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Abstract: The formalism for multi-state multireference configuration-based Rayleigh-
Schrödinger perturbation theory and procedures for its implementation for the second-order 
and third-order energy within a multireference configuration interaction computer program 
are reviewed.  This formalism is designed for calculations on electronic states that involve 
strong mixing between different zero-order contributions, such as avoided crossings or 
mixed valence-Rydberg states.  Such mixed states typically display very large differences in 
reference-configuration mixing coefficients between the reference MCSCF wave function 
and an accurate correlated wave function, differences that cannot be reflected in 
state-specific (diagonalize-then-perturb) multireference perturbation theory through third 
order.  A procedure described in detail applies quasidegenerate perturbation theory based on 
a model space of a few state-averaged MCSCF functions for the states expected to partici-
pate strongly in the mixing, and can be characterized as a “diagonalize-then-perturb-then-
diagonalize” approach.  It is similar in various respects to several published methods, in-
cluding an implementation by Finley, Malmqvist, Roos, and Serrano-Andrés [Chem. Phys. 
Lett. 1998, 288, 299–306]. 
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1. Introduction 

The term “mixed electronic states” refers to states in which electronic structures of different types, 
such as valence and Rydberg, or covalent and ionic, contribute strongly to the wave function. More-
over, the relative contributions of the different types tend to vary strongly with variations in the mo-
lecular geometry, as in the case of avoided curve crossings. In multireference electronic structure cal-
culations for such states, the relative contributions of different reference configurations tend to differ 
substantially between the reference (MCSCF) wave function and the final correlated wave function.  
For example, the crossing point between the potential energy curves of the covalent and ionic configu-
ration in alkali halides can vary by several Bohr between an MCSCF and a multireference CI calcula-
tion [1] (primarily because of the great difficulty in reproducing the electron affinity of the halogen 
atom).  Obviously, in the region between the MCSCF and correlated crossing points, the MCSCF solu-
tion provides the wrong zero-order functions for the multireference treatment.  If the computational 
model does not allow relaxation of the coefficients of the reference configurations in the correlation 
treatment, a correct description of the mixing and of the potential energy surfaces cannot be expected. 

Two examples of correlation treatments that are affected by the problem of incorrect mixing are in-
ternally-contracted CI [2–5] and state-specific multireference perturbation expansions (of the diagonal-
ize-then-perturb variety) at second and third order, such as CASPT2 [6] and CASPT3 [7].  The refer-
ence (MCSCF) function does not interact directly with its orthogonal complement in the reference 
space, and therefore the other eigenvectors of the MCSCF Hamiltonian do not contribute to a perturba-
tion expansion before the fourth order in the energy.  Solutions for this problem in the case of con-
tracted CI have been introduced [5,8], in which contracted CI excitations based on more than one 
MCSCF reference-space eigenvector are included.  Similar ideas have been applied in multireference 
perturbation theory, as discussed below, and one form of such an approach for second- and third-order 
multireference Rayleigh–Schrödinger perturbation theory is described here. 

Multireference perturbation approaches fall into two main classes:  In quasidegenerate perturbation 
theory [9–11], also referred to as “perturb then diagonalize,” a low-dimensional effective Hamiltonian 
is constructed using a perturbation expansion for each of its matrix elements, and this effective Hamil-
tonian is diagonalized to obtain the desired solutions for one or more states.  The principal difficulty 
with this approach is the problem of intruder states, which can cause the perturbation series to diverge 
or to converge extremely slowly. On the other hand, in state-specific perturbation theory, also called 
“diagonalize then perturb,” a zero-order function is first constructed by diagonalizing the Hamiltonian 
over the reference space, usually by an MCSCF calculation, and a single perturbation expansion is then 
constructed over this zero-order function. The principal problem with this approach is the previously 
mentioned lack of relaxation of the zero-order function before reaching the computationally demand-
ing fourth order in the energy expansion. 

