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Abstract: We recently developed an explicitly correlated method using the transcorrelated 
Hamiltonian, which is preliminarily parameterized in such a way that the Coulomb repulsion 
is compensated at short inter-electronic distances. The extra part of the effective 
Hamiltonian features short-ranged, size-consistent, and state-universal. The localized and 
frozen nature of the correlation factor makes the enormous three-body interaction less 
important and enables us to bypass the complex nonlinear optimization. We review the basic 
strategy of the method mainly focusing on the applications to single-reference many 
electron theories using modified Møller-Plesset partitioning and biorthogonal orbitals. 
Benchmark calculations are performed for 10-electron systems with a series of basis sets. 
Keywords: Coulomb hole, correlation factor, transcorrelated Hamiltonian, resolution of 
identity, spherically symmetric geminal 

 

1. INTRODUCTION 
In modern ab initio quantum chemistry, the convergence of calculations with the size of one-electronic 
basis functions is crucial for predicting reliable energetics and molecular properties. It has been, 
however, recognized that an enormous basis with high angular momentum functions is required to 
achieve chemical accuracy of a few kcal/mol in total energies. The slow convergence of the dynamic 
correlation effects is a direct consequence of the inability of describing the correlation cusp [1] with 
one-electronic basis. Various alternatives incorporating the inter-electronic coordinate explicitly have 
been suggested to ameliorate this feature. With the objectives of many electronic systems, the 
Gaussian-type geminals (GTGs) [2,3] have been used in many places. Especially, Szalewicz and 
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coworkers have used GTG successfully for accurate calculations of correlation energies in their series 
of papers [4,5]. Although the function form is not suitable from the viewpoint of the cusp condition, 

the methods with GTGs have demonstrated the efficiency [6,7] to give correlation energies to µHartree 

accuracy, as shown in the recent result of Cencek and Rychlewski [8]. This situation is comprehensible 
by evaluating the motion of pair-electrons in three-dimension, i.e. the gain from the cusp around a 

fixed electron scales as 2
124 rπ  while the Coulomb repulsion factorize no more than 1

12
−r . 

The R12 method [9-12] developed by Klopper, Kutzelnigg and coworkers is another original 

scheme, which incorporates the linear 12r  behavior to describe the dynamic correlation effects. The 

method introduces systematic approximations, which bypass the explicit treatment of the so-called 
“difficult integrals”. The approximations become more reliable as the one-electronic expansion set, 
which is formally assumed to be complete, gets sufficiently large. The R12 ansatz has provided highly-
reliable correlated methods. Especially, the R12 coupled-cluster (CC) method developed by Noga et al. 
[13-15] achieves the chemical accuracy both in the quality of the Hilbert space to describe the 
electronic motions and the sophistication of the correlated method. One disadvantage of the method is 
that the theoretical construction is intricate because of the wave operator form and the approximation 

to the various difficult integrals. The long-range nature of the linear 12r  behavior is another element 

that makes a scalable treatment complicated. Persson and Taylor developed another method related 

with the R12 theory [16]. They fit the linear 12r  function using GTG to avoid the nonlinear 

optimization for GTG. The approach aims at calculations of modest accuracy in comparison with the 
previous GTG theories, i.e. sub-mHartree accuracy for valence correlations within the framework of 
the second order Møller-Plesset perturbation (MP2) theory. 

All of the above-mentioned methods use functions with inter-electronic coordinate and orthogonal 
projectors. In other words, the explicitly correlated wave operators are not commutable with the 
Coulomb interactions in the complete basis limit. This property is the main source complicating the 
explicitly correlated methods. The transcorrelated method [17,18] developed by Boys and Handy is on 
the basis of symmetric correlation factor commutable with the Coulomb interaction. As a result, the 
effective Hamiltonian, the so-called transcorrelated Hamiltonian, includes at most three-body effective 
interactions. In recent publications, we developed a method which uses the transcorrelated 
Hamiltonian especially for pair-wise short-range collisions [19-21]. The method does not include any 
nonlinear optimization of the correlation factor, which is present in the original transcorrelated 
method. Instead, we deal with the long-range correlation in terms of the usual configuration interaction 
(CI)-type expansion with one-electronic functions. 

