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Abstract: VEGF-A145-induced persistent dysfunction of the barrier formed by immortalized
bovine retinal endothelial cells (iBREC) is only transiently reverted by inhibition of VEGF-
A-driven signaling. As angiopoietin-2 (Ang-2) enhances the detrimental action of VEGF-
Aj45, we studied if binding of both growth factors by the bi-specific antibody faricimab
sustainably reverts barrier impairment. Confluent monolayers of iBREC were exposed to
VEGEF-A g5 for one day before 10-1000 pg/mL faricimab was added for additional five days.
To assess barrier function, we performed continuous electric cell-substrate impedance, i.e.,
cell index, measurements. VEGF-A145 significantly lowered the cell index values which
recovered to normal values within hours after the addition of faricimab. Stabilization
lasted for two to five days, depending on the antagonist’s concentration. As determined by
Western blotting, only >100 pug/mL faricimab efficiently normalized altered expression of
claudin-1 and claudin-5, but all concentrations prevented further increase in plasmalemma
vesicle-associated protein induced by VEGF-Aj45; these proteins are involved in barrier
stability. Secretion of Ang-2 by iBREC was significantly higher after exposure to VEGF-Ay¢5,
and strongly reduced by faricimab even below basal levels; aflibercept was significantly
less efficient. Taken together, faricimab sustainably reverts VEGF-Aj45-induced barrier
impairment and protects against detrimental actions of Ang-2 by lowering its secretion.

Keywords: retinal endothelial cells; VEGF-A; angiopoietin-2; anti-VEGF drugs; faricimab;
cell index measurement; tight junction; claudin-1; claudin-5; plasmalemma vesicle-
associated protein

1. Introduction

Vascular endothelial growth factor-A (VEGF-A)45 elevates the permeability of the
endothelial cell (EC) layer of retinal microvessels, eventually resulting in vision-threatening
macular edema, a hallmark of burdening retinal diseases such as age-related macular
degeneration, diabetic macular edema, retinal vein occlusion, and myopic retinopathy [1-3].
In vitro, VEGF-A;¢5 induces barrier impairment of primary and immortalized retinal
endothelial cells (REC) isolated from various species, including human, through activating
VEGEF receptor 2 (VEGFR2)-driven signaling [2,4-7].

The function of the barrier formed by microvascular EC, e.g., REC, can reliably be
assessed by continuous electric cell-substrate impedance measurements with a micro-
electronic biosensor system for cell-based assays, i.e., determination of the so-called cell
index [8-10]. A high cell index reflects a tight barrier and vice versa. A few hours after the
addition of VEGF-A1¢45 to a confluent monolayer of immortalized bovine REC (iBREC), the
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cell index values start to decline and remain low for at least several days [10-13]. A similar
severe impairment of the barrier has also been observed for human REC (huREC) [14].
Interfering with VEGF-A-mediated signaling through binding of the growth factor by
VEGF antagonists ranibizumab and brolucizumab efficiently, but only transiently, reverts
VEGEF-Ajg5-induced changes: low cell index values are normalized within one day but
start to decline during extended incubation for up to five days [12,15,16]. Inhibition of
VEGFR2 completely normalizes low cell index values only when inhibitors were added
one day after exposure to the growth factor but not on day three [5,13]. Therefore, the
modulation of VEGF-A45’s action by other growth factors or cytokines is likely, and the
angiogenic growth factor angiopoietin-2 (Ang-2) seems to be a promising candidate. Ang-2
is secreted by iBREC during prolonged exposure to VEGF-A1¢5 although at much lower
concentrations compared to other microvascular EC [17-20]. Studies using a rabbit retina
hyperpermeability model showed that concentrations of Ang-2 in the vitreous are also
strongly elevated after intravitreal injection of VEGF-A 145, significantly prevented by the
VEGF-binding proteins aflibercept, brolucizumab and ranibizumab [21,22]. Ang-2 stimu-
lates the proliferation of iBREC, but does not impair their very tight barrier [17]. The growth
factor rather significantly enhances the detrimental action of VEGF-A145, and this distur-
bance is efficiently prevented by blocking VEGF-A-mediated signal transduction [17]. On
the cellular level, the extended exposure of iBREC to VEGF-A1¢5 over several days changes
the expression of proteins regulating para- and transcellular flow, also observed for primary
bovine and human REC. Amounts of tight junction (T])-protein claudin-1 are persistently
reduced, those of T]-protein claudin-5 remain stable early after the addition of the growth
factor but increase later on [2,5-7,10,12,13,17]. The key regulator of transcellular flow, plas-
malemma vesicle-associated protein (PLVAP), is hardly expressed by unchallenged REC,
but its expression is dramatically enhanced after exposure to VEGF-A1¢5 [12,23-25]. VEGEF-
A antagonists brolucizumab and ranibizumab completely reverse VEGF-A;45-induced
changes in claudin-1 and claudin-5, but only partly those in PLVAP [12].