The present paper discusses a form of multireference perturbation theory that can be referred to as a 
“diagonalize-then-perturb-then-diagonalize” approach, which is designed to facilitate the relaxation of 
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the reference function and thus deal with the mixed-states problem.  It begins with a state-averaged 
MCSCF [12,13] calculation to provide a small number of model-state zero-order functions, and applies 
quasidegenerate perturbation theory to obtain an effective Hamiltonian in that small model space, fol-
lowed by diagonalization of the effective Hamiltonian to obtain properly-mixed wave functions and 
energies.  The model states used to construct the effective Hamiltonian are a small subset of the eigen-
states of the state-averaged MCSCF Hamiltonian, and if they can be chosen to be well-separated in en-
ergy from any other zero-order states the intruder-state problem can be reduced. 

This approach has been proposed and implemented, in one form or another, by a number of re-
searchers, including Malrieu and co-workers [14], Sheppard et al. [15], Lisini and Decleva [16], Na-
kano [17], and Roos and co-workers [18].  The current presentation includes the following specific fea-
tures: 

1. The choices of orbitals and zero-order Hamiltonian try to mimic the Møller–Plesset procedures 
that have been found to be very effective in single-reference perturbation expansions. 

2. The zero-order Hamiltonians need not be diagonal. 
3. A non-Hermitian effective Hamiltonian is generated, based on the Bloch equation. 
4. The method is formulated in configuration space, allowing flexibility in the choice of the refer-

ence space (including incomplete active spaces), and enabling easy implementation in a CI 
program. 

5. Uncontracted configuration state functions are used as a basis for the perturbation expansions. 
6. Procedures for both second and third order in the energy are included.  

The other presentations share many of these features and differ in various respects, such as in the use 
of natural orbitals, Epstein-Nesbet partitioning, complete active spaces, diagonal zero-order Hamilto-
nians, Hermitian effective Hamiltonians, many-body methods, or limitation to second-order energies. 

In order to introduce the notation and the overall approach, the fundamentals of Rayleigh–
Schrödinger perturbation theory are reviewed very briefly in a general form in Section 2, and the ap-
plication to the state-specific multireference treatment is described in Section 3.  The generalization for 
mixed states is described in Section 4, followed by discussion in Section 5. 

 
2.  Rayleigh–Schrödinger perturbation theory for arbitrary zero-order functions 

Conventionally, a perturbation treatment begins with the partitioning of the Hamiltonian, 

VHH ˆˆˆ
0 += ,      (1) 

into a zero-order part ,ˆ
0H  for which the solutions are known, and a perturbation .V̂   Then the desired 

solutions are expanded, order by order, in the eigenfunctions of 0Ĥ .  Here we shall use the alternative, 

more general approach, in which the process is reversed, beginning with a given set of expansion func-

tions and defining 0Ĥ  in terms of these functions.  This approach clearly demonstrates the various op-
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tions available in the method, and is often followed in electronic structure presentations. 

Given an orthonormal set of zero-order functions ,,,, )0(
3

)0(
2

)0(
1 KΦΦΦ  of which one, labeled ,)0(

αΦ  

is an approximation for the state of interest, we define a zero-order Hamiltonian 

∑
≠

ΦΦ+ΦΦ=
α

ααα
ji

jiji EEH
,

)0()0()0()0()0()0(
0

ˆ ,    (2) 

with the Hermitian matrix )0(E  defined so that )0()0(
ααα EE ≡  and )(0)0( αα ≠= iEi .  We then have 

)0()0()0(
0

ˆ
ααα Φ=Φ EH .     (3) 

In principle, the choice of the )0(
ijE  is arbitrary; however, an appropriate choice is essential, since it de-

termines the convergence rate of the perturbation series.  The perturbation is given by 

0
ˆˆˆ HHV −= ,      (4) 

and the perturbation series for the state approximated by )0(
αΦ  is 

K+∆Φ+∆Φ+Φ=Φ )2()1()0(
αααα ,     (5) 

K+∆+∆+= )2()1()0(
αααα EEEE .     (6) 

We also define 

∑ ∑
= =

∆+=∆Φ+Φ=Φ
n

i

n

i

inin EEE
1 1

)()0()()()0()( , αααααα .   (7) 