In this paper, we briefly review the basic ideas of our transcorrelated method in the next section. 
The manipulations of molecular integrals are explained in Sec. 3. We formulate the application to 
single-reference methods including the linearized CC (LCC) method in Sec. 4. Some benchmark 
calculations of 10-electronic systems are given in Sec. 5. Conclusions are depicted in Sec. 6. 
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2. TRANSCORRELATED HAMILTONIAN 
In our transcorrelated method, the exact wave function is expressed as a product of a symmetric 
correlation factor, )exp(F , and an anti-symmetrized CI-type wave function, ψ  [19], 

     ψ)exp(F=Ψ ,      (2.1) 

where F  is assumed to be a sum of two-electron functions (geminals), 

     ∑
>

=
ji

jifF ),( rr .      (2.2) 

We aim at improving the convergence of CI treating the cusp behavior in the vicinity, 0=ijr , with the 

factor. Since the vicinity is dominated by the Coulomb repulsion, the simplest choice for the purpose is 
to employ a geminal, which is also spherically symmetric, 

     ijijji fff ≡= |)(|),( rrr .     (2.3) 

The similarity transformed effective Hamiltonian terminating at the double commutator [17,18], 

     )exp()exp(~ FHFH −=  

          ]],,[[
2
1],[ FFHFHH ++= ,    (2.4) 

is a sum of the original Hamiltonian and the effective two- and three-electronic interactions, 

     LKHH ++=~ ,      (2.5) 

    ∑ ++=
pqrs

rsqp aaaarsKpqK 122
1 ,     (2.6) 

    ∑ +++=
pqrstu

sturqp aaaaaastuLpqrL
1236

1 ,    (2.7) 

The two-electronic part consists of the terms linear and quadratic to the factor, 

     )(
12

)(
1212

QL KKK += ,      (2.8) 

          112112
2
1

)(
12 2 ∇⋅∇−−∇= ffK L ,     (2.9) 

     121121
)(

12 ffK Q ∇⋅−∇= ,              (2.10) 

and the three-electron operator is given by 

     131121123 3 ffL ∇⋅∇−= .               (2.11) 

The operators, )(
12

LK  and )(
12

QK , are anti-symmetric and symmetric, respectively. The latter can be 

combined with the Coulomb one in a practical computer code. It is possible to replace the operators by 
the averaged ones, 

          ∑ ++=
pqrs

rsqp aaaarsKpqK 122
1 ,               (2.12) 

    ∑ +++=
pqrstu

sturqp aaaaaastuLpqrL
1236

1 ,              (2.13) 
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     )(
12

)(
21

)(
1212 )(

2
1 QLL KKKK ++= ,               (2.14) 

     )(
3
1

312231123123 LLLL ++= .               (2.15) 

This simplifies the algebraic manipulations, which appear in correlated wave function methods. 
The geminal is parameterized under the following conditions. Firstly, the Coulomb singularity is 

compensated by the effective potential in 12K . It is known that the condition leads to the linear 12r  

behavior of the geminal, which enables us to express the Coulomb cusp explicitly with a finite number 

of one-electronic functions. Secondly, we localize the geminal. The linear 12r  behavior is generally 

adequate only in the vicinity, 012 =r , where the Coulomb potential is dominating the inter-electronic 

shape. We maintain the usual CI picture in the long-range behavior of the correlated wave function. 
For practical applications, the geminal is expressed as a sum of Gaussian-type functions, 

     ∑
=

−−=
GN

G
GG rcf

1

2
1212 )exp( ζ ,               (2.16) 

and the parameters are determined using a least square fit for the approximate equality, 

           0)( 12112112
2
112

1
12 ≅∇⋅∇−∇−− fffrwr ,              (2.17) 

where )( 12rw  is a short-range weight function [19]. We have used an additional Gaussian for the 

weight function. The above condition involves no more than the derivatives of 12f . An additional 

requirement is therefore the geminal converges to zero at the infinite distance. This is automatically 
fulfilled with the present use of Gaussian-type functions. The choice of the localized geminal is crucial 
because the number of integrals increases only linearly with the size of the molecule. Moreover, the 

three-body interaction, 123L , becomes less important because of the decreasing probability of finding 

three electrons in the geminal radius. This is consistent with the localized nature of the dynamic 
correlation effects. 

We use the tight geminal consisting of 10 Gaussian-type functions throughout of this paper. The 
exponents are determined as an even-tempered sequence of the function with the exponents between 
904000.0 and 0.12, and that of the weight Gaussian is chosen to be 20.0. Fig.1 shows the shape of the 

geminal. The geminal coincides with the linear 12r  behavior around the origin. It will be shown that the 

introduction of the short-range correlation factor significantly improves the description of the dynamic 
correlation effects in latter sections. 
 