Using our well-established model of immortalized microvascular EC of the bovine
retina (iBREC), we now investigated if dual binding of both growth factors VEGF-A
and Ang-2 by the bi-specific IgG faricimab efficiently and sustainably reverses VEGF-
Ajgs-induced changes in the barrier formed by these cells, i.e., low cell index values
as a measure of barrier function, and altered expression of claudin-1, claudin-5, and
PLVAP [11,20]. In order to mimic patients’ situation, we focused on the extended treatment
of the cells with the effectors for up to six days. Although of non-human origin, primary and
immortalized microvascular EC of the bovine retina represent an authentic in vitro model of
the highly impermeable barrier formed by REC in vivo [7,11,24]. Their monolayers establish
a very strong barrier reflected by persistently high values of the transendothelial electrical
resistance or the cell index, accompanied by strong expression of TJ-protein claudin-5
typically expressed by microvascular EC [2,7,10-13,26]. In contrast to macrovascular
EC, levels of PLVAP are extremely low [17,24]. The homogenous iBREC cell line can be
stimulated by human growth factors, and, most importantly, is free of contaminating cells
of other types often found in primary cultures which might affect the accuracy of in vitro
studies [2,11,17].

2. Results
2.1. General Information

All experiments to investigate the changes induced by VEGF-A1¢; and subsequent
treatment with faricimab were performed at least thrice, always with confluent monolayers

of iBREC. To ensure maintenance of their typical phenotype, cells were cultured in cell
culture medium adapted to their special needs [27]. After establishing a tight monolayer,
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recombinant human VEGF-Ay5 (a final concentration of 50 ng/mL) was added to the cells
to induce a dysfunction of the barrier. One day later, faricimab (final concentrations of
10 pg/mL, 100 ug/mL, or 1 mg/mL) was placed in the cell culture medium; thus, VEGF-
Aj45 was present until the end of the experiment [12,13]. In control experiments, cells were
processed in exactly the same way without studied effector(s). Investigated concentrations
of faricimab can easily be achieved by intravitreal injections [28].

2.2. Faricimab Strongly Suppressed Higher Secretion of Ang-2 by VEGF-A14s5-Treated iBREC

The extended cultivation of cells over several days could lead to cellular stress; there-
fore, we determined if long-term-cultured iBREC secreted interleukin (IL)-6, a marker of
cellular stress [27,29]. However, the cytokine was not detected by ELISA in supernatants
obtained from confluent iBREC monolayers cultured for up to nine days, unaltered by
exposure to 50 ng/mL VEGF-Aj4s5; values were below the minimal detectable dose of
78 pg/mL. Therefore, the chosen conditions of cultivation support the establishment and
maintenance of a monolayer of healthy microvascular endothelial cells.

Faricimab binds strongly to its target protein, VEGF-A1¢5, and to confirm that this
complex is still stable after the extended treatment of VEGF-A1¢5-challenged iBREC with
faricimab for five days, we determined the amounts of non-complexed VEGF-A in super-
natants and cell extracts. Faricimab and the detection antibody of the used ELISA likely
bind to the same region of the growth factor; therefore, only unbound VEGF-A can be
measured [20]. A four-fold molar excess of faricimab over VEGF-A1¢5 indeed prevents the
detection of the growth factor by the used ELISA [30]. As anticipated, relevant amounts of
the growth factor were measured in cell culture supernatants and cell extracts of iBREC
exposed to the growth factor for six days (supernatants: 19 + 6 ng/mL VEGF-A; N = 24;
cell extracts: 0.25 & 0.11 ng/ 106 cells VEGF-A; N = 6). However, signals obtained from
supernatants or extracts of cells additionally exposed to faricimab (final concentrations:
10 ng/mL, 100 pg/mL, and 1 mg/mL) were below the minimal detectable dose of 9 pg/mL,
and this did not depend on the antagonist’s concentration.