The first-order energy is given in terms of the zero-order wave function, 

REF)0()0()1()0()0()1( ˆ,ˆ
ααααααα EHEVE =ΦΦ=ΦΦ=∆ .   (8) 

The equation for the first-order correction to the wave function is 

)0()1()1()0(
0 )ˆ()ˆ( αααα Φ∆−−=∆Φ− EVEH .    (9) 

Expanding the first-order wave function in the zero-order functions, 

∑
≠

∆Φ=∆Φ
α

αα
j

jj C )1()0()1( ,     (10) 

and applying )()0( α≠Φ ii  from the left, the first-order equation becomes 

∑
≠

≠Φ∆−Φ−=∆Φ−Φ
α

αααα α
j

ijji iEVCEH )(ˆˆ )0()1()0()1()0()0(
0

)0( ,  (11) 
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resulting in a linear system of equations for the )1(
αjC∆ : 

∑
≠

≠−=∆−
α

ααα αδ
j

ijijij iVCEE )()( )1()0()0( ,    (12) 

where )0()0( ˆ
jiij VV ΦΦ= .  Intermediate normalization is imposed by the choice 0)1( =∆ ααC . 

In many cases it is convenient to choose an 0Ĥ  that is diagonal in the zero-order functions, putting 

,)0()0(
ijiij EE δ=  so that 

∑ ΦΦ=
i

iii EH )0()0()0(
0

ˆ ,     (13) 

in which case the linear system has the explicit solution 

)()0()0(
)1( α

α

α
α ≠

−
−=∆ j

EE

V
C

j

j
j .     (14) 

In either case, the second- and third-order energy corrections are given by 

∑
≠

∆=∆ΦΦ=∆
α

ααααα
j

jj CVVE )1()1()0()2( ˆ ,     (15) 

∑
≠

∆∆−∆=∆Φ∆−∆Φ=∆
α

ααααααα δ
ji

jijiji CEVCEVE
,

)1()1()1()1()1()1()3( )(*ˆ .  (16) 

3.  Multireference perturbation treatment with a single MCSCF zero-order wave function 

A.  The zero-order functions 

An optimized MCSCF wave function in a reference-space of m configuration state functions  

mΘΘΘ ,,, 21 K   is used as )0(
αΦ : 

∑
=

Θ=Φ
m

i
iiC

1

)0()0(
αα .      (17) 

The 1−m  orthogonal-complement functions in the reference space (the other eigenvectors in the 

MCSCF Hamiltonian diagonalization) will be designated )0()0(
1

)0(
1

)0(
2

)0(
1 ,,,,,, mΦΦΦΦΦ +− KK αα , while 

all other (“external”) configuration state functions will be  )()0( miii >Θ≡Φ . 

As a consequence of the diagonalization of the Hamiltonian in the MCSCF space, 

),( mHH ≤= γβδ βγβββγ ,     (18) 

it is reasonable to choose the zero-order Hamiltonian in the form 
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∑∑
>=

ΦΦ+ΦΦ=
mji

jiji

m
EEH

,

)0()0()0(

1

)0()0()0(
0

ˆ
β

βββ ,   (19) 

so that the reference-space block of the )0(E  matrix is diagonal.  Therefore 

),( mVV ≤= γβδ βγβββγ ,     (20) 

and the orthogonal complement functions ),()0( m≤≠Φ βαββ  do not contribute to the first-order 

wave function and to the second- and third-order energies and need not be obtained explicitly. The 
same is true for all external functions that are higher than doubly excited relative to all the reference 
configurations.  Note that the indices γβα ,,  are used to refer to the multiconfigurational functions 

generated by diagonalization of the MCSCF Hamiltonian, while i, j usually refer to individual configu-

ration state functions iΘ  (including miii >Θ≡Φ for    )0( ).  We also have 

),()0( mjiEHV ijijij >−= ,     (21) 

so that the calculations can be carried out in terms of the usual CI matrix elements ijH .  

 

B.  The zero-order Hamiltonian 

Since Møller–Plesset partitioning is very effective in the single-reference case, it is reasonable to 

make 0Ĥ  as close as possible to a suitably-chosen generalized Fock operator, 

∑=
qp

pqpq EfF
,

ˆˆ ,      (22) 

where pqÊ  is a unitary group generator (excitation operator), and the summations are over the orbitals.  

Therefore the energy parameters matrix  )0(E  is defined as 

∑ ==>ΦΦ=ΦΦ=
qp

jpqipqjiij jimjiEfFE
,

)0()0()0()0()0( )or    ,(ˆˆ α . (23) 

Elements of )0(E  in which one or both indices refer to orthogonal-complement functions 

),()0( m≤≠Φ βαββ  do not enter into the calculation of the first-order wave function and the second- 

and third-order energy, and need not be specified in the present treatment (except that 0)0( =αβE  for 

αβ ≠ ).  The principal difference between 0Ĥ  and F̂  is the omission from 0Ĥ  of any contributions 

from )0()0( ˆ
αΦΦ Fi  elements with mi > ; assuming )0(

αΦ  is an optimized MCSCF wave function that 

satisfies a generalized Brillouin theorem [19], it should be possible to choose the Fock operator so that 
all or most such matrix elements vanish. 
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For the MCSCF reference function the matrix elements of the pqÊ  generators are just density ma-

trix elements, 

α
αα pqpq DE =ΦΦ )0()0( ˆ ,     (24) 

and the zero-order energy is 

∑=
qp

pqpq DfE
,

)0( α
α .      (25) 

For diagonal elements ),()0( miEii >  the pqÊ  matrix elements simplify to 

)()(ˆ )0()0()0( minE pqipipqi >Φ=ΦΦ δ ,   (26) 

where )( )0(
ipn Φ  is the occupation number of the p-th orbital in )0(

iΦ , so that 

)()( )0()0( mifnE
p

ppipii >Φ= ∑ .     (27) 

If the Fock matrix f is diagonal, so is the )0(E  matrix, because 

)()(ˆ )0()0()0( minE ijipjppi >Φ=ΦΦ δ .    (28) 

It has been argued [20–22] that for size consistency (see Section 5) in multireference PT the zero-

order Hamiltonian should include certain two-electron terms.  The 0Ĥ  proposed by Dyall [20] in-

cludes the two-electron interactions between active orbitals in matrix elements connecting configura-
tion state functions that differ only in their active-orbital part.  Such terms do not add an unduly large 

number of contributions to the matrix of 0Ĥ , and do not substantially increase the computational effort 

for the solution of the linear equations for the perturbed wave function. 
 

C.  Choice of the generalized Fock operator 

The simplest choice for the generalized Fock operator is a generic (spin-averaged) form, with 

∑ 





 −+=

sr
rspqpq Dqsprrspqhf

,
];[];[ 2

1 α ,     (29) 

where 

    )2()1(1)2()1(];[   and   ˆ
12

sqrpqppq rrspqhh χχχχχχ ==  

are one-electron and two-electron integrals over the MCSCF orbitals.  This choice reduces to ordinary 
Møller–Plesset partitioning in the single-reference closed-shell RHF case. 
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A more elaborate choice involves the true MCSCF Fock matrix [23] (which becomes symmetric 
upon convergence), 













+= ∑ ∑
r tsr

stqrqrprpq dstprDhf
,,

,];[
2
1 αα ,     (30) 

where  

)0(
,,

)0(
, )ˆˆ(2

1
α

α Φ+Φ= tsqrstqrastqr eed      (31) 

is a two-body density-matrix element and qtsrstqrstqr EEEe ˆˆˆˆ , δ−= .  However, a different definition, 

such as Eq. (29), is needed in this case for pqf  elements involving virtual orbitals, since density matrix 

elements involving at least one virtual orbital vanish.  Other choices of the generalized Fock operator 

and of 0Ĥ  have been discussed, e.g., by Hirao [24], Kozlowski and Davidson [25], Zaitsevskii and 

Malrieu [26], Dyall [20], Andersson [27], and Roos et al. [18(a)], and are often aimed at providing a 
better balance between the treatments of closed- and open-shell states, thus improving the calculation 
of excitation energies. 

Any linear transformation flexibility in the choice of the individual MCSCF orbitals can be resolved 

so as to make the Fock matrix f as diagonal as possible.  But even if f is not diagonal, the matrix )0(E  

is very sparse, because F̂  is a one-electron operator and can have nonvanishing matrix elements only 
between configuration state functions differing by at most one orbital.  This property makes the solu-

tion of the linear system (12) relatively easy.  A limited use of two-body terms in 0Ĥ , as in Dyall’s 

Hamiltonian [20], does not greatly increase the difficulty of this procedure. 
 

D.  Evaluation of the perturbation series in a CI program 

The principal computational step in a direct CI program is the application of the Hamiltonian opera-
tor to a trial vector.  This step can easily be used to calculate the first-order wave function and second- 
and third-order energies in the perturbation expansion. 

Beginning with a trial vector )0(
αc  in which the first m components ),,2,1()0( miCi K=α  are the 

coefficients of the reference configurations in the MCSCF wave function, Eq. (17), and all other com-
ponents are zero, and noting that 

)()(ˆˆ )0(

1

)0()0()0( mjCHHV j

m

i
iijjj >=ΘΘ=ΦΦ= ∑

=
αααα Hc   (32) 

(where the matrix H is defined in terms of the original configuration state functions jΘ , with 

mjjj >Θ≡Φ for    )0( ), we obtain the )1(
αc∆  vector of first-order coefficients by solving the linear 
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equations (12) or, in the diagonal case, from Eq. (14).  The computational effort of this step is quite 

small, because the nonzero part of )0(
αc  is very short.  The first-order wave function is then 

∑Θ=Φ
j

jjC
)1()1(
αα ,      (33) 

where )1()0()1(
ααα ccc ∆+=  and the first m components of )1(

αc∆  are zero because of (20). 

Once )1(
αc∆  has been obtained, the second-order energy is easily computed from Eq. (15). An ap-

plication of the Hamiltonian to )1(
αc∆ , in the form 

)()()( ][ )1()1()0()1()1( miECEV i
mj

jijij >∆−−=∆∆−∑
>

ααααδ c1EH ∆ ,  (34) 

allows the evaluation of the third-order energy correction from Eq. (16).  This last step is equivalent in 
computational effort to one CI iteration.  The multireference perturbation theory calculation can in fact 
serve as an initial step in a CI treatment. 

 

4.  The treatment of mixed electronic states 

Mixed electronic states are characterized by large changes in the relative contributions of the refer-
ence configurations in a well-correlated final wave function compared to the zero-order MCSCF func-
tion.  Typically the reason for this behavior is that two or more zero-order wave functions are close in 
energy and can mix strongly in the wave functions for the corresponding correlated electronic states.  
Examples are provided by avoided crossing regions in potential energy curves and surfaces and by 
states that involve mixing of valence and Rydberg character.  The number of zero-order functions in-
volved in the mixing is usually quite small, typically just a few multiconfigurational functions. 

This problem can be dealt with by the use of quasidegenerate perturbation theory (QDPT) based on 
a model space consisting of the few zero-order functions expected to mix strongly in the states of in-
terest.  These zero-order functions (“model states”) are a small subset of the multiconfigurational ex-
pansions obtained in the diagonalization of an MCSCF Hamiltonian over the reference space.  An ef-
fective Hamiltonian is then constructed in second order and, if desired, third order and diagonalized to 
provide improved energies and wave functions.  While the reference space may be quite large, only a 
few model states (each of which is an expansion over all the reference configurations) are used, and if 
these model states can be chosen to be well separated in energy from other states, the intruder-state 
problem common in QDPT treatments is not likely to be significant in this approach.  However, it may 
be difficult to maintain such a separation while avoiding discontinuities in the model space over a wide 
range of geometries on a potential energy surface. 

The procedure begins with a state-averaged MCSCF calculation in order to determine orbitals that 
represent a compromise between those most suitable for each of the individual zero-order functions 
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likely to be involved in the mixed states.  The coefficients of the reference configurations obtained in 
the MCSCF diagonalization for the contributing states provide a number of zero-order vectors 

),,,2,1()0( mll <<= Kααc  defining the corresponding model-state zero-order functions )0(
αΦ .  

These functions are a small subset of the functions m,,2,1,)0( K=Φ ββ , discussed in the previous 

section, and like them, are orthonormal and noninteracting over Ĥ  (and over V̂ ).  The )0(
αc  vectors are 

collected into a matrix )0(C  of l columns, in which at most the first m rows (corresponding to the ref-

erence configurations) are nonzero. 

The zero-order Hamiltonian is chosen as in Eq. (19), with the whole reference block of )0(E  taken 
to be diagonal, so that we have 

),,2,1(ˆ )0()0()0(
0 lEH K=Φ=Φ αααα ,     (35) 

and elements of )0(E  involving orthogonal-complement functions ml ≤<Φ ββ ,)0( , do not enter into 

the calculation of the first-order wave function and the second- and third-order energies. 

The effective Hamiltonian EFFĤ  is expanded as 

K+++=+= )2()1(
00

EFF ˆˆˆˆˆˆ WWHWHH ,    (36) 

where Ŵ  is known as the shift operator.  Only the model-space part of these operators is needed, and 

can be represented by ll ×  matrices, 

K+++=+= )2()1(
00

EFF WWHWHH ,    (37) 

where the zero-order part is simply the diagonal model-space block of )0(E , 

( ) ),,2,1,()( 0
0 lE K== βαδαβααβH .     (38) 

We also define 

∑
=

+=
n

i

in

1

)(
0

)( WHH .      (39) 

The first-order effective Hamiltonian is simply the corresponding portion of the diagonalized MCSCF 
Hamiltonian, 

),,2,1,(ˆ MCSCF)1( lEHH K==ΦΦ= βαδαβαβααβ .    (40) 

 The effective Hamiltonian is related to the original Hamiltonian by a similarity transformation 
that decouples the model-space part from the rest of the Hilbert space, 

HCCH =EFF ,      (41) 
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where the l-column decoupling matrix C, which is a representation of the wave operator, has the or-
der-by-order expansion 

K+++= )2()1()0( CCCC ∆∆      (42) 

in terms of the coefficient matrices defining the order-by-order expansions of the wave functions.  As 

before, the matrix H (unlike 0H  in Eq. (38)) is defined in terms of the individual configuration state 

functions iΘ .  Equation (41) is a representation of the Bloch equation [9] in the configuration-state-

function basis.  Note that the first m rows of )1(C∆  are zero because of intermediate normalization and 

the noninteracting nature of the functions )()0( m≤Φ αα . 

The first-order wave operator is represented by the l-column matrix )1()0()1( CCC ∆+=  constructed 

from the first-order vectors ),,2,1()1()0()1( lK=∆+= αααα ccc  calculated for each of the zero-order 

functions by Eq. (12) or (14), analogously to the single-state calculations described in the previous sec-
tion. The second-order non-Hermitian shift operator is then obtained as 

),,2,1,()(ˆ )1(*)0()1()1()0()2( lCCVVW
i

ii
i

ii K=∆=∆=∆ΦΦ= ∑∑ βαβαβαβααβ Hc .  (43) 

Solution of the ll ×  non-Hermitian eigenvalue problem 

)2()1()1()2( EXXH =      (44) 

provides the second-order energies in the diagonal matrix of eigenvalues )2(E  and the expansion coef-

ficients of the properly-mixed first-order wave functions 

∑∑ Θ=Φ=Ψ
= j

jj

l
CX )1(

1

)1()1()1( ~
α

β
βαβα      (45) 

by the transformation 

)1()1()1(~ XCC = .      (46) 

For the calculation of the third-order shift operator we note that Wigner's )12( +n  rule does not ap-

ply to the off-diagonal elements of the non-Hermitian shift operator, and therefore )3(W  cannot be 

fully obtained from the first-order wave functions.  Instead it is computed from the second-order wave 
functions, 

),,2,1,(ˆ )2()0()3( lVW K=∆ΦΦ= βαβααβ .    (47) 

The complete second-order wave functions include contributions from triple and quadruple excitations 

and from the orthogonal complement space  { })()0( ml ≤<Φ γγ .  However, as seen from Eq. (47), only 

those terms that interact (across V̂ ) with the zero-order functions, i.e., the single- and double-
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excitation terms, are required.  If we choose )0(E  to have no off-diagonal elements coupling the higher 
excitations with the single and double excitations, we can decouple the equations for the single- and 
double-excitation coefficients from the others and solve for these from the linear equations system 

∑ ∑
> >

>∆+∆−=∆−
mj

i
mj

jijjijij miVCCVCEE )()( )1()1()2()0()0(
αααααα δ .   (48) 

In fact, in the diagonal case these coefficients are obtained directly from 

)()(1 )1(
)0()0(

)2( miCVV
EE

C
mj

jijij
i

i >∆−
−

−=∆ ∑
>

ααα
α

α δ .    (49) 

In either case, the principal computational step is the calculation of the matrix-vector products 

),,2,1()()( )1()1()0()1( lEV K=∆−−=− αααααα c1EHc1V ∆∆ ,   (50) 

so that the computational effort is not very different from l times the work required for the calculation 
of the third-order energy for the single state case, Eq. (34). 

The third-order shift-operator matrix elements are easily obtained by the contraction of vector pairs, 

),,2,1,()( )2(*)0()2()3( lCCVW
i

ii
i

ii K=∆=∆= ∑∑ βαβαβααβ Hc .   (51) 

This step is followed by the solution of the non-Hermitian eigenvalue problem for the third-order ef-

fective Hamiltonian matrix ( )3H  to obtain the third-order energies )3(
αE .  While a transformation matrix 

)2(X  is also obtained, and can be used to obtain the transformed coefficients matrix )2(~C  for the rele-

vant part of the second-order wave functions )2(
αΨ , it does not provide the complete second-order 

wave function, because of the omission of the higher excitations and the orthogonal complement func-
tions. Once the truncated second-order wave function has been obtained, the construction of the third-
order effective Hamiltonian matrix and the diagonalization require little computational effort, and thus 
the total effort is still about l times the effort in the single-state case. 

An important aspect in which this treatment differs from the single-state case is the fact that it is no 
longer possible to tailor the zero-order Hamiltonian to resemble closely an appropriate Fock operator 
for each of the states in question, because of the use of state-averaged MCSCF.  This aspect is the most 
serious shortcoming of the approach, especially in cases in which the model states differ greatly in the 
character of their orbitals.  Furthermore, the most reasonable choices for the generalized Fock operator, 

and thus for 0Ĥ , are likely to involve more nonzero off-diagonal elements in )0(E  and V, and to be 

less analogous to the Møller–Plesset partitioning of single-reference perturbation theory.  Nevertheless, 

the )0(E  matrix should remain very sparse, because it is the matrix representation of a one-electron 
operator (the state-averaged Fock operator).  Another potential problem is that it may be very difficult 
to choose a model space that does not vary discontinuously over a potential energy surface. 
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5.  Discussion 

The principal advantage of Rayleigh–Schrödinger perturbation theory over configuration interaction 
is the extensivity of the energy in each order of perturbation, i.e., the proper scaling of the energy with 
the extent of the system [28].  This property is a consequence of the true order-by-order nature of the 
Rayleigh–Schrödinger perturbation expansion (unlike Brillouin–Wigner perturbation theory, in which 
the infinite-order energy appears in each order of the energy expression).  In a many-body formulation 
extensivity can be determined by demonstrating the absence of unlinked-diagram terms in the energy 
expressions.  However, multireference many-body treatments using incomplete model spaces generally 
contain some unlinked diagrams, and thus are not exactly extensive [29,30]. In the present, configura-
tion-based treatment the diagrammatic analysis is not easily applied.  As in the many-body approach, it 
is to be expected that extensivity of the proposed method would depend on the choice of the model 
space, but the true order-by-order nature of the expansion should help in providing approximate exten-
sivity . 

A related property is size consistency [31] (or strict separability [26]), which requires that the en-
ergy calculated for a system consisting of noninteracting fragments be equal to the sum of the energies, 
calculated by the same model, for the separate fragments.  This property ensures proper description of 
bond breaking. However, a perturbation expansion cannot be size consistent, in general, unless the ref-
erence function is size consistent.  In a Hartree–Fock-based single-reference perturbation expansion 
(Møller–Plesset perturbation theory) size consistency usually requires the use of an unrestricted Har-
tree–Fock (UHF) reference function, which has undesirable consequences [32,33].  In multireference 
methods size consistency is not easily defined because of the difficulty in specifying equivalent refer-
ence spaces for the total system and its fragments.  Therefore, the approach normally used in describ-
ing bond breaking and other processes in multireference calculations is to treat the system as a single 
unit in all its configurations, including its dissociation asymptotes.  This procedure, called the super-
molecule approach, usually produces satisfactory dissociation energies even in truncated CI calcula-
tions [34] (which are not size consistent by the usual definition), provided the reference function disso-
ciates properly.  In a single-state expansion based on an MCSCF zero-order function the reference 
space can be chosen to ensure proper dissociation of that function and, using the supermolecule ap-
proach, of the order-by-order energy results (assuming there are no other approximations, such as 
omission of terms from the summations).  It is likely that the same statement can be applied to the pro-
cedure discussed here for mixed states. 

There have been many formulations of multireference perturbation theory, both state-specific and 
quasidegenerate [6,7,21,22,35–52].  Several (e.g., [21,22,52]) have focused specifically on achieving 
extensivity and/or size consistency (see also [53,54]).  The single-state treatment described in Section 
3 is similar to the approach of Hirao [48], differing from it primarily in how the flexibility in the 
choice of the MCSCF orbitals is used and, therefore, in the choice of the Fock matrix elements.  Unlike 
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CASPT2 [6] and CASPT3 [7], the present treatment does not assume a complete-active-space refer-
ence space.  On the other hand, the CASPT methods expand the perturbed wave functions in con-
tracted excited functions, rather than in the individual configuration state functions used in the present 
approach, resulting in much shorter expansions (at the cost of a more complicated procedure).  The 
multi-state generalization shares some ideas with extensions to the contracted CI approach for dealing 
with mixed stated [8].  The key elements in the approach described here are the attempt to mimic 
Møller–Plesset partitioning and the use of just a few state-averaged MCSCF wave functions to define 
the model space for a QDPT calculation of the second- and third-order energies.  The method treats the 
several mixing states symmetrically, and since it is configuration based rather than a many-body ap-
proach, it avoids the difficulties that the use of such model states would present for a diagrammatic 
formalism.  However, this gain is obtained at the probable cost of a less efficient procedure than may 
be possible in a diagrammatic method. 

A diagonal version of the single-state approach described in Section 3 was reported by Shavitt and 
Stahlberg in 1991 [55,56] after implementation and testing in the COLUMBUS program system [57].  
This implementation was later generalized to the nondiagonal case [57(b)].  The multistate formalism 
has been implemented in a development version of the COLUMBUS program system.  It differs from the 
method of Roos and co-workers [18] in several respects:  It is not limited to complete-active-space ref-
erence spaces; it expands the perturbed wave functions in uncontracted excited configuration state 
functions instead of contracted excitation functions; and it includes the third-order capability.  Test ap-
plications of this formalism have reproduced the second-order results of Roos and co-workers [18(b)] 
for the avoided crossing in LiF and for the V-state of ethylene, and produced moderate improvements 
in third order [58]. 

The idea of a model space focusing on just a few model states, much smaller in number than the 
size of the reference space in which the model states are constructed, is also a feature of the intermedi-
ate Hamiltonian method of Malrieu and co-workers [41,59].  Among reviews of multireference pertur-
bation methods are those by Malrieu and co-workers [59] and Hirao and co-workers [60]. 
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