3. INTEGRALS IN THE TRANSCORRELATED METHOD 

The three-electron integrals, stuffpqr 131121 ∇⋅∇ , are expressed in closed form in terms of 

recurrence relations [20]. The explicit treatment of the integrals, however, prohibits the application of 
the transcorrelated Hamiltonian to large molecular systems despite the use of the short-range geminal. 
The  best  feature  of the present approach is that the three-body  contribution is less important to make  
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Figure 1. The shape of the geminal, )( 12rf , used in this work (full line). The dotted line denotes the 

linear 12r  behavior, required to balance the Coulomb repulsion around the origin. 

 
the transcorrelated method feasible by using completeness insertions. One of such expressions is in the 
form, 

   ∑ ∇⋅∇=∇⋅∇
vwx

stufvwxvwxfpqrstuffpqr 131121131121  

      ∑ ∇⋅∇=
v

sufvrvtfpq 121121 .   (3.1) 

The expression requires all Cartesian components of the integrals, vtfpq 121∇ , to which the point 

group symmetry cannot be applied. If the three basis functions, p, q and t, are s-orbitals with a 
coincident function center, only the p-component of the v function survives. This means that expansion 
functions, whose angular momentums are higher than the atomic orbitals by 1, are necessary in 
equation (3.1). Alternatively, we fall back on the idea of the operator identity, 

     s
L

s FKFFHL ],[
2
1]],,[[

2
1 )(== ,    (3.2) 

where )(LK  and F  are given in the occupation number representation by 

     ∑ ++=
pqrs

rsqp
LL aaaarsKpqK )(

12
)(

2
1 ,    (3.3) 

     ∑ ++=
pqrs

rsqp aaaarsfpqF 122
1 ,    (3.4) 
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and the subscript, s , at the commutator denotes single contractions. Using the fact that )(
12

LK  is 

commutable with 12f  in the complete basis limit about the second electronic coordinate, we obtain the 

approximate expression for the three-electron integrals, 

  stuffpqr 131121 ∇⋅∇  

    ∑ −=
v

LL suKvrvtfpqstfvqvuKpr )(
2
1 )(

121212
)(

12 .  (3.5) 

This expression features that the integrals, rsfpq 12 , are only required besides the anti-symmetric 

part of 12K . The point group symmetry is applicable to the integrals. Since the operator, 12f , does not 

increase the angular momentum of orbitals, the convergence of the completeness insertion of equation 
(3.5) is superior to the previous expression, equation (3.1). It is also possible to derive another 

expression using the averaged operator, )(
12

LK , rather than )(
12

LK  as 

  stuffpqr 131121 ∇⋅∇  

    ∑ −=
v

LL suKvrvtfpqstfvqvuKpr )( )(
121212

)(
12 .  (3.6) 

Both of the expressions with )(
12

LK  and )(
12

LK  are exact in the complete basis limit. We examine the first 

in this work. 
The present transcorrelated method requires the three different kinds of two-electron integrals, 

rsKpq L)(
12 , rsKrpq Q)(

12
1

12 +−  and rsfpq 12 . Assuming the basis functions to be primitive 

Gaussian-type functions and using the Laplace transform of the Coulomb operator, the electron 
repulsion integrals are written in the form, 

     ∑
=

− =
L

l

c
ll gdrsrpq

0

)(1
12 ,     (3.7) 

    ∫
∞

Θ=
0

2
12

2)( 00)(00)(2 uudug lc
l χ

π
,    (3.8) 

where ld  are coefficients dependent only on the exponents and positions of the four basis functions, 

the zero indices means s-type functions, )(12 ζχ  is the Gaussian function with the exponent, ζ , 

     )exp()( 2
1212 rζζχ −= ,      (3.9) 

the function, )(ζΘ , is given by 

     
ζρ

ζζ
+

=Θ )( ,                (3.10) 

and ρ  is a parameter which is a function of the four primitive exponents. The index, l , runs up to the 

sum of maximum angular momentums of the basis functions. For each point, u , the coefficients for 

the increments of angular momentums are independent in each Cartesian axis. The polynomial, 

∑
=

Θ
L

l

l
ld

0

, is therefore expressed as a product of the Cartesian contributions, 
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     )()()(
0

ΘΘΘ=Θ∑
=

zyx

L

l

l
l IIId .               (3.11) 

The Cartesian components, ),,(),( zyxkI k =Θ , can be calculated using recurrence relations [22]. 