In addition, Western blot analyses of cell extracts confirmed the presence of internal-
ized faricimab after exposure to the growth factor and subsequently to the antagonist for as
long as five days (Figure 1). However, significantly less faricimab was detected when cells
had been treated with the lowest concentration of 10 pug/mL faricimab.
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Figure 1. Faricimab is taken up by VEGF-A45-exposed iBREC. The VEGF antagonist was added to
VEGF-A45-exposed iBREC before cells were harvested five days later for preparation of cell extracts
and subsequent Western blotting. Specific signals were normalized to those obtained from cells
treated with VEGF-Aj45 and 1 mg/mL faricimab. Pooled data of several Western blot experiments
were analyzed as described in Section 4.6, and are shown as scatter plots with means and standard
deviations. ** p < 0.01, ** p < 0.001; only statistically significant differences are marked. Original
images are shown in Supplementary Figure S3. Even after extended incubation, internalized VEGF
antagonist can still be detected in a concentration dependent manner.
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We also studied whether faricimab changed secretion of Ang-2 by VEGF-A-challenged
iBREC. Faricimab does not interfere with binding of the detection antibody to Ang-2 of
the used ELISA, i.e., free Ang-2 and Ang-2/faricimab complexes are detected [17]. Low
concentrations of ~250 pg/mL Ang-2 were measured in the supernatant of unchallenged
iBREC, and levels were significantly higher three and six days after the addition of VEGF-
A5 (Figure 2) [17]. The increased secretion of Ang-2 was efficiently lowered by subsequent
exposure to the VEGF antagonist aflibercept (Figure 2). Most interestingly, faricimab
reduced Ang-2 levels much more noticeably, even significantly below basal levels (Figure 2).
Relevant differences between both time points were not observed.
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Figure 2. Faricimab sustainably counteracted higher secretion of Ang-2 by VEGF-A45-exposed
iBREC. Confluent monolayers of iBREC were treated with VEGF-A145 for one day and subsequently
with aflibercept or faricimab for additional two or five days, before cell culture supernatants were
collected for determination of Ang-2 by ELISA. Pooled Ang-2-specific signals were normalized, and
analyzed as described in Section 4. ** p < 0.01, ** p < 0.001, *** p < 0.0001, indicating statistically
significant differences only. Secretion of Ang-2 was significantly increased after treatment with VEGEF-
Ajgs for three or six days. Aflibercept efficiently normalized Ang-2 levels, but faricimab lowered
amounts of Ang-2 significantly more markedly.

2.3. Faricimab Efficiently Reverted VEGF-A1¢5-Induced Barrier Impairment

To assess the capability of faricimab to efficiently and sustainably revert the VEGF-
Ajgs-induced barrier impairment, we measured the cell index of an iBREC monolayer.
After establishing a tight barrier as indicated by high cell index values of ~20, the growth
factor was added. One day later, the antagonist was placed in the cell culture medium, and
the cell index was continuously monitored for up to six days (Figure 3).

