to cateuthe vibrational, rotational, and translational
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partition functions molecules at a given tempertmd estimate their respective contributions o th
molecular enthalpy, entropy, and other thermodyoarmctions. However, these functions still refer
to a single conformer, so a preliminary averagirfigth® molecular descriptors via arithmetic or
Boltzmann schemes is advisable. Finally, as mosimital reactions occur in condensed (mostly
liquid) media, it should be advantageous to useemdér descriptors calculated using algorithms that
account for specific and non-specific solvatioreef§. Specific effects, primarily hydrogen bonding,
on the molecular structure can be accounted fargutsie supermolecule approach where the solute is
treated together with the specifically coordinasetl’ent molecules. A number of different calculatio
schemes are available for describing solvent bifikces on the solute geometrical and electronic
structure. Several of these are included in thedstal program packages.

When descriptors are calculated for single molecolee faces the problem of choosing the right
conformer. The lowest energy conformer is usudilysen, as it is easily obtained using MM forcefield
methods. However this is not always the right canfer. One way to verify this is checking whether
the model fit improves when local minimum-energyfoomations are explored. A QSPR study of the
asymmetric ketone hydrogenation reaction with Noyaratalyst (Figure 8) by van der Lindehal.
proved a better regression coefficient when anrradteve conformation of ortho-substituted ketones
was considered. In this case the authors werengdkir ketone substrates that would eventually give
the desirecke. The descriptors were calculated using the Dragmftware and included 2D and 3D
parameters.[79] A closer look at model outlierowtd the identification of possible reasons for a
conformational change in the modelling stage. Sofdrmation can be easily implemented once more
mechanistic information is gained.

3. Mod€ling and data analysis

Before the advent of combinatorial chemistry, thscavery process was based on synthetic
feasibility, existing structure-activity data, exigece and intuition. The recent advances in syishe
and screening technologies fundamentally changedvihy chemists look at experiments. The
possibility of screening large datasets of compsugisies more information on the process, but also
poses problems regarding the way this informatsoexiracted. Typically, part of such research ains
disclosing relationships between chemical properéad performance of compounds. One way to
investigate such relationship is to use semi-emgdirmathematical models in which the catalyst
performance is expressed as a function of molecigscriptors.

This kind of mathematical expression is often mefgrto as a quantitative structure-activity
relationship. QSAR models can predict the perforreanf new, specific catalyst candidates. In
addition, it can indicate which chemical featuregulate a certain process and how to modify them to
improve performance.

A QSAR model can be generated in several ways.mb& simple regression model is the linear
free energy relationship (LFER), based on a limepration of the type Ink=ajéib*d,+...+c. Examples
of such equation occur throughout the literatunehdmogeneous catalysis two well known examples
equation for monophosphine ligands and the QALEN® effect developed by Fernandezl.[80]
These empirical equations require few well charamtd parameters, usually derived from
experimental measurements or QM calculations, e applicability is limited to datasets with sinal
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structural variations. Such equations rely on meigtia assumptions, so the model requires some
chemical knowledge.

When the number of descriptors calculated is vegit and/or there is no clear idea on the precise
molecular mechanism, one faces the problem ofrigpdie right descriptors but also the right way to
correlate them to the figure of merit. For regressstudies, two main approaches are used: linehr an
non-linear modelling. Both approaches are equallidalthough a linear model is easier to intetjpre
and one should use both and compare the results:liNgar methods, such as Artificial Neural
Networks, are more effective when the system ispimaited and many factors are believed to affect
the outcome of the reaction.

3.1 Partial Least-Squares Analysis

Most examples of linear modelling with multivariatata employ PLS analysis.[81] In PLS one set
of latent variables is extracted from the startsgf of descriptors and another set is extracted
simultaneously from the dependent variables (theréis of merit). The extraction process is based on
decomposition of a crossproduct matrix involvinghothe independent and y variables. The X-scores
of the independent latents are used to predicYtheores or the response latent(s), and the pestli¢t
scores are used to predict the manifest respomibles. The X- and Y- scores are selected by RLS s
that the relationship of successive pairs of X ¥nstores is as strong as possible. The advantdges o
PLS include the ability to model multiple figurekroerit, handle multicollinearity among descriptors
and rank them according to their influence on tise Y

Examples that use PLS modelling concern the stdidigand/substrate variations that account for
improved activity and selectivity in organometali@actions. van der Linden e al. used PLS analgsis
correlate the substrate structure to #mefor a set of asymmetric benzophenone hydrogenation
reactions (Figure 7).[82] The catalyst structuraasincluded in the calculations and the QSAR nhode
is used instead to predict the substrate performahite method relies on classical 2D/3D descriptors
and did not require prior knowledge on the reactioechanism. On the contrary the inspection of
outliers and subsequent model refinement lead &fulisnechanistic information concerning the
possible transition state structure of the ketone.
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Figure 7. a. Asymmetric catalytic ketone reduction and Nogatalyst studied in the work of
Johannes B. van der Lindenal. b. The conformations of benzophenone for théainibodel (left)
and the improved model (right).

We followed a similar approach for the Ni-catalyzgdirocyanation reaction where PLS analysis is
used to develop a QSAR model that relates stedcedectronic parameters calculated on a set of 42
ligands with their catalytic performance (TON).[8Bje influence of each descriptor on the figure of
merit (adiponitrile product yield) is calculatedthge VIP parameter and can be seen as the sunalbver
model dimensions of the variable influence contidms (Figure 8). The charge at the ligating atoms,
the rigidity of the molecules, the steric crowdiagund the metal centre and the bite angle are the
most important descriptors evidenced by the PLSahdthe results comply with known mechanistic
and experimental information and the model coryegithpoints key structural features related to high
catalyst activity.

Another approach that employs PLS analysis is tb®&EA methodology. For the purpose of
interpretation, the results from CoMFA studies afien presented with contour plots of the partial
regression coefficients obtained by the PLS amalysgain, the coefficients are needed for predictio
of new samples, but since their size and sign tehearelative importance of the variables, they ar
also suitable for interpretation. The informatianot coded as descriptors but rather as a set of
parameters that relate to the steric and electfggict of the molecules. The CoMFA methodology was
applied by several authors to study structure-agtielationships of catalysts in the Asymmetrie3+
Alder reaction and the metallocene-based ethyleharnerization.[59]
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Figure 8. Variable importance (VIP) plot, showing the imiawrce of every descriptor in the model for
the hydrocyanation of pentenenitrile. VIP valuaghleir than 1.0 are attributed to descriptors that

contribute most in the prediction of ligand actvi€Charge descriptors refer to the Mulliken charge

calculated at the ligating atontsEying is the energy difference between the free ligarditae metal
complex, and can be related to the chelating eéffedtflexibility of the molecule. &% is the sphere
occupation descriptor and measures the stericadrihie metal centre.is the bite angle. a is the

second derivative of the flexibility profile polynoal. Ad is the difference in the interatomic distance

between the ligating atoms between the free ligamtthe complex. Steric descriptors are calculated

with the Steric® software. Backbone descriptorsréd properties calculated on the backbone alone.

Electronic descriptors are HOMO, LUMO and dipolésnolecules.

An interesting PLS model that discriminates betwseocessful and failed reaction systems was
developed by Carlson and Gautun.[84] They desailm®mbinatorial study in which the substrate,
Lewis acid catalyst and solvent were varied to meitee if certain combinations yield a regioseleetiv
indole synthesis (Figure 9). The total number ofgille combinations is 600. Of these, 256 were
tested experimentally. In choosing these experiméhe ketones, solvents and catalysts were sélecte
according to their principal property score vallashis way, the researchers maximized the spiread
the property space, and minimized the number okexents. Score values and their squares were
included together with the interaction terms anelduas input variables for the PLS analysis. Thetmos
important influence is from the interaction ternattlaccounts for nucleophilic/electrophilic propesti
of ketones and the size of one of their side chamglying that large substituents and polarized
ketones favor the reaction. The PCA analysis rexe#iat data points in the score vector plot form
clusters. The clusters were defined by differetbike substrates and therefore the catalyst aneérsiolv
effects are valid for every ketone tested. A PL&8lysis on reactions with the same ketone substrate
revealed that properties such as catalyst hardmedssolvent polarity/polarizability were positively
correlated with ‘successful reaction’. Another impot interaction term between the Lewis acid
hardness and the solvent polarizability was foundftect negatively the reaction outcome.
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Figure 9. Formation of indoles from dissymmetric ketoneghsy Fisher indole synthesis. In the work
of Carlson and Gautun, PLS analysis is used tdifgemitical properties of the reaction systemtiat
both conditions that are favorable for the reactierwell as conditions that can fail can be idesdif
Substrates, solvents and Lewis acids are varigdraggically obtaining a set of 254 reactions.

3.2 Artificial Neural Networks and Classification Analysis

As data mining became more attractive for the amalgf existing chemical systems, several new
methods were implemented in the QSAR studies. Migtisoich as Artificial Neural Networks (ANNS)
and classification techniques are broadly appl@dbibchemical systems and few examples can be
found in the field of homogeneous catalysis. Nenedlvorks are applicable in every situation where a
relationship between the independent variablesu{g)pand predicted variables (outputs) exists, but
especially when that relationship is complex andficdilt to explain in the usual terms of
"correlations”. With their remarkable ability tordee meaning from complicated or imprecise data,
ANNSs can be used to extract patterns and detemtigrénat are too complex to be noticed by either
humans or other computer techniques.

We recently used ANNs to analyze a set of 412 Hgdss-coupling reactions collected from
published literature (Figure 10 top).[85] Linear|tiple regression, neural networks and classifarati
analysis were used to pinpoint correlations betwtbenfigures of merit of the reactions (Turnover
number and Turnover frequency) and the descriptatsulated on ligand and substrate structures.
Solvents were represented by empirical scales;tiomaconditions such as Pd loading, time and
temperature were also included in the study. Adtistical analyses pointed out the importance ef th
Pd loading but the non-linear methods were ableafiure high-order effects showing the importance
of steric and electronic ligand parameters. The ta&t a negative correlation exist between the TON
and the metal loading can be explained by meansetdl cluster formation. As many other authors we
maintain that every Heck reaction that is catalylmgdhomogeneous Pd complexes” also involves Pd
clusters or Pdatoms. The analysis of reactions from literaturpp®rts the idea that if clusters are
indeed involved one would expect an inverse ratatiqp between Pd concentration and the figure of
merit, because a high concentration of clusterslaviead to faster deactivation via Pd black. Thstbe
NN model was then used to screen a new set of B0HXk reactions containing all possible
combinations of 61 new phosphines with four olefifmar arylhalides, five catalyst precursors, four
solvents, and three palladium concentrations. fé& 61 ligand structures were designed using
building blocks available from commercial catalogueigure 10 shows a contour plot of the predicted
TON for the 60,000 virtual reactions vs. the twatfiprincipal components. This approach enables a
simple and fast selection of the most promisinglgats candidates.
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Figure 10. (top) General Heck reaction dataset. Ligands:opbosphines and monophosphites;
solvents: DMF, THF, DMA, dioxane, &, PhMe, NMP, MeCN, EtCN, PrCN, HMPT and 1,2-DCE;
(bottom) Predicted TON values for 60,000 virtualss-coupling reactions are plotted versus the first

two PCs calculated for all the reaction descriptdhee first PC is correlated mainly with the Pd

loading and the electronic descriptors of the oigegsidue on the alkene, Rrhe second PC
represents mainly the ligand’s electronic descrgpto

Another application of neural networks and clasaiion methods for data analysis in homogeneous
catalysis is given by Cundaet al.[86-88] The authors employed several data minireghods to
disclose relationships between various metric patara in transition metal imido complexes, a class
of catalysts implicated in nitrogen fixation andHCactivation processes. The structures analysed wer
retrieved from the CSD and carried the motfMENZ, where M is the transition metal, L a ligadl,
the nitrogen bound to the metal and Z a generistgubnt. These data mining techniques confirmed
the suspected relationship between the metal-mitrdgpnd length and the metal-nitrogen-substituent
angle: as this angle increases the metal-nitrogetarte shortens. Hence, metals, ligands and
substituents that favor a double bond between ittegen and the metal would be expected to be
favorable from the point of view of catalyst desidurthermore, the results obtained with such data
mining methods pointed out the existence of sevaundllers clustered together. The identification of
outliers is important as they might correspond moeported experimental errors or novel chemical
entities that need further investigation. The nceparameters are obtained directly from crystal
structures and therefore this method of analysisn@@be used to examine virtual compounds.
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However, the CSD comprises many structures thdtideca metal atom and constitute a valuable
source of information that can be extracted in sualay.

3.3 General Methodology in Data Analysis

Creating a QSAR/QSPR model involves several additisteps that need to be mentioned. These
are the validation of the model and the selectibrelevant variables. If data are scarce or oneaan
prove the validity of a model by performing new exments, the model can still be validated. The
validation consists of dividing the dataset int@tparts: a training set that is used to develo[SaAR)
model, and a test set. The experimental activibiethe latter are known but are not employed to
generate the model. Once obtained the regressigatieq for the training set, a prediction of adivi
is calculated on the test set. In this way sewdiffdrent models, all trained on the training s be
compared on the test set. This is the basic fororads-validation. A better method, which is intedd
to avoid the possible bias introduced by relyingamy one particular division into test and train
components, is to partition the original set inegaV different ways and compute an average scae ov
the different partitions. An extreme variant ofstig to split the patterns into a training set of sigel
and a test of size 1 and average the squared airthre left-out pattern over thepossible ways of
obtaining such a partition. This is called leave-@ut cross-validation. The advantage is thathedl t
data can be used for training - none has to belyaall in a separate test set.

The problem of finding the right descriptors is gdivated. One way is to use intuition, choosing
among several well known descriptors. This is diffi to do when many interconnected effects
predominate, or when the number of descriptorerg large. In such cases, the high-dimensional data
representations that are commonplace in combitcinemistry pose a number of problems. First, as
the number of descriptors increases, the likelihebdntercorrelation also increases. Redundant
variables tend to bias the result and increasedhgputational costs. In most cases, however, rgnkin
methods such as principal component analysis (P&#A) remove the redundant information. PCA
takes as its input a set of vectors described byafig cross-correlated variables (the descriptersd
transforms it into one characterized by a smalleniper of orthogonal variables without losing the
variance of the data. For regression purposes,caneuse directly the latent variables as inputs or
select a subset of least inter-correlated descspto

Variable selection techniques include more recdfioirte such as the application of evolutionary
strategies to find the optimal subset of descrgptbat lead to the best fit model. These methods ar
particularly suitable when the number of possildmbinations among descriptors is far too high to be
explored exhaustively (a detailed discussion onabée selection techniques, is available elsewhere
[89, 90]).

Scheme 2 shows a general flowchart for computerehirhtalyst design. It summarizes the steps
analyzed in this review. The first step is the difyr generation which can be achieved by attaching
automatically building blocks to a central scaff@dge the work of Hagemahal.[91] for an example
of automatic library generation). The library geatem can lead to 1D, 2D and 3D structures of
catalysts. 3D descriptors require geometry optitiona whereas 2D and 1D descriptors can be
calculated directly from connectivity tables of malles. After the calculation of descriptors, the
variables need to be selected before the moded#lieg. The variable selection process can be an
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iterative process together with the modelling sfpyided that a certain goodness of fit is acldeve
The QSAR/QSPR analysis can be accomplished by uiagr and non-linear methods; the choice
usually depends on the problem complexity and timalrer of parameters that vary in the dataset (e.g.
solvent, catalyst loading or ligand structure).afy the model, generated using the training set, i
validated against an external set of catalysts.eGhe model is validated it is then used to predict
catalyst performance on virtual libraries of casédyor reaction conditions.

Library generation

Descriptors calculation

Variable selection

QSAR/Data analysis

Model validation

Virtual screening

Scheme 2. Flowchart for virtual screening of catalyst libra

4, Conclusions and Outlook

Recent years have witnessed major advances in oaitobial synthesis and high-throughput
screening for discovery and optimization in homagrrs catalysis. Although these were met with
resistance, the increasing number of scientificepg@and patents devoted to this field show that the
initial skepticism has turned into acceptance applieation. One thing is certain: High-throughput
experimentation and modelling is complementing doalmknowledge and chemical intuition, not
replacing it. A successful catalyst discovery/oation workflow requires a genuine interdisciphya
team. It needs chemists, chemometricians, engirsetscomputer scientists. With the advances in
hardware and robotics, more and more experimerdt & available, and the “price” of the basic
research unit, the chemical experiment, plummetsméke good use of these developments, catalysis
chemists must change their view of experimentdedtsof doing single experiments, one should plan
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and perform sets of experiments. Thaseitro sets can then be combined wiithsilico experiments,
yielding libraries of better catalysts.

This is an exciting field, with several importargem questions. Top-down design of homogeneous
catalysts by selecting candidates from virtual dites is one important challenge. Defining and
understanding catalyst diversity is another. Indag@tderstanding catalyst diversity is the key to
efficient sampling of the catalyst space. Yet aaptthallenge is choosing the right descriptorsafor
given reaction, as well as the optimal model system
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