Similarly, the integrals, rsfpq 12 , are expressed as, 

     )(

0
12

f
l

L

l
l gdrsfpq ∑

=

= ,               (3.12) 

    ∑ Θ−=
GN

G
GG

l
G

f
l cg 00)(00)( 12

)( ζχζ .              (3.13) 

The recurrence relation [22] shows that the integrals for the operators, 12
2
1 f∇−  and 1121 ∇⋅∇− f , which 

are more complex, also reduce to the kind of integrals, rsfpq 12 . The maximum value, L , increases 

by 2 because of the differentiations. For the operator, QK12 , we introduce the integrals, 

     )(

0
12

q
l

L

l
l gdrsqpq ∑

=

=                (3.14) 

     ∑∑ Θ−=
G GN

G

N

G
GGGG

l

GG

GG
GG

q
l ZZ

Z
ccg 00)(00)( 12

)( χ
ζζ

,             (3.15) 

where GGZ  denote sums of exponents of the geminal, GGGGZ ζζ += . Using the relations, 

    )()6()()( 12

2
1

121121 GG
GGGG

GG
GG Z

ZZ
χ

ζζ
ζχζχ −

∇
=∇⋅∇ ,            (3.16) 

     
GG

GG

GGGG

GG

Z
Z

ZZ
Z

+
=

+
−

ρ
ρ

ρ
1 ,              (3.17) 

it is shown that the integrals for QK12  reduce to the combination of the type of the integrals, 

rsqpq 12 . One notes that the coefficients, ld , which are dependent only on the angular momentums 

and the positions of the orbital quartet, are shared by all types of the integrals. 

We express the functions, ),,()( gfcxg x
l = , using polynomials as 

     ),,(,
0

)()( qfcWRg
L

lx
l == ∑

=

κ
α

κ
αα ,              (3.18) 

where αR  and )(κ
αW  are the root and the weight for the point, α , which runs over the same range as l . 

The functions, )(κ
lg  and )(κ

αW , are connected through a linear transformation predetermined for αR . In 

the Rys quadrature method [23,24], both of the roots and weights are chosen to be variables reducing 
the number of root points to be larger than 2/L  rather than L . We do not employ this convention but 

use fixed roots for all operators, qfc ,,=κ . Once the integrals are written in the discrete polynomials, 

the summation over l  is expressed as a product of Cartesian components. For instance, the electron 

repulsion integrals become in the form, 
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   ∑∑ ∑
== =

− ==
L

zyx
c

L L

l

l
l

c RIRIRIWRdWrsrpq
0

)(

0 0

)(1
12 )()()(

α
αααα

α
αα .            (3.19) 

The above procedure enables us to calculate the integrals for different two-electronic operators 

simultaneously by changing the weight, )(κ
αW , after setting up the common quantities, 

),,(),( zyxkI k =Θ . 

 
4. APPLICATION TO SINGLE-REFERENCE MANY ELECTRON THEORIES 
Basically, the application of the transcorrelated method is straightforward; the original Hamiltonian, 

H , is replaced by the transcorrelated one, H~ , in the usual ab initio theories. The transcorrelated 
Hamiltonian is, however, nonhermite including weak three-body interactions. This property gives rise 
to a few variations in formulating single reference theories. Throughout this paper, we use the 
notations, …,,ba  and …,, ji  for virtual and occupied orbitals within a given basis set, respectively. 

Our first method employs a coincident vacuum determinant for the bra and ket states in the CC 
equations, 

     ETH =00 )exp(~ ψψ ,     (4.1) 

    …,,,0)exp(~
00 DSTHX

c
∈∀=+ µψψµ ,    (4.2) 

where 0ψ  is a single-determinant vacuum, }{}{ ijba aaaaX …+++ =µ  denotes particle-hole excitation 

operators with respect to the vacuum, and c  means the connected entity of the operators. A suitable 

partitioning of the Hamiltonian leads to an order-by-order expansion of the wave operator. Since our 
transcorrelated Hamiltonian is designed to coincide with the long-range behavior of the original 
Coulomb operator, the usual Hartree-Fock (HF) model Hamiltonian in the MP perturbation theory is a 
good starting point for the expansion [19], 

     VHH MP ~~ )(
0 += ,      (4.3) 

choosing 0ψ  to be the HF determinant for the original Hamiltonian. One notes that the new 

perturbation, V~ , is nearly free from the Coulomb singularity. We therefore can anticipate that the 

perturbational series converges quicker than the usual MP one. 
The above argument is not the case for electrons around nuclei especially when we introduce an 

approximation to the CC method. The operator dependent on the momentum of the anti-symmetric 

part, 1121 ∇⋅∇− f , becomes significant for core electrons of heavy atomic elements. In the present 

application, we preliminarily treat the orbital relaxation with the pseudo-orbital equation, excluding the 
expensive but less important three-body contribution from the iterative loop, 

    STKHX
c

∈∀=++ µψψµ ,0)exp()( 010 .   (4.4) 

The subsequent connected singles and doubles are restored order-by-order approximately using the 
LCC equation known to be CEPA0 [25,26], 
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   0
)1()(

00 ],[ ψψµ
++ ∆ nMP THX  

     DSTHHX n ,,],~̂[~̂
0

)(
0 ∈∀+−= + µψψµ .   (4.5) 

The similarity transformed Hamiltonian, 

     )exp(~)exp(~̂
11 THTH −= ,     (4.6) 

analogous to the one, which appeared in the treatment of CCSD amplitudes [27,28], retains the 
operator rank of the transcorrelated Hamiltonian. The procedure is adequate especially for a molecule 
consisting of light atomic elements. 

Another option, which gives results similar to those of the above-mentioned modified MP 
partitioning with the pseudo-orbital equation but uses more optimized reference functions, is based on 
biorthogonal one-electronic basis sets [29,30]. For a while, we denote the orbitals in the one-electronic 

sets as },,{ 21 …χχ  and },,{ 21 …φφ , respectively. The biorthogonality condition is given by 

      pqqp δφχ = .     (4.7) 

Creation and annihilation operators are defined using the field operators as 

            ∑ ++ =Ψ
p

pp b)1()1( χ ,     (4.8) 

            ∑=Ψ
q

qq c)1()1( φ .     (4.9) 

Operators are expressed in the second quantized form of the biorthogonal set, like 

    ∑ ++=
pqrs

rsqpsrqp ccbbKK φφχχ 122
1 .               (4.10) 

Since the anti-commutation relation holds for the new creation and annihilation operators, 

      pqqp cb δ=+ },{ ,                (4.11) 

the Wick theorem and accordingly the usual diagrammatic technique can be used for manipulating 
operators in the biorthogonal form. 

We introduce separate single-reference vacua consisting of n  biorthogonal orbitals, 

nχχχ …21=Χ  and nφφφ …21=Φ . The canonical orbitals are determined self-consistently using 

the approximate Fock operator [21], 

   ppq
i

Aiqipqpqp Krhf εδφφχχφχφχ =++= ∑ −
12

1
12

~ ,            (4.12) 

where A  means anti-symmetrized integrals. We solve the LCCSD equation, 

   Φ∆Χ ++ ],[ )1()(
0

n
b

BO THZ µ  

     DSTHHZ n
b ,,],~[~ )( ∈∀Φ+Χ−= + µµ ,             (4.13) 
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iteratively with the zeroth order Hamiltonian, ∑ +=
p

ppp
BO cbH ε)(

0 , where we define the excitation and 

deexciation operators with respect to the right vacuum, }{}{ ijba ccbbY …+++ =µ  and 

}{}{ abji ccbbZ …++=µ , and the cluster operator, ∑ +=
µ

µµYtTb . 

It should be noted that the present methods do not alter the original scaling of the correlated 
methods. The pseudo-orbital and biothogonal self-consistent field (SCF) methods, which exclude the 

contribution of L , are driven in the atomic orbital basis. This gives rise to the formal 4N  scaling as 

the usual SCF method. The subsequent LCCSD code is commonly used in both of the methods 
substituting the individual transformed integrals and energy denominators. The double contractions of 

2T  and the two-electron operators in the transcorrelated Hamiltonian, )(
12

1
12

QKr +− , )(
12

LK  and 12f , 

become the rate-determining steps at this level. These scale as at most 24OV  as the conventional 

CCSD and LCCSD methods for V  and O  denoting the numbers of virtual and occupied orbitals, 

respectively. The effect of the connected triples from L  is negligibly small owing to the localized 
nature of the correlation factor. 
 
5. RESULT AND DISCUSSION 
We examine the efficiency of the transcorrelated method in the calculations of the typical 10-electronic 
systems, CH3, NH3, H2O, HF and Ne. We first check the convergence of the correlation energies for 
H2O and Ne with the correlation consistent basis sets of Dunning [31], cc-pVXZ (X = D, T, Q and 5). 
The basis functions are used as primitives to increase the flexibility. Each basis set is further 
augmented with the d- f- and g-core functions in the corresponding cc-pCXZ sets [32], excluding the 
primitives in the range of the exponents in the parent set. This gives rise to the dps 149 , fdps 13510 , 

gfdps 135612  and gfdps 357814  sets. The corresponding primitive sets derived from cc-pVXZ are 

used for hydrogen with the exception that cc-pVQZ is used in the largest set for main elements. We 
approximate the connected double excitations correct to the first order from the secondary perturbation 
of the operator, L , in this particular work. 