The growth factor induced a persistent reduction in the cell index values indicative
of impairment of the cells’ barrier (Figure 3a). After the addition of faricimab at a final
concentration of 10 pg/mL to VEGF-A¢s5-pretreated iBREC, the cell index values increased
and reached normal values twelve hours later (Figure 3b). Cell index values remained
similar to those obtained for control cells for about two days, before they started to decline
again. They were then significantly lower compared to those of the control cells but still
significantly higher compared to those of VEGF-Ajg5-exposed iBREC (Figure 3b). At a
concentration of 100 ug/mL, faricimab reverted VEGF-Aj45-lowered cell index values also
within hours; cell index values remained close to those of the control cells even late after
the antagonist’s addition (Figure 3c). Increasing the concentration of faricimab to 1 mg/mL
also resulted in rapid reversion of VEGF-A45-reduced cell index values, and normalized
cell index values did not differ from those of control cells even during extended incubation
for five days (Figure 3d). Accordingly, faricimab at a concentration of 1 mg/mL was
significantly more efficient compared to 10 pg/mL (Figure 3e) or 100 pug/mL (Figure 3f).
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Figure 3. VEGF-A g5-induced low cell index values were efficiently normalized after subsequent
exposure to faricimab. Confluent monolayers of iBREC were treated with 50 ng/mL VEGF-A 45 for
one day before faricimab at final concentrations of (a,b,e) 10 ug/mL (n =7), (a,c,f) 100 ug/mL (n = 8)
or (ad,e f) 1 mg/mL (n=6) was added, and the cell index was continuously determined. Control cells
(n = 6) were exposed to vehicle only. Cell index values were normalized in relation to those measured
just before the addition of VEGF-A14s5. Graphs show means + standard deviations. (a-d) VEGF-A1¢5
induced a significant and persistent decline of the cell index values. (a,b) After the addition of
10 pg/mL faricimab, low cell index values increased to normal levels within hours, but they only
remained similar to those of control cells for about two days. (a,c,d) Normal cell index values were
quickly re-established by (c) 100 or (d) 1000 png/mL faricimab, and they did not significantly differ
from those of control cells throughout extended exposure to faricimab. (e, f) 1000 ug/mL faricimab
allowed for the most persistent stabilization compared to (e) 10 pg/mL and (f) 100 pg/mL faricimab.
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2.4. Faricimab Reverted VEGF-A1g5-Induced Changes in the Expression of Claudin-1 and PLVAP

Constantly low amounts of the T]-protein claudin-1 correlate with VEGF-A45-induced
barrier impairment whereas the expression of TJ-protein claudin-5 is significantly higher
only after extended exposure to the growth factor, and that of adherens junction (AJ]) protein
vascular endothelial cadherin (VEcadherin) remains largely unchanged [2,10,12,13,31]. To
investigate if faricimab sustainably normalized VEGF-A;¢5-induced changes, we assessed
the expression of these candidate proteins (Figure 4).

As anticipated, low amounts of claudin-1 (Figure 4a,e) were observed after exposure to
VEGEF-A1¢5 for one, three, or six days. When cells had been treated with VEGF-A145 for one
day and subsequently with faricimab for only two days, the expression of claudin-1 was
efficiently re-instated independent on the antagonist’s concentration (Figure 4a). However,
after the extended treatment of VEGF-Ag5-exposed iBREC with 10 pg/mL faricimab, the
expression of claudin-1 was significantly lower at this later time point (relative expression
of claudin-1: 0.77 4 0.27 on day 6 (N = 9) compared to 1.47 & 0.64 on day 3 (N = 9);
p = 0.014) (Figure 4a, left panel). Although the expression of claudin-1 was still significantly
higher than that observed after exposure to VEGF-A1¢5 only, it was now significantly lower
compared to that of control cells (Figure 4a, left panel). In contrast, during prolonged
exposure of VEGF-Ajg5-challenged iBREC with >100 pug/mL faricimab, the expression
of claudin-1 remained stable, and was significantly higher compared to that of VEGF-A-
exposed cells (Figure 4a, middle and right panels).

Only after treatment with VEGF-Aj¢5 for six days, significantly more TJ-protein
claudin-5 was expressed, but not when cells were also exposed to faricimab (Figure 4b,e).
Extended exposure of VEGF-Ag5-pretreated cells to 10 ng/mL faricimab reduced expres-
sion of claudin-5 (relative expression of claudin-5: 0.82 & 0.21 on day 6 (N = 10) compared
to 1.41 + 0.46 on day 3 (N =9); p = 0.004); it was also significantly lower compared to that of
control cells (Figure 4b, left panel). The expression of VEcadherin remained mostly stable;
it was only significantly lower when VEGF-A¢5-exposed cells had also been treated with 1
mg/mL faricimab for additional five days (Figure 4c, right panel).

The expression of the regulator of intracellular transport PLVAP by iBREC is induced
by VEGF-Aj¢5. One day after the addition of the growth factor, it was slightly but signifi-
cantly higher (values of relative expression of PLVAP were: 0.34 & 0.22 (N = 4) for control
compared to normalized signals of VEGF-A145 of 1.00 (N = 4), p = 0.009). Even stronger
signals were observed after the treatment of the cells for three or six days (Figure 4d).
Interestingly, VEGF-A-induced higher PLVAP expression was efficiently counteracted by
faricimab only after prolonged treatment regardless of its concentration (Figure 4d,f).

Taken together, faricimab efficiently reverted VEGF-A45-changed expression of pro-
teins involved in the regulation of barrier stability, although significant deviations from
normal expression levels were observed, especially late after the addition of the growth
factor and its antagonist.
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Figure 4. Faricimab reverted VEGF-A1¢5-induced altered expression of claudin-1 and PLVAP. iBREC
were pre-treated with 50 ng/mL VEGF-A1¢5 for one day, before faricimab was added, and cells were
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harvested for preparation of cell extracts and subsequent Western blotting at indicated time points.
(a—c) Specific signals of Western blot analyses (N > 5 per condition and time point) were normalized
as described in Section 4. Pooled data are shown as graphs with means and standard deviations.
VEGEF-A compared to control: * p < 0.05, *** p < 0.0001; VEGF-A compared to VEGF-A + faricimab:
*p<0.05, ** p <0.01, ** p < 0.001; VEGF-A + faricimab compared to control: § p < 0.05; only
statistically significant differences are marked. (a) VEGF-A-induced low expression of claudin-1 was
efficiently normalized by > 100 ug/mL faricimab two and five days after the antagonist’s addition.
Reversion of claudin-1 expression by 10 ug/mL faricimab was only achieved early after its addition.
(b) Claudin-5 amounts increased over time, lowered again by faricimab. (c) Only extended exposure
to VEGF-A1¢5 followed by 1 mg/mL faricimab resulted in significantly less VEcadherin. (d) The
band at ~60 kDa represents the PLVAP-specific signal, the faint bands at 70 kDa and ~100 kDa
are unspecific [12]. Specific Western blot signals were normalized to those obtained from VEGF-A-
exposed cells and pooled data—analyzed as described in Section 4.6—are shown as scatter plot with
means =+ standard deviations. Only prolonged treatment with faricimab was sulfficient to completely
down-regulate the VEGF-A145-induced expression of PLVAP. (e f) Typical images of Western blot
analyses of which original images are shown in Supplementary Figures S1-53.

3. Discussion

VEGEF-A 145 persistently impairs the barrier formed by a monolayer of primary and
immortalized microvascular retinal endothelial cells [2,5-7,10,12,13]. Since the blocking of
VEGF-A-driven signal transduction by complexing the growth factor with VEGF-binding
proteins or by inhibiting the tyrosine kinase activities of the growth factor’s receptor
only transiently revert VEGF-A45-induced barrier impairment, we studied if additional
binding of Ang-2 by faricimab is superior, using our well-established in vitro model
iBREC [10,12,13,20]. In contrast to commercially available HUREC, iBREC and primary
bovine REC (BREC) express very low if any PLVAP which regulates transcellular flow
and is up-regulated by microvascular endothelial cells only under pathological condi-
tions [12,13,23,24]. Accordingly, monolayers of primary and immortalized BREC give rise
to high values of the transendothelial electrical resistance or the cell index persisting even
over several days, and these values are typically much higher than those obtained with
commercially available HuREC [17,18,25,32]. In contrast to co-culture models, interaction
of REC with retinal pericytes cannot be taken into account by cultivating only the iBREC,
but this disadvantage can be compensated at least in part by the usage of optimized cell
culture media [7,19,33]. Taken together, iBREC represent a very reliable and more authentic
model of the tight retinal-blood barrier, because similar to BREC, this cell line establishes a
very tight barrier [5,12,13,17,24]. In spite of the non-human nature of the used cell model, it
is a reasonable assumption that humanized IgG faricimab, which competes with binding of
human Ang-2 to its receptor Tie2, also efficiently complexes bovine Ang-2 [20]. The overall
identity and similarity of the human and bovine homologues of Ang-2 are extremely high,
and—most importantly—the amino acid sequences of the receptor-binding regions of
human and bovine Ang-2 are identical [34].

Aflibercept normalized extracellular Ang-2 elevated by VEGF-A¢5 treatment of iBREC,
and our finding is in accordance with previously published observations using a rabbit
retina hyperpermeability model [22]. Dual binding of both growth factors by faricimab
was even more potent, suggesting that besides VEGF-driven signaling, the Tie2 pathway is
also involved in down-regulating the secretion of Ang-2 [35]. The growth factor likely acts
through an internal autocrine mechanism, in iBREC obviously efficiently counteracted by
the internalized antagonist [36]. In this context, it is of interest that intