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Abstract:



On the basis of the previous models of inductive and steric effects, ‘inductive’ electronegativity and molecular capacitance, a range of new ‘inductive’ QSAR descriptors has been derived. These molecular parameters are easily accessible from electronegativities and covalent radii of the constituent atoms and interatomic distances and can reflect a variety of aspects of intra- and intermolecular interactions. Using 34 ‘inductive’ QSAR descriptors alone we have been able to achieve 93% correct separation of compounds with- and without antibacterial activity (in the set of 657). The elaborated QSAR model based on the Artificial Neural Networks approach has been extensively validated and has confidently assigned antibacterial character to a number of trial antibiotics from the literature.






Keywords:


QSAR; antibiotics; descriptors; substituent effect; electronegativity








Introduction.


Nowadays, rational drug design efforts widely rely on building extensive QSAR models which currently represent a substantial part of modern ‘in silico’ research. Due to inability of the fundamental laws of chemistry and physics to directly quantify biological activities of compounds, computational chemists are led to research for simplified but efficient ways of dealing with the phenomenon, such as by the means of molecular descriptors [1]. The QSAR descriptors came to particular demand during last decades when the amounts of chemical information started to grow explosively. Nowadays, scientists routinely work with collections of hundreds of thousands of molecular structures which cannot be efficiently processed without use of diverse sets of QSAR parameters. Modern QSAR science uses a broad range of atomic and molecular properties varying from merely empirical to quantum-chemical. The most commonly used QSAR arsenals can include up to hundreds and even thousands of descriptors readily computable for extensive molecular datasets. Such varieties of available descriptors in combination with numerous powerful statistical and machine learning techniques allow creating effective and sophisticated structure-bioactivity relationships [1,2,3]. Nevertheless, although even the most advanced QSAR models can be great predictive instruments, often they remain purely formal and do not allow interpretation of individual factors influencing activity of drugs [3]. Many molecular descriptors (in particular derived from molecular topology alone) lack defined physical justification. The creation of efficient QSAR descriptors also possessing much defined physical meaning still remains one of the most important tasks for the QSAR research.



In a series of previous works we introduced a number of reactivity indices derived from the Linearity of Free Energy Relationships (LFER) principle [4]. All of these atomic and group parameters could be easily calculated from the fundamental properties of bound atoms and possess much defined physical meaning [5,6,7,8]. It should be noted that, historically, the entire field of the QSAR has been originated by such LFER descriptors as inductive, resonance and steric substituent constants [4]. As the area progressed further, the substituent parameters remained recognized and popular quantitative descriptors making lots of intuitive chemical sense, but their applicability was limited for actual QSAR studies [9]. To overcome this obstacle, we have utilized the extensive experimental sets of inductive and steric substituent constants to build predictive models for inductive and steric effects [5]. The developed mathematical apparatus not only allowed quantification of inductive and steric interactions between any substituent and reaction centre, but also led to a number of important equations such as those for partial atomic charges [8], analogues of chemical hardness-softness [7] and electronegativity [6].



Notably, all of these parameters (also known as ‘inductive’ reactivity indices) have been expressed through the very basic and readily accessible parameters of bound atoms: their electronegativities (χ), covalent radii (R) and intramolecular distances (r). Thus, steric Rs and inductive σ* influence of n - atomic group G on a single atom j can be calculated as:


[image: there is no content]



(1)
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(2)







In those cases when the inductive and steric interactions occur between a given atom j and the rest of N-atomic molecule (as sub-substituent) the summation in (1) and (2) should be taken over N-1 terms. Thus, the group electronegativity of (N-1)-atomic substituent around atom j has been expressed as the following:
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(3)







Similarly we have defined steric and inductive effects of a singe atom onto a group of atoms (the rest of the molecule):
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(4)
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(5)




In the works [7,8] an iterative procedure for calculating a partial charge on j-th atom in a molecule has been developed:
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(6)




(where Qj reflects the formal charge of atom j).



Initially, the parameter χ in (6) corresponds to χ0 - an absolute, unchanged electronegativity of an atom; as the iterative calculation progresses the equalized electronegativity χ’ gets updated according to (7):
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(7)




where the local chemical hardness η0 reflects the “resistance” of electronegativity to a change of the atomic charge. The parameters of ‘inductive’ hardness ηi and softness si of a bound atom i have been elaborated as the following:
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(8)






[image: there is no content]



(9)




The corresponding group parameters have been expressed as
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(10)
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(11)







The interpretation of the physical meaning of ‘inductive’ indices has been developed by considering a neutral molecule as an electrical capacitor formed by charged atomic spheres [8]. This approximation related inductive chemical softness and hardness of bound atom(s) with the total area of the facings of electrical capacitor formed by the atom(s) and the rest of the molecule.



We have also conducted very extensive validation of ‘inductive’ indices on experimental data. Thus, it has been established that RS steric parameters calculated for common organic substituents form a high quality correlation with Taft’s empirical ES -steric constants (r2=0.985) [10]. The theoretical inductive σ* constants calculated for 427 substituents correlated with the corresponding experimental numbers with coefficient r = 0.990 [5]. The group inductive parameters χ computed by the method (3) have agreed with a number of known electronegativity scales [6]. The inductive charges produced by the iterative procedure (6) have been verified by experimental C-1s Electron Core Binding Energies [8] and dipole moments [6]. A variety of other reactivity and physical-chemical properties of organic, organometallic and free radical substances has been quantified within equations (1)-(11) [11,12,13,14,15,16]. It should be noted, however, that in our previous studies we have always considered different classes of ‘inductive’ indices (substituent constants, charges or electronegativity) in separate contexts and tended to use the canonical LFER methodology of correlation analysis in dealing with the experimental data. At the same time, a rather broad range of methods of computing ‘inductive’ indices has already been developed to the date and it is feasible to use these approaches to derive a new class of QSAR descriptors. In the present work we introduce 50 such QSAR descriptors (we called ‘inductive’) and will test their applicability for building QSAR model of “antibiotic-likeness”.




Results


QSAR models for drug-likeness in general and for antibiotic-likeness in particular are the emerging topics of the ‘in silico’ chemical research. These binary classifiers serve as invaluable tools for automated pre-virtual screening, combinatorial library design and data mining. A variety of QSAR descriptors and techniques has been applied to drug/non-drug classification problem. The latest series of QSAR works report effective separation of bioactive substances from the non-active chemicals by applying the methods of Support Vector Machines (SVM) [17,18], probability-based classification [19], the Artificial Neural Networks (ANN) [20,21,22] and the Bayesian Neural Networks (BNN) [23,24] among others. Several groups used datasets of antibacterial compounds to build the binary classifiers of general antibacterial activity (antibiotic-likeness models) utilizing the ANN algorithm [25,26,27], linear discriminant analysis (LDA) [28,29], binary logistic regression [29] or k-means cluster method [30]. Thus, in the study [31] the LDA has been used to relate anti-malarial activity of a series of chemical compounds to molecular connectivity QSAR indices. The results clearly demonstrate that creation of QSAR approaches for classification of molecules active against broad range of infective agents represents an important and valuable tack for the modern QSAR research.



Dataset


To investigate the possibility of using the inductive QSAR descriptors for creation an effective model of antibiotic-likeness, we have considered a dataset of Vert and co-authors [27] containing the total of 657 structurally heterogeneous compounds including 249 antibiotics and 408 general drugs. This dataset has been used in the previous studies [27,29] and therefore could allow us to comparatively evaluate the performance of QSAR model built upon the inductive descriptors.




Descriptors


50 inductive QSAR descriptors introduced on the basis of formulas (1)-(11) have been described in the greater details in Table 1. Those include various local parameters calculated for certain kinds of bound atoms (for instance for most positively/negatively charges, etc), groups of atoms (say, for substituent with the largest/smallest inductive or steric effect within a molecule, etc) or computed for the entire molecule. One common feature for all of the introduced inductive descriptors is that they all produce a single value per compound. Another similarity between them is in their relation to atomic electronegativity, covalent radii and interatomic distances. It should also be noted, that all descriptors (except the total formal charge) depend on the actual spatial structure of molecules. The choice of particular inductive descriptors in Table 1 was driven by our expectation to have a limited set of QSAR parameters reflecting the greatest variety of different aspects of intra- and intermolecular interactions a molecule can be engaged into. It should be mentioned, however, that some inductive descriptors may reflect related or similar molecular/atomic properties and therefore can be correlated in certain cases (even though the analytical representation of those descriptors does not directly imply their co-linearity). Thus, a special precaution should be taken when using such parameters for QSAR modeling. The procedure of selection of appropriate inductive descriptors has been outlined in the following section.



Table 1. Inductive QSAR descriptors introduced on the basis of equations (1)-(11).







	
Descriptor

	
Characterization

	
Parental formula(s)






	
χ (electronegativity) – based




	
EO_Equalizeda

	
Iteratively equalized electronegativity of a molecule

	
Calculated iteratively by (7) where charges get updated according to (6); an atomic hardness in (7) is expressed through (8)




	
Average_EO_Posa

	
Arithmetic mean of electronegativities of atoms with positive partial charge

	
[image: there is no content] where [image: there is no content] is the number of atoms i in a molecule with positive partial charge




	
Average_EO_Nega

	
Arithmetic mean of electronegativities of atoms with negative partial charge

	
[image: there is no content] where [image: there is no content] is the number of atoms i in a molecule with negative partial charge




	
η (hardness) – based




	
Global_Hardnessa

	
Molecular hardness - reversed softness of a molecule

	
(10)




	
Sum_Hardnessa

	
Sum of hardnesses of atoms of a molecule

	
Calculated as a sum of inversed atomic softnesses in turn computed within (9)




	
Sum_Pos_Hardnessa

	
Sum of hardnesses of atoms with positive partial charge

	
Obtained by summing up the contributions from atoms with positive charge computed by (8)




	
Sum_Neg_Hardnessa

	
Sum of hardnesses of atoms with negative partial charge

	
Obtained by summing up the contributions from atoms with negative charge computed by (8)




	
Average_Hardnessa

	
Arithmetic mean of hardnesses of all atoms of a molecule

	
Estimated by dividing quantity (10) by the number of atoms in a molecule




	
Average_Pos_Hardness

	
Arithmetic mean of hardnesses of atoms with positive partial charge

	
[image: there is no content] where [image: there is no content] is the number of atoms i with positive partial charge.




	
Average_Neg_Hardnessa

	
Arithmetic mean of hardnesses of atoms with negative partial charge

	
[image: there is no content] where [image: there is no content] is the number of atoms i with negative partial charge.




	
Smallest_Pos_Hardnessa

	
Smallest atomic hardness among values for positively charged atoms

	
(8)




	
Smallest_Neg_Hardnessa

	
Smallest atomic hardness among values for negatively charged atoms.

	
(8)




	
Largest_Pos_Hardness

	
Largest atomic hardness among values for positively charged atoms

	
(8)




	
Largest_Neg_Hardness

	
Largest atomic hardness among values for negatively charged atoms

	
(8)




	
Hardness_of_Most_Pos

	
Atomic hardness of an atom with the most positive charge

	
(8)




	
Hardness_of_Most_Nega

	
Atomic hardness of an atom with the most negative charge

	
(8)




	
s (softness) - based




	
Global_Softness

	
Molecular softness – sum of constituent atomic softnesses

	
(11)




	
Total_Pos_Softnessa

	
Sum of softnesses of atoms with positive partial charge

	
Obtained by summing up the contributions from atoms with positive charge computed by (9)




	
Total_Neg_Softnessa

	
Sum of softnesses of atoms with negative partial charge

	
Obtained by summing up the contributions from atoms with negative charge computed by (9)




	
Average_Softness

	
Arithmetic mean of softnesses of all atoms of a molecule

	
(11) divided by the number of atoms in molecule




	
Average_Pos_Softness

	
Arithmetic mean of softnesses of atoms with positive partial charge

	
[image: there is no content] where [image: there is no content] is the number of atoms i with positive partial charge.




	
Average_Neg_Softness

	
Arithmetic mean of softnesses of atoms with negative partial charge

	
[image: there is no content] where [image: there is no content] is the number of atoms i with negative partial charge.




	
Smallest_Pos_Softnessa

	
Smallest atomic softness among values for positively charged atoms

	
(9)




	
Smallest_Neg_Softnessa

	
Smallest atomic softness among values for negatively charged atoms

	
(9)




	
Largest_Pos_Softness

	
Largest atomic softness among values for positively charged atoms

	
(9)




	
Largest_Neg_Softness

	
Largest atomic softness among values for positively charged atoms

	
(9)




	
Softness_of_Most_Posa

	
Atomic softness of an atom with the most positive charge

	
(9)




	
Softness_of_Most_Nega

	
Atomic softness of an atom with the most negative charge

	
(9)




	
q (charge)- based

	




	
Total_Charge

	
Sum of absolute values of partial charges on all atoms of a molecule

	
[image: there is no content] where all the contributions [image: there is no content] derived within (6)




	
Total_Charge_Formala

	
Sum of charges on all atoms of a molecule (formal charge of a molecule)

	
Sum of all contributions (6)




	
Average_Pos_Chargea

	
Arithmetic mean of positive partial charges on atoms of a molecule

	
[image: there is no content] where [image: there is no content] is the number of atoms i with positive partial charge




	
Average_Neg_Chargea

	
Arithmetic mean of negative partial charges on atoms of a molecule

	
[image: there is no content] where [image: there is no content] is the number of atoms i with negative partial charge




	
Most_Pos_Chargea

	
Largest partial charge among values for positively charged atoms

	
(6)




	
Most_Neg_Charge

	
Largest partial charge among values for negatively charged atoms

	
(6)




	
σ* (inductive parameter) – based

	




	
Total_Sigma_mol_ia

	
Sum of inductive parameters σ*(molecule→atom) for all atoms within a molecule

	
[image: there is no content] where contributions [image: there is no content] are computed by equation (2) with n=N-1 – i.e. each atom j is considered against the rest of the molecule G




	
Total_Abs_Sigma_mol_i

	
Sum of absolute values of group inductive parameters σ*(molecule→atom) for all atoms within a molecule

	
[image: there is no content]




	
Most_Pos_Sigma_mol_ia

	
Largest positive group inductive parameter σ*(molecule→atom) for atoms in a molecule

	
(2)




	
Most_Neg_Sigma_mol_ia

	
Largest (by absolute value) negative group inductive parameter σ*(molecule→atom) for atoms in a molecule

	
(2)




	
Most_Pos_Sigma_i_mola

	
Largest positive atomic inductive parameter σ*(atom→molecule) for atoms in a molecule

	
(5)




	
Most_Neg_Sigma_i_mola

	
Largest negative atomic inductive parameter σ*(atom→molecule) for atoms in a molecule

	
(5)




	
Sum_Pos_Sigma_mol_i

	
Sum of all positive group inductive parameters σ*( molecule →atom) within a molecule

	
[image: there is no content] where [image: there is no content]>0 and [image: there is no content] is the number of N-1 atomic substituents in a molecule with positive inductive effect (electron acceptors)




	
Sum_Neg_Sigma_mol_ia

	
Sum of all negative group inductive parameters σ*( molecule →atom) within a molecule

	
[image: there is no content] where [image: there is no content]<0 and [image: there is no content] is the number of N-1 atomic substituents in a molecule with negative inductive effect (electron donors)




	
Rs (steric parameter) – based




	
Largest_Rs_mol_ia

	
Largest value of steric influence Rs(molecule→atom) in a molecule

	
(1) where n=N-1 - each atom j is considered against the rest of the molecule G




	
Smallest_Rs_mol_ia

	
Smallest value of group steric influence Rs(molecule→atom) in a molecule

	
(1) where n=N-1 - each atom j is considered against the rest of the molecule G




	
Largest_Rs_i_mol

	
Largest value of atomic steric influence Rs(atom→molecule) in a molecule

	
(4)




	
Smallest_Rs_i_mola

	
Smallest value of atomic steric influence Rs(atom→molecule) in a molecule

	
(4)




	
Most_Pos_Rs_mol_ia

	
Steric influence Rs(molecule→atom) ON the most positively charged atom in a molecule

	
(1)




	
Most_Neg_Rs_mol_ia

	
Steric influence Rs(molecule→atom) ON the most negatively charged atom in a molecule

	
(1)




	
Most_Pos_Rs_i_mol

	
Steric influence Rs(atom→molecule) OF the most positively charged atom to the rest of a molecule

	
(4)




	
Most_Neg_Rs_i_mola

	
Steric influence Rs(atom→molecule) OF the most negatively charged atom to the rest of a molecule

	
(4)








a – descriptors selected for building the antibiotic-likeness QSAR model.











Selection of variables


To build a binary QSAR model enabling effective separation of antibacterials we have initially calculated all 50 individual inductive descriptors for each molecule from the Vert’s dataset. We have used the hydrogen suppressed representation of the molecular structures – i.e. only the heavy atoms have been taken into account. The inductive QSAR descriptors have been calculated within the MOE package [32] from values of atomic electronegativities and radii taken from our previous publications [5]. To avoid the mentioned cross-correlation among the independent variables we have computed pair wise regressions between all 50 sets of the QSAR parameters and removed those inductive descriptors which formed any linear dependence with R≥0.9. As the result of this procedure, only 34 inductive QSAR descriptors have been selected for the further processing (see the legend to Table 1). The average values of these 34 parameters independently calculated for antibacterial and non- antibacterial compounds have been plotted onto Figure 1. As it can be seen, the corresponding curves for two classes of compounds are clearly separated on the graph and, hence, the selected 34 inductive descriptors should allow building an effective QSAR model of “antibiotic likeness”.


Figure 1. Averaged values of 34 selected inductive QSAR descriptors calculated independently within studied sets of antibiotics (dashed line) and non-antibiotics (solid line).
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QSAR model


In order to relate the inductive descriptors to antibiotic activity of the studied molecules we have employed the Artificial Neural Networks (ANN) method – one of the most effective pattern recognition techniques. During the last decades the machine-learning approaches have became an essential part of the QSAR research; the detailed description of the ANN’s fundamentals can be found in numerous sources [33 for example].



In our study we have used the standard back-propagation ANN configuration consisting of 34 input and 1 output nodes. The number of nodes in the hidden layer was varied from 2 to 14 in order to find the optimal network that allows most accurate separation of antibacterials from other compounds in the training sets. For effective training of the ANN (to avoid its over fitting) we have used the training sets of 592 compounds (including 197 antibiotics) randomly derived as 90 percent of the total of 657 molecules. In each training run the remaining 10 percents of the compounds were used as the testing set to assess the predictive ability of the model. It should be noted, that we the condition of non-correlation amongst the descriptors has been monitored within the training and the testing sets of compounds as well.



During the learning phase, a value of 1 has been assigned to the training set’s molecules possessing antibacterial activity and value 0 to the others. For each configuration of the ANN (with 2, 3, 4, 6, 8, 10, 12, and 14 hidden nodes respectively) we have conducted 20 independent training runs to evaluate the average predictive power of the network. Table 2 contains the resulting values of specificity, sensitivity and accuracy of separation of antibacterial and non-antibacterial compounds in the testing sets. The corresponding counts of the false/true positive- and negative predictions have been estimated using 0.4 and 0.6 cut-off values for non-antibacterials and antibacterials respectively. Thus, an antibiotic compound from the testing set, has been considered correctly classified by the ANN only when its output value ranged from 0.6 to 1.0. For each non-antibiotic entry of the testing set the correct classification has been assumed if the corresponding ANN output lay between 0 and 0.4. Thus, all network output values ranging from 0.4 to 0.6 have been ultimately considered as incorrect predictions (rather than undetermined or non-defined).



Table 2. Parameters of specificity, sensitivity, accuracy and positive predictive values for prediction of antibiotic and non-antibiotic compounds by the artificial neural networks with the varying number of hidden nodes. The cut-off values 0.4 and 0.6 have been used for negative and positive predictions respectively.







	
Hidden nodes

	
Specificity

	
Sensitivity

	
Accuracy

	
PPV






	
2

	
0.8

	
0.92

	
0.846

	
0.751




	
3

	
0.926

	
0.928

	
0.923

	
0.884




	
4

	
0.925

	
0.92

	
0.923

	
0.884




	
6

	
0.9

	
1

	
0.938

	
0.862




	
8

	
0.9

	
0.92

	
0.907

	
0.851




	
10

	
0.9

	
0.92

	
0.907

	
0.851




	
12

	
0.9

	
0.92

	
0.907

	
0.851




	
14

	
0.815

	
1

	
0.923

	
0.833












Considering that one of the most important implications for the “antibiotic-likeness” model is its potential use for identification of novel antibiotic candidates from electronic databases, we have calculated the parameters of the Positive Predictive Values (PPV) for the networks while varying the number of hidden nodes. Taking into account the PPV values for the networks with the varying number of the hidden nodes along with the corresponding values of sensitivity, specificity and general accuracy we have selected neural network with three hidden nodes as the most efficient among the studied. The ANN with 34 input-, 3 hidden- and 1 output nodes has allowed the recognition of 93% of antibiotic and 93% of non-antibiotic compounds, on average. The output from this 34-3-1 network has also demonstrated very good separation on positive (antibiotics) and negative (non-antibiotics) predictions. Figure 2 features frequencies of the output values for the training and testing sets consisting of ⅓ of antibiotic and ⅔ of non-antibiotics compounds. As it can readily be seen from the graph, the vast majority of the predictions has been contained within [0.0°0.4] and [0.6°1.0] ranges what also illustrates that 0.4 and 0.6 cut-offs values provide very adequate separation of two bioactivity classes (Table 3 and Table 4 feature the outputs values from the 34-3-1 ANN for the training and testing sets respectively).


Figure 2. Distribution of the output values from the ANN with three nodes in the hidden layer and trained on the set containing 90% of the studied compounds
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Table 3. Compounds of the training set and output values from the trained neural network with three hidden nodes.







	
Name

	
Output

	

	
Name

	
Output






	
antibiotics

	

	
apicycline

	
0.975




	
4'-(methylsulfamoyl)sulfanilanilide

	
0.973

	

	
apramycin

	
0.980




	
4'-formylsuccinanilic acid thiosemicarbazone

	

	

	
azidocillin

	
0.979




	
0.259

	

	
arbekacin

	
0.980




	
4-sulfanilamidosalicylic acid

	
0.938

	

	
aspoxicillin

	
0.975




	
acediasulfone

	
0.828

	

	
azidamfenicol

	
0.966




	
acetyl sulfamethoxypyrazine

	
0.855

	

	
azlocillin

	
0.850




	
acetyl sulfisoxazole

	
0.964

	

	
aztreonam

	
0.981




	
amidinocillin

	
0.702

	

	
bacampicillin

	
0.982




	
amidinocillin pivoxil

	
0.938

	

	
benzylpenicillinic acid

	
0.924




	
amifloxacin

	
0.881

	

	
benzylsulfamide

	
0.733




	
amikacin

	
0.984

	

	
biapenem

	
0.830




	
apalcillin

	
0.981

	

	
brodimoprim

	
0.585




	
butirosin

	
0.984

	

	
cephalothin

	
0.977




	
carbenicillin

	
0.974

	

	
cephapirin sodium

	
0.984




	
carfecillin sodium

	
0.970

	

	
cephradine

	
0.897




	
carindacillin(a,e,f,i)

	
0.938

	

	
chloramphenicol

	
0.606




	
carumonam

	
0.985

	

	
chloramphenicol palmitate

	
0.604




	
cefaclor

	
0.860

	

	
chloramphenicol pantothenate

	
0.983




	
cefadroxil

	
0.915

	

	
chlortetracycline

	
0.984




	
cefamandole

	
0.964

	

	
cinoxacin

	
0.770




	
cefatrizine

	
0.973

	

	
clinafloxacin

	
0.920




	
cefazedone

	
0.984

	

	
clindamycin

	
0.926




	
cefazolin

	
0.979

	

	
clometocillin

	
0.953




	
cefbuperazone

	
0.984

	

	
clomocycline

	
0.982




	
cefcapene pivoxil

	
0.983

	

	
cloxacillin

	
0.935




	
cefclidin(a,i,j)

	
0.985

	

	
cyclacillin

	
0.960




	
cefdinir(e,i)

	
0.984

	

	
dibekacin

	
0.952




	
cefditoren

	
0.984

	

	
dichloramine

	
0.253




	
cefepime

	
0.982

	

	
dicloxacillin

	
0.983




	
cefetamet

	
0.983

	

	
difloxacin

	
0.835




	
cefixime

	
0.984

	

	
diphenicillin sodium

	
0.767




	
cefmenoxime

	
0.984

	

	
doxycycline

	
0.981




	
cefmetazole

	
0.984

	

	
enoxacin

	
0.915




	
cefminox

	
0.985

	

	
enrofloxacin

	
0.630




	
cefodizime

	
0.985

	

	
epicillin

	
0.963




	
cefonicid

	
0.984

	

	
fenbenicillin

	
0.967




	
ceforanide

	
0.974

	

	
fleroxacin

	
0.980




	
cefotiam

	
0.985

	

	
flomoxef

	
0.985




	
cefoxitin

	
0.984

	

	
florfenicol

	
0.955




	
cefozopran

	
0.982

	

	
floxacillin

	
0.983




	
cefpimizole

	
0.985

	

	
fortimicin a

	
0.978




	
cefpiramide

	
0.985

	

	
fortimicin b

	
0.700




	
cefpirome

	
0.984

	

	
furaltadone

	
0.901




	
cefpodoxime proxetil

	
0.985

	

	
gentamicin c1

	
0.850




	
cefprozil

	
0.902

	

	
gentamicin c2

	
0.940




	
cefroxadine

	
0.970

	

	
gentamicin c3

	
0.956




	
cefsulodin

	
0.982

	

	
grepafloxacin

	
0.862




	
ceftazidime

	
0.984

	

	
guamecycline

	
0.977




	
cefteram

	
0.979

	

	
imipenem

	
0.577




	
ceftezole

	
0.984

	

	
isepamicin

	
0.985




	
ceftizoxime

	
0.984

	

	
kanamycin a

	
0.962




	
cefuroxime

	
0.980

	

	
kanamycin b

	
0.976




	
cefuzonam

	
0.985

	

	
kanamycin c

	
0.971




	
cephacetrile sodium

	
0.982

	

	
lenampicillin

	
0.985




	
cephalexin

	
0.847

	

	
lincomycin

	
0.907




	
cephaloglycin

	
0.951

	

	
lomefloxacin

	
0.946




	
cephaloridine

	
0.960

	

	
loracarbef

	
0.862




	
cephalosporin c

	
0.976

	

	
lymecycline

	
0.978




	
meclocycline

	
0.984

	

	
propicillin

	
0.814




	
meropenem

	
0.977

	

	
quinacillin

	
0.984




	
methacycline

	
0.983

	

	
ribostamycin

	
0.965




	
methicillin sodium

	
0.951

	

	
rifamide

	
0.979




	
mezlocillin

	
0.976

	

	
rifamycin sv

	
0.984




	
micronomicin

	
0.966

	

	
rifaximin

	
0.984




	
miloxacin

	
0.786

	

	
ritipenem

	
0.977




	
moxalactam

	
0.984

	

	
rolitetracycline

	
0.979




	
n2-formylsulfisomidine

	
0.919

	

	
rosoxacin

	
0.265




	
n4-sulfanilylsulfanilamide

	
0.980

	

	
rufloxacin

	
0.975




	
nadifloxacin

	
0.658

	

	
salazosulfadimidine

	
0.970




	
nafcillin sodium

	
0.919

	

	
sancycline

	
0.980




	
nalidixic acid

	
0.268

	

	
sisomicin

	
0.909




	
neomycin a(c,i,j)

	
0.983

	

	
sparfloxacin

	
0.975




	
neomycin b(a,d,h,i)

	
0.981

	

	
spectinomycin

	
0.628




	
netilmicin

	
0.938

	

	
succinylsulfathiazole

	
0.977




	
nifuradene

	
0.600

	

	
sulbenicillin

	
0.884




	
nifuratel

	
0.980

	

	
sulfabenzamide

	
0.895




	
nifurfoline

	
0.963

	

	
sulfacetamide

	
0.955




	
nifurprazine

	
0.267

	

	
sulfachlorpyridazine

	
0.915




	
nifurtoinol

	
0.694

	

	
sulfachrysoidine

	
0.975




	
nitrofurantoin

	
0.291

	

	
sulfacytine

	
0.971




	
norfloxacin

	
0.523

	

	
sulfadiazine

	
0.937




	
N-sulfanilyl-3,4-xylamide

	
0.956

	

	
sulfadicramide

	
0.933




	
ofloxacin

	
0.972

	

	
sulfadimethoxine

	
0.958




	
oxytetracycline

	
0.984

	

	
sulfadoxine

	
0.965




	
panipenem

	
0.939

	

	
sulfaethidole

	
0.918




	
paromomycin

	
0.984

	

	
sulfaguanidine

	
0.904




	
pasiniazide

	
0.236

	

	
sulfaguanol

	
0.943




	
pazufloxacin

	
0.926

	

	
sulfalene

	
0.938




	
pefloxacin

	
0.563

	

	
sulfaloxic acid

	
0.857




	
penamecillin

	
0.636

	

	
sulfamethazine

	
0.912




	
penethamate hydriodide

	
0.704

	

	
sulfamethizole

	
0.759




	
penicillin G potassium

	
0.848

	

	
sulfamethomidine

	
0.940




	
penicillin N

	
0.901

	

	
sulfamethoxazole

	
0.908




	
penicillin O

	
0.978

	

	
sulfamethoxypyridazine

	
0.912




	
penicillin V

	
0.912

	

	
sulfamidochrysoidine

	
0.952




	
phenethicillin potassium

	
0.822

	

	
sulfamoxole

	
0.954




	
phthalylsulfathiazole

	
0.976

	

	
sulfanilamide

	
0.653




	
pipacycline

	
0.921

	

	
sulfanilic acid

	
0.841




	
pipemidic acid

	
0.882

	

	
sulfanilylurea

	
0.938




	
piperacillin

	
0.982

	

	
sulfaphenazole

	
0.929




	
piromidic acid

	
0.696

	

	
sulfaproxyline

	
0.957




	
pivampicillin

	
0.916

	

	
sulfapyrazine

	
0.934




	
pivcefalexin

	
0.946

	

	
sulfathiazole

	
0.873




	
p-nitrosulfathiazole

	
0.893

	

	
sulfathiourea

	
0.849




	
sulfisomidine

	
0.909

	

	
bamipine

	
0.036




	
sulfisoxazole

	
0.963

	

	
biclofibrate

	
0.247




	
sultamicillin

	
0.983

	

	
befunolol

	
0.252




	
talampicillin

	
0.911

	

	
benfluorex

	
0.258




	
temocillin

	
0.985

	

	
benorylate

	
0.259




	
tetracycline

	
0.983

	

	
benserazide

	
0.259




	
tetroxoprim

	
0.837

	

	
benzitramide

	
0.259




	
thiamphenicol

	
0.942

	

	
benzotropine mesylate

	
0.000




	
ticarcillin

	
0.983

	

	
benzpiperylon

	
0.000




	
tigemonam

	
0.985

	

	
benzydamine

	
0.000




	
trimethoprim

	
0.739

	

	
bermoprofen

	
0.257




	
trospectomycin

	
0.850

	

	
betaxolol

	
0.174




	
trovafloxacin(b)

	
0.960

	

	
bevantolol

	
0.154




	
non-antibiotics

	

	
bevonium methyl sulfate

	
0.032




	
2-amino-4-picoline

	
0.258

	

	
bezafibrate

	
0.256




	
5-bromosalicylic acid acetate

	
0.258

	

	
binifibrate

	
0.319




	
5-nitro-2propoxyacetanilide

	
0.280

	

	
bisoprolol

	
0.184




	
acecarbromal

	
0.259

	

	
bitolterol

	
0.004




	
aceclofenac

	
0.431

	

	
bucloxic acid

	
0.258




	
acefylline(c,d,e,g)

	
0.841

	

	
bopindolol

	
0.001




	
acetaminophen(b,i)

	
0.258

	

	
bromfenac

	
0.258




	
acetanilide

	
0.258

	

	
bromisovalum

	
0.258




	
acetazolamide

	
0.023

	

	
bromodiphenhydramine

	
0.057




	
acetophenazine

	
0.265

	

	
brompheniramine

	
0.006




	
acetylsalicylic acid

	
0.258

	

	
bucetin

	
0.247




	
acrivastine

	
0.260

	

	
bucolome

	
0.253




	
ahistan

	
0.000

	

	
bucumolol

	
0.256




	
albuterol

	
0.258

	

	
bufetolol

	
0.157




	
alclofenac

	
0.258

	

	
bufexamac

	
0.258




	
alminoprofen

	
0.256

	

	
bufuralol

	
0.008




	
alphaprodine

	
0.106

	

	
bumadizon

	
0.205




	
alprenolol

	
0.239

	

	
bunitrolol

	
0.258




	
aminochlorthenoxazin

	
0.257

	

	
butabarbital

	
0.258




	
aminopyrine

	
0.000

	

	
butaclamol

	
0.123




	
amosulalol

	
0.078

	

	
butallylonal

	
0.262




	
amtolmetin guacil

	
0.001

	

	
butanilicaine

	
0.206




	
anileridine

	
0.262

	

	
butibufen

	
0.255




	
antipyrine

	
0.017

	

	
butidrine hydrochloride

	
0.183




	
antrafenine

	
0.283

	

	
butoctamide

	
0.252




	
apazone

	
0.001

	

	
butofilolol

	
0.256




	
apronalide

	
0.258

	

	
caffeine

	
0.159




	
arotinolol

	
0.293

	

	
capuride

	
0.257




	
atenolol

	
0.258

	

	
carazolol

	
0.027




	
atropine

	
0.258

	

	
carbamazepine

	
0.015




	
bambuterol

	
0.032

	

	
carbidopa

	
0.259




	
bamifylline

	
0.290

	

	
carbinoxamine

	
0.066




	
carbiphene

	
0.258

	

	
diethylbromoacetamide

	
0.257




	
carbocloral

	
0.313

	

	
difenamizole

	
0.006




	
carbromal

	
0.257

	

	
difenpiramide

	
0.009




	
carbuterol

	
0.258

	

	
diflunisal

	
0.258




	
carfimate

	
0.258

	

	
dilevalol

	
0.255




	
carphenazine

	
0.263

	

	
dioxadrol

	
0.000




	
carprofen

	
0.258

	

	
dipyrocetyl

	
0.315




	
carsalam

	
0.258

	

	
dipyrone

	
0.041




	
carteolol

	
0.259

	

	
disulfiram

	
0.001




	
carvedilol

	
0.000

	

	
doxefazepam

	
0.270




	
celiprolol

	
0.211

	

	
doxofylline

	
0.629




	
cetamolol

	
0.245

	

	
doxylamine(b,f,g,i)

	
0.000




	
cetirizine

	
0.261

	

	
droperidol

	
0.259




	
chlorhexadol

	
0.288

	

	
droxicam

	
0.022




	
chlorobutanol

	
0.258

	

	
dyphylline

	
0.410




	
chloropyramine

	
0.050

	

	
ectylurea

	
0.244




	
chlorothen

	
0.070

	

	
embramine

	
0.122




	
chlorpheniramine

	
0.095

	

	
emorfazone

	
0.010




	
chlorprothixene

	
0.017

	

	
enfenamic acid

	
0.256




	
chlorthenoxacin

	

	

	
enprofylline

	
0.246




	
(chlorthenoxazine)

	
0.258

	

	
epanolol

	
0.258




	
chlorcyclizine

	
0.078

	

	
ephedrine

	
0.229




	
cinchophen

	
0.251

	

	
epirizole

	
0.002




	
cinmetacin

	
0.248

	

	
eprozinol

	
0.237




	
cinnarizine

	
0.388

	

	
estazolam

	
0.000




	
cinromida

	
0.197

	

	
etafedrine

	
0.179




	
ciprofibrate

	
0.251

	

	
etamiphyllin

	
0.118




	
clemastine

	
0.039

	

	
etaqualone

	
0.000




	
clenbuterol

	
0.234

	

	
eterobarb

	
0.001




	
clidanac

	
0.258

	

	
etersalate

	
0.260




	
clinofibrate

	
0.282

	

	
ethenzamide

	
0.243




	
clofibric acid

	
0.256

	

	
ethinamate

	
0.258




	
clometacin

	
0.292

	

	
ethoheptazine

	
0.000




	
clometiazol

	
0.255

	

	
ethoxazene

	
0.248




	
clonixin

	
0.254

	

	
etodolac

	
0.259




	
clopirac

	
0.257

	

	
etofibrate

	
0.260




	
cloranolol

	
0.247

	

	
etofylline

	
0.266




	
clordesmetildiazepam

	
0.257

	

	
etomidate

	
0.000




	
clorprenaline

	
0.249

	

	
etymemazine

	
0.002




	
clothiapine

	
0.003

	

	
felbinac

	
0.258




	
clozapine

	
0.051

	

	
fenadiazole

	
0.230




	
codeine

	
0.062

	

	
fenbufen

	
0.258




	
cropropamide

	
0.002

	

	
fenclofenac

	
0.259




	
crotethamide

	
0.035

	

	
fenethazine

	
0.000




	
deserpidine

	
0.005

	

	
fenofibrate

	
0.254




	
diclofenac

	
0.262

	

	
fenoprofen

	
0.258




	
fenoterol

	
0.258

	

	
lornoxicam

	
0.031




	
fentanyl

	
0.066

	

	
loxapina

	
0.004




	
fentiazac

	
0.259

	

	
loxoprofen

	
0.258




	
floctafenine

	
0.266

	

	
mazindol(i)

	
0.162




	
flufenamic acid

	
0.259

	

	
meclofenamic acid(f)

	
0.276




	
fluoresone

	
0.459

	

	
mecloqualone

	
0.000




	
fluphenazine

	
0.260

	

	
medibazine

	
0.004




	
flupirtine

	
0.260

	

	
medrylamine

	
0.001




	
fluproquazone

	
0.258

	

	
meparfynol

	
0.258




	
flurazepam

	
0.010

	

	
mepindolol

	
0.211




	
flurbiprofen

	
0.258

	

	
meprobamate

	
0.259




	
fluspirilene

	
0.259

	

	
mequitazine

	
0.001




	
flutropium bromide

	
0.259

	

	
methafurylene

	
0.000




	
formoterol

	
0.259

	

	
methaphenilene

	
0.000




	
fosazepam

	
0.258

	

	
methotrimeprazine

	
0.002




	
fusaric acid

	
0.258

	

	
methoxyphenamine

	
0.000




	
gemfibrozil

	
0.248

	

	
methyldopa

	
0.258




	
gentisic acid

	
0.258

	

	
methyltyrosine

	
0.256




	
glafenine

	
0.259

	

	
methyprylon

	
0.232




	
glucametacin

	
0.335

	

	
metiapine

	
0.002




	
glutethimide

	
0.258

	

	
metipranolol

	
0.258




	
haloperidide

	
0.259

	

	
metofoline

	
0.094




	
haloperidol

	
0.258

	

	
metoprolol

	
0.179




	
hexapropymate

	
0.258

	

	
metron

	
0.275




	
hexobarbital

	
0.274

	

	
mexiletine

	
0.251




	
hexoprenaline

	
0.258

	

	
mofezolac

	
0.340




	
histapyrrodine

	
0.004

	

	
molindone

	
0.000




	
hydroxyethylpromethazine

	

	

	
moperone

	
0.259




	
(N-Hydroxyethylpromethazine)

	
0.261

	

	
moprolol

	
0.213




	
hydroxyzine

	
0.261

	

	
morazone

	
0.000




	
ibufenac

	
0.258

	

	
morphine

	
0.289




	
ibuprofen

	
0.258

	

	
moxastine

	
0.000




	
ibuproxam

	
0.258

	

	
nadoxolol

	
0.258




	
indenolol

	
0.179

	

	
naproxen

	
0.256




	
indomethacin

	
0.323

	

	
narcobarbital

	
0.265




	
ipratropium bromide

	
0.259

	

	
nefopam

	
0.000




	
isoetharine

	
0.258

	

	
niceritrol

	
0.981




	
isofezolac

	
0.183

	

	
nicoclonate

	
0.095




	
isonixin

	
0.125

	

	
nicofibrate

	
0.214




	
isopromethazine

	
0.000

	

	
nifenalol

	
0.256




	
isoxicam

	
0.003

	

	
nifenazone

	
0.000




	
ketoprofen

	
0.250

	

	
niflumic acid

	
0.260




	
ketorolac

	
0.259

	

	
nimetazepam

	
0.512




	
labetalol

	
0.252

	

	
nipradilol

	
0.611




	
lefetamine

	
0.068

	

	
nitrazepam

	
0.337




	
lorazepam

	
0.268

	

	
nordiazepam

	
0.254




	
novonal

	
0.255

	

	
propyphenazone

	
0.000




	
octopamine

	
0.258

	

	
protokylol

	
0.260




	
orphenadrine

	
0.000

	

	
proxibarbital

	
0.262




	
oxaceprol

	
0.259

	

	
proxyphylline

	
0.210




	
oxametacine

	
0.284

	

	
pyrilamine

	
0.000




	
oxanamide

	
0.254

	

	
pyrrobutamine

	
0.000




	
oxaprozin

	
0.259

	

	
quazepam

	
0.331




	
oxitropium bromide

	
0.265

	

	
ramifenazone

	
0.000




	
oxprenolol

	
0.221

	

	
reproterol

	
0.296




	
oxypertine

	
0.000

	

	
rimiterol

	
0.258




	
paramethadione

	
0.258

	

	
ronifibrate

	
0.259




	
parsalmide

	
0.259

	

	
salacetamide

	
0.258




	
p-bromoacetanilide

	
0.258

	

	
salicylamide

	
0.257




	
pemoline

	
0.258

	

	
salicylamide O-acetic acid

	
0.258




	
penbutolol

	
0.099

	

	
salsalate

	
0.258




	
penfluridol

	
0.259

	

	
salverine

	
0.000




	
perisoxal

	
0.034

	

	
scopolamine

	
0.278




	
perphenazine

	
0.284

	

	
secobarbital

	
0.257




	
phenacemide

	
0.258

	

	
setastine

	
0.035




	
phenacetin

	
0.247

	

	
simetride

	
0.028




	
phenoperidine

	
0.191

	

	
simfibrate

	
0.259




	
phenopyrazone

	
0.243

	

	
simvastatin

	
0.355




	
phenylbutazone

	
0.000

	

	
sotalol

	
0.013




	
phenyltoloxamine(a,c,g)

	
0.000

	

	
soterenol

	
0.099




	
pindolol

	
0.055

	

	
sulfinalol

	
0.062




	
pipebuzone

	
0.001

	

	
sulpiride

	
0.017




	
piperacetazine

	
0.261

	

	
suprofen

	
0.258




	
piperidione

	
0.253

	

	
talastine

	
0.000




	
piperylone

	
0.000

	

	
talinolol

	
0.245




	
pirbuterol

	
0.259

	

	
talniflumate

	
0.399




	
pirifibrate(g,h)

	
0.258

	

	
temazepam

	
0.207




	
piroxicam

	
0.013

	

	
tenoxicam

	
0.008




	
pirprofen

	
0.258

	

	
terbutaline

	
0.258




	
p-lactophenetide

	
0.257

	

	
tertatolol

	
0.129




	
p-methyldiphenhydramine

	
0.000

	

	
tetrabarbital

	
0.257




	
pravastatin

	
0.438

	

	
thenaldine

	
0.000




	
prazepam

	
0.008

	

	
thenyldiamine

	
0.000




	
primidone

	
0.133

	

	
theobromine

	
0.251




	
probucol

	
0.000

	

	
theofibrate(b,f,i)

	
0.435




	
procaterol

	
0.260

	

	
theophylline(f,h,i,j)

	
0.224




	
proglumetacin

	
0.292

	

	
thioridazine

	
0.003




	
prolintane

	
0.024

	

	
thiothixene

	
0.003




	
promazine

	
0.000

	

	
thonzylamine

	
0.001




	
pronethalol

	
0.237

	

	
tiaprofenic acid

	
0.258




	
propanolol

	
0.067

	

	
timolol

	
0.030




	
toliprolol

	
0.127

	

	
tripelennamine

	
0.000




	
tolmetin

	
0.254

	

	
triprolidine

	
0.000




	
tolpropamine

	
0.001

	

	
tulobuterol

	
0.169




	
tretoquinol

	
0.418

	

	
viminol

	
0.028




	
triazolam

	
0.003

	

	
vinylbital

	
0.258




	
triclofos

	
0.276

	

	
xenbucin

	
0.256




	
trifluoperazine

	
0.298

	

	
xibenolol

	
0.148




	
trifluperidol

	
0.259

	

	
zolamine

	
0.035




	
trimethadione

	
0.258

	

	
zomepirac

	
0.263




	
triparanol

	
0.248

	

	

	










Table 4. Compounds of the testing set and the corresponding output values from the trained neural network with three hidden nodes.







	
Name

	
Output

	

	
Name

	
Output






	
antibiotics

	

	
butacetin

	
0.147




	
amoxicillin

	
0.152

	

	
chlorpromazine

	
0.169




	
ampicillin

	
0.728

	

	
ciramadol

	
0.150




	
cefoperazone

	
0.997

	

	
clocinizine

	
0.125




	
cefotaxime

	
0.999

	

	
clofibrate

	
0.142




	
cefotetan

	
0.568

	

	
diazepam

	
0.997




	
cefteram

	
0.999

	

	
diphenhydramine

	
0.125




	
ceftriaxone

	
0.999

	

	
diphenylpyraline

	
0.101




	
ciprofloxacin

	
0.999

	

	
esmolol

	
0.151




	
demeclocycline

	
0.999

	

	
ethclorvinol

	
0.047




	
flumequine

	
0.998

	

	
feprazone

	
0.118




	
hetacillin

	
0.992

	

	
flunitrazepam

	
0.069




	
mafenide

	
0.999

	

	
fosfosal

	
0.134




	
metampicillin

	
0.978

	

	
indoprofen

	
0.287




	
minocycline

	
0.984

	

	
isoproterenol

	
0.151




	
nifurpirinol

	
0.998

	

	
levobunolol

	
0.150




	
noprylsulfamide

	
0.998

	

	
lovastatin

	
0.151




	
oxacillin

	
0.999

	

	
mabuterol

	
0.149




	
oxolinic acid

	
0.991

	

	
mefenamic acid

	
0.097




	
sulfamerazine

	
0.999

	

	
mefexamide

	
0.000




	
sulfametrole

	
0.999

	

	
meperidine

	
0.146




	
sulfanitran

	
0.998

	

	
mephobarbital

	
0.160




	
sulfaperine

	
0.997

	

	
methapyrilene

	
0.000




	
temafloxacin

	
0.987

	

	
nadolol

	
0.151




	
thiazolsulfone

	
0.994

	

	
pheniramine

	
0.134




	
tobramycin

	
0.994

	

	
phenocoll

	
0.000




	
tosufloxacin

	
0.995

	

	
phenyramidol

	
0.000




	
non-antibiotics

	

	
pimozide

	
0.029




	
acetaminosalol

	
0.110

	

	
practolol

	
0.152




	
acetobutolol

	
0.150

	

	
proheptazine

	
0.149




	
aminopropylon

	
0.000

	

	
propacetamol

	
0.166




	
benoxaprofen

	
0.150

	

	
sulindac

	
0.975




	
brotizolam

	
0.004

	

	
talbutal

	
0.063




	
bupranolol

	
0.144

	

	

	












It should be mentioned, that the estimated 93% accuracy of the prediction by the 34-3-1 ANN is similar or superior to the results by several similar ‘antibiotic-likeness’ studies where the overall cross—validated accuracy can range from 78 [20] to 98% [26] depending of the QSAR methodology, size of antibiotics/non-antibiotics dataset, cross-correlation technique and statistics utilized.



We have also applied the developed techniques on the non-hydrogen suppressed molecular structures. The estimated accuracy of antibiotic/non-antibiotic classification was very close to the results for the hydrogen suppressed molecules. In contrast, the time for the calculation of the inductive QSAR descriptors in the former case is much shorter as the total number of all atoms nearly doubles.





Discussion


The accuracy of discrimination of antibiotic compounds by the artificial neural networks built upon the ‘inductive’ descriptors clearly demonstrates an adequacy and good predictive power of the developed QSAR model. There is strong evidence, that the introduced inductive descriptors do adequately reflect the structural properties of chemicals, which are relevant for their antibacterial activity. This observation is not surprising considering that the inductive QSAR descriptors calculated within (1)–(11) should cover a very broad range of proprieties of bound atoms and molecules related to their size, polarizability, electronegativity, compactness, mutual inductive and steric influence and distribution of electronic density, etc. The results of the study demonstrate that not extensive sets of inductive QSAR descriptors having much defined physical meaning can be sufficient for creating useful models of “antibiotic-likeness”. The accuracy of the developed QSAR model is superior or similar compared to other binary classifiers on the same set of molecules but using much more extensive collections of QSAR descriptors [27,29].



Presumably, accuracy of the approach operating by the inductive descriptors can be improved even further by expanding the QSAR descriptors or by applying more powerful classification techniques such as Support Vector Machines or Bayesian Neural Networks. Use of merely statistical techniques in conjunction with the inductive QSAR descriptors would also be beneficial, as they will allow interpreting individual descriptor contributions into molecular “antibiotic-likeness”. The selection of drugs used for the simulation can also be extended and/or refined. For instance, it has been experimentally confirmed that several non-antibacterial compounds from Vert’s dataset can, in fact, possess definite antibacterial activity. Thus, anti-inflammatory drugs diclofenac [34,35], piroxicam, mefenamic acid and naproxen [35], antihistamines – bromodiphenhydramine [36] diphenhydramine [36] and triprolidine [37], anti-psychotics – chlorpromazine [38,39] and fluphenazine [40,41], the tranquilizer promazine [42] and anti-hypertensive methyldopa [43] all exhibit moderate to powerful potential against microbes. It is obvious, that having all these compounds as the negative control can interfere with the training of efficient antibiotic-likeness model. We, however, did not remove these substances from the e training and testing sets for the sake of comparison of our results with the previous data. Nonetheless, despite the certain drawbacks, it is obvious that the developed ANN-based QSAR model operating by the inductive descriptors has demonstrated very high accuracy and can be used for mining electronic collections of chemical structures for novel antibiotic candidates.



An application of the model


We have decided to test the developed model of “antibiotic-likeness” on the series of early-stage antibiotic compounds featured in the free issue of the Drug Data Report – a journal presenting preliminary drug research results appearing for the first time in patent literature [44]. The “experimental” antibiotic compounds cited by the issue included one penicillin- and two cephalosporin- derivatives as well as a number of high molecular weight chemicals with complex spatial structures such as five C11-carbamate azalides and four eremomycin carboxamides (the corresponding structural formulas are presented on Figure 3).


Figure 3. Chemical structures of twelve early stage antibiotics from the Drug Data Report used for validation for the developed ANN – based QSAR model.
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For each of 12 compounds from the validation set we have calculated 34 inductive descriptors used earlier. The normalized patterns of the independent variables have then been passed through 34-3-1 network with its node–associated weights pre-assigned during the training. The ANN has produced the output parameters presented in Table 5. As it can be seen from the data, all of the estimated output values score well above 0.60 threshold what confidently assigns all of the trial molecules to the class of antibiotics.



Table 5. Output values from the neural network for the validation set’s antibiotics.







	
Compound

	
Structural formula

	
Prediction






	
286547

	
3a

	
0.984




	
286724

	
3c

	
0.985




	
286725

	
3c

	
0.985




	
286726

	
3c

	
0.985




	
286727

	
3c

	
0.985




	
286728

	
3c

	
0.985




	
286847

	
3b

	
0.915




	
286848

	
3b

	
0.914




	
287132

	
3d

	
0.985




	
287133

	
3d

	
0.985




	
287135

	
3d

	
0.985




	
287136

	
3d

	
0.985
















These results demonstrate that the developed ANN-based binary classifier of antibacterial activity is adequate and can be considered an effective tool for ‘in silico’ antibiotics discovery. The results also demonstrate that the inductive parameters readily accessible by formulas (1)-(11) from atomic electronegativities, covalent radii and interatomic distances can produce a variety of useful QSAR descriptors to be used ‘in silico’ chemical research.





Conclusions


The results of the present work demonstrate that a variety of atomic, substituent and molecular properties which can be computed within the framework of our previous models for inductive and steric effects, inductive electronegativity and molecular capacitance represent a powerful arsenal of 3D QSAR descriptors for modern ‘in silico’ drug research. Using only 34 inductive descriptors with no additional independent parameters we have achieved 93% correct classification of compounds with- and without antibacterial activity. The introduced inductive descriptors possess a number of important merits: they are 3D- and stereo- sensitive, can be easily computed from fundamental properties of bound atoms and molecules and possess much defined physical meaning. The developed ANN-based model for antibiotic-likeness prediction can be used as a powerful QSAR tool for filtering through the collections of chemical structures to discover novel antibiotic leads.




Methods


The names of the chemical compounds from the dataset from [27] have been translated into SMILES records and MOL files using the ChemIDPlus online service [45] and the MOE package [32]. 50 inductive descriptors have been calculated using by the SVL scripts – a specialized language of the MOE package. The interatomic distances have been calculated by the MOE from the molecular structures optimized with the MMFF94 force-field [46]. The atomic types have been assigned according to the name, valent state and a formal charge of atoms as it is defined within the MOE. The parameters of the corresponding atomic electronegativities and covalent radii have been taken from our works [5,8]. The inductive QSAR descriptors used in the study have been normalized into the range [0.0°1.0] and the non-overlapping training and testing sets have been randomly drawn by the customized Java scripts. The training and testing of the neural networks has been conducted using the Stuttgart Neural Network Simulator [47]. The training was performed through the feed-forward back-propagation algorithm with the weight decay and pattern shuffling. The values of initial rates were randomly assigned in a range [0.0°1.0], the learning rate has been set to 0.8 with the threshold 0.10.
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