Table I shows the result for H2O. At the second order level, the results are relatively sensitive to the 

choice of the reference functions; the differences of the correlation energies are as large as hmE7  

between the modified MP and biorthogonal theories. However, they decrease as the order of 

perturbation increases. Finally the differences converge to the LCCSD values, ca. hmE5.0 , with all of 

the basis sets. The basis set dependencies of the MBPT(2) and LCCSD energies are depicted in Fig. 2. 
For comparison, we show the R12-MBPT(2), CCSD and CCSD(T) energies for H2O with 374 basis 
functions [33]. The difference between the conventional and transcorrelated LCCSD energies is 

hmE60  with the dps 149  set. This means that the use of the present methods are particularly 

advantageous with such a small basis set. The energies of the transcorrelated methods seem almost 
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Table I. Basis set dependence of the correlation energies of water a) 

Basis Set Orderb) Modified MP Biorthogonal Conventional 
dps 149  2nd 325.38 317.76 257.74 

 3rd 323.40 322.82 263.61 
 4th 328.08 327.38 268.58 
 ∞  329.34 329.02 270.20 

fdps 13510  2nd 354.54 347.34 318.46 
 3rd 352.19 351.37 323.38 
 4th 357.78 356.97 329.65 
 ∞  358.95 358.53 331.14 

gfdps 135612  2nd 362.20 355.47 341.90 
 3rd 358.86 357.89 344.43 
 4th 364.70 363.89 351.14 
 ∞  365.85 365.38 352.55 

gfdps 357814  2nd 363.11 356.54 348.89 
 3rd 359.24 358.17 350.14 
 4th 365.18 364.38 357.11 
 ∞  366.34 365.87 358.50 

a) In -mEh unit. 
b) Order of the perturbation in the correlation energy within LCCSD. 
c) Nearly exact correlation energies are -361.486, -359.775 and -369.89 mEh at the R12-MBPT(2)-A, 
R12-CCSD and R12-CCSD(T) levels of approximations with 374 Gaussian-type functions. 
 

 

 

 
Figure 2. Convergence of the correlation energy of H2O. The abbreviated notations, BO and MMP, 

denote the biorthogonal and modified MP methods, respectively. 
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saturated in each order with the gfdps 135612  set, while the conventional methods still gain the 

correlation energies of hmE75 −  from gfdps 135612  to gfdps 357814  set. The absolute correlation 

energies of the transcorrelated LCCSD methods with the largest set are hmE6  as low as that of R12-

CCSD. The usual situation that the fourth order quadruples diagrams contribute positive [34] holds in 
the transcorrelated methods. 

Let us proceed to the result of Ne in Table II. In comparison with the H2O result, the differences 

between the modified MP and biorthogonal methods are larger by the amounts, ca. hmE10  and hmE3  

at the MBPT(2) and LCCSD levels, respectively. Especially, the modifies MP series tends to 
overshoot the correlation energy for the system. The method is considered to become less adequate for 

Ne because of the increasing magnitude of 1121 ∇⋅∇− f  especially for the description of correlations 

including core electrons. The inclusions of higher-order corrections will be required to recover the 
difference. The convergence behaviors are shown in Fig. 3. In spite of the increase of the discrepancy 
between the two biorthogonal methods, the basis set dependence is similar to that for H2O beyond the 

fdps 13510  set; the differences are sufficiently small within hmE1  between the gfdps 135612  to 

gfdps 357814  sets. With the small sets, dps 149  and fdps 13510 , the transcorrelated method of the 

biorthogonal reference reproduces 95.4% and 98.8% of the saturated energies at the second order 
 

Table II. Basis set dependence of the correlation energies of neon )a  

Basis Set Order )b  Modified MP Biorthogonal Conventional 
dps 149  2nd 382.54 368.19 255.48 

 3rd 371.75 366.67 255.97 
 4th 371.73 368.91 258.20 
 ∞  372.19 369.20 258.56 

fdps 13510  2nd 392.39 381.17 330.53 
 3rd 386.18 379.36 331.79 
 4th 386.16 383.06 335.18 
 ∞  386.60 383.23 335.54 

gfdps 135612  2nd 395.40 385.93 360.63 
 3rd 391.21 383.65 361.12 
 4th 391.28 388.09 364.93 
 ∞  391.72 388.15 365.27 

gfdps 357814  2nd 394.62 385.94 370.69 
 3rd 391.00 383.08 370.13 
 4th 391.09 387.91 374.13 
 ∞  391.52 387.89 374.46 
)a  In -mEh unit. 
)b  Order of the perturbation in the correlation energy within LCCSD. 
)c  Nearly exact correlation energies are -388.311, -383.823 and -390.508 mEh at the R12-MBPT(2)-A, 

R12-CCSD and R12-CCSD(T) levels of approximations with 293 Gaussian-type functions. 
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Figure 3. Convergence of the correlation energy of Ne. The notations are same as those in Figure 2. 

 

level, while the conventional method covers only 65.8% and 85.1% of the R12-MBPT(2)-A energy. 

Although the modified MP series slightly overshoots the correlation energies, the almost saturated 

biorthogonal LCCSD energy is in between the R12-CCSD and R12-CCSD(T) ones consistently with 

the previous results for H2O. 

We show the results of the entire 10-electronic systems with the gfdps 135612  set in Table III. The 

biorthogonal SCF and pseudo orbital energies, ΦΧ H~  and 00
~̂ ψψ H , differ from each other by 

hmE405 −  increasingly with the mass of the main elements. This is relevant to the descriptions 

concerning 1s core electrons as mentioned previously. The differences, however, reduce to 

hmE5.32.0 −  at the LCCSD levels. The biorthogonal LCCSD results are always in the range between 

R12-CCSD and R12-CCSD(T). Especially the energies are consistently below the R12-CCSD energies 

by hmE75 − , implying that the results are reliable in the basis set convergence. For further 

improvements of the absolute energies, inclusion of the primary fourth order diagrams of triple- and 
quadruple-excitations will be necessary. 
 

6. CONCLUSION 
We have seen that the use of the transcorrelated Hamiltonian is particularly effective for accelerating 
the convergence of correlation energies with the size of one electronic basis. The key features of the 
method are in the following. We employ the symmetric correlation factor, which is commutable with 
the Coulomb potential. This leads to the simple structure of the transcorrelated Hamiltonian. The 
explicitly correlated functions are used to deal with the short-range behavior of the many-electron 
wave functions. Instead, the residual correlation effects, which are long-ranged, are treated in terms of 
the usual CI-type expansion with one-electronic basis.   Thus  the  number  of  the  additional  integrals  
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Table III. Correlation energies of Ne, HF, H2O, NH3 and CH4 molecules with the 

[12s6p5d3f1g/5s3p2d1f] basis seta) 

 Ne HF H2O NH3 CH4 
HF 128543.47 100067.71 76064.89 56223.14 40216.34 
Conv. MBPT(2) 360.63 360.58 341.90 307.07 260.33 
Conv. LCCSD 365.27 366.36 352.55 325.52 287.61 

Biorthogonal 
SCF 184.14 138.06 102.13 74.70 53.77 
2nd order 385.93 379.11 355.47 316.74 267.71 
3rd order 383.65 376.99 357.89 326.77 285.68 
4th order 388.09 382.95 363.89 332.56 291.82 
LCCSD 388.15 383.63 365.38 334.62 294.39 

Modified MP 
Pseudo Orbital 222.47 158.84 112.55 79.55 55.84 
2nd order 395.40 387.80 362.20 321.14 270.03 
3rd order 391.21 381.04 358.86 326.33 285.11 
4th order 391.28 384.66 364.70 332.80 291.70 
LCCSD 391.72 385.47 365.85 334.41 294.02 

R12b) 
MBPT(2)-A 387.910 384.357 361.691 322.400 273.579 
CCSD 382.945 378.392 359.312 327.829 288.557 
CCSD(T) 389.456 387.260 369.228 337.248 295.948 

a) In -mEh unit.  b) The correlation energies with ]236/456915[ dpsgfdps  basis set. 

 
grows linearly to the system size, making the application to large molecular systems feasible. The 
short-range nature of the correlation factor is also effective to make the three-body contributions less 
important. This property allows us to use the resolution of identity appropriately for the quantities less 

significant than the ones like 13
1

12 fr − , which appear in other theories. As a result, the original scaling of 

a correlated method is maintained even after the introduction of the transcorrelated Hamiltonian. 

There are mass dependences of the reference energies of the transcorrelated Hamiltonian, ΦΧ H~  

and 00
~̂ ψψ H , because the operator, 1121 ∇⋅∇− f , brings more significant contribution on the core 

electrons as the atomic mass increases. The correlation behaviors are different between the core and 
valence shells. The original transcorrelated method as well as most of the GTG methods use explicitly 
correlated functions, which are dependent on the positions of electrons. The introduction of such 
position dependence will enable more balanced treatment of different shells though the evaluation of 
integrals becomes complicated. The use of the spherically symmetric geminal is much more feasible. 
The present result implies that the ignorance of the position dependence does not spoil the accuracy at 
the LCCSD level to say the least for elements as heavy as Ne. 

For calculations of excited states and bond breakings, multireference treatment is necessary. Such an 
application of the transcorrelated Hamiltonian is also straightforward. Extensions in this line are now 
under progress. Another application will be the calculation of static structure factors [35,36]. Since this 
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quantity is a probe sensitive to the dynamic correlation effects, comparisons with experimental data 
will be an important measure of the explicitly correlated method. 
 
Acknowledgement 
The present work is partly supported by the Grant-in-Aids for Scientific Research on Priority Areas 
(A) (No. 12042233) from the Ministry of Education, Culture, Sports, Science and Technology in 
Japan, and for Scientific Research (B) (No. 13440177) from the Japan Society for the Promotion of 
Science. 
 
References 

1. Kato, T. Commun. Pure Appl. Math. 1957, 10, 151. 

2. Boys, S. F. Proc. Roy. Soc. London Ser. 1960, A258, 402. 

3. Singer, K. Proc. Roy. Soc. London Ser. 1960, A258, 412. 

4. Szalewicz, K.; Jeziorski, B.; Monkhorst, H. J.; Zabolitzky, J. G. J. Chem. Phys. 1983, 78, 1420. 

5. Szalewicz, K.; Zabolitzky, J. G.; Jeziorski, B.; Monkhorst, H. J. J. Chem. Phys. 1984, 81, 2723. 

6. Cencek, W.; Rychlewski, J. J. Chem. Phys. 1993, 98, 1252. 

7. Bukowski, R.; Jeziorski, B.; Szalewicz, K. J. Chem. Phys. 1999, 110, 4165. 

8. Cencek, W.; Rychelewski, J. Chem. Phys. Lett. 2000, 320, 549. 

9. Kutzelnigg, W. Theor. Chim. Acta. 1985, 68, 445. 

10. Kutzelnigg, W.; Klopper, W. J. Chem. Phys. 1991, 94, 1985. 

11. Termath, V.; Klopper, W.; Kutzelnigg, W. J. Chem. Phys. 1991, 94, 2002. 

12. Klopper, W.; Kutzelnigg, W. J. Chem. Phys. 1991, 94, 2020. 

13. Noga, J.; Kutzelnigg, W. J. Chem. Phys. 1994, 101, 7738. 

14. Noga, J.; Tunega, D.; Klopper, W.; Kutzelnigg, W. J. Chem. Phys. 1995, 103, 309. 

15. Noga, J.; Klopper, W.; Kutzelnigg, W. In Recent Advances in Coupled-Cluster Methods; Bartlett, 

R.J., Ed.; World Scientific, 1997. 

16. Persson, B. J.; Taylor, P.R. J. Chem. Phys. 1996, 105, 5915. 

17. Boys, S. F.; Handy, N. C. Proc. R. Soc. 1969, A 310, 43. 

18. Handy, N. C. Mol. Phys. 1973, 26, 169. 

19. Ten-no, S. Chem. Phys. Lett. 2000, 330, 169. 

20. Ten-no, S. Chem. Phys. Lett. 2000, 330, 175. 

21. Hino, O.; Tanimura, Y.; Ten-no, S. J. Chem. Phys. 2001, 115, 7865. 

22. Obara, S.; Saika, A. J. Chem. Phys. 1988, 89, 1540. 

23. Dupuis, M.; Rys, J.; King, H. F. J. Chem. Phys. 1976, 65, 111. 

24. Dupuis, M.; Marquez, A. J. Chem. Phys. 2001, 114, 2067. 

25. Meyer, W. J. Chem. Phys. 1973, 58, 1017. 



Int. J. Mol. Sci. 2002, 3   
 

474

26. Kutzelnigg, W. In Method of Electronic Structure Theory; Shaefer, H.F., Ed.; Plenum: New York, 

1977; p129. 

27. Koch, H.; Christiansen, O.; Kobayashi, R.; Jørgensen, P.; Helgaker, T. Chem. Phys. Lett. 1994, 

228, 233. 

28. Ten-no, S.; Iwata, S.; Pal, S.; Mukherjee, D. Theor. Chem. Acc. 1999, 102, 252. 

29. Mayer, I. Int. J. Quantum Chem. 1983, 23, 341. 

30. Surján, P. R.; Mayer, I.; Lukovits, I. Chem. Phys. Lett. 1985, 119, 538. 

31. Dunning, T. H.,Jr. J. Chem. Phys. 1989, 90, 1007. 

32. Woon, D. E.; Dunning, T. H.,Jr. J. Chem. Phys. 1995, 103, 4572. 

33. Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys. 1997, 106, 9639. 

34. Bartlett, R. J. Ann. Rev. Phys. Chem. 1981, 32, 359. 

35. Watanabe, N.; Hayashi, H.; Udagawa, Y.; Ten-no, S.; Iwata, S. J. Chem. Phys. 1998, 108, 4545. 

36. Watanabe, N.; Ten-no, S.; Pal, S.; Iwata, S.; Udagawa, Y. J. Chem. Phys. 1999, 111, 827. 

 

 

 

© 2002 by MDPI (http://www.mdpi.org). 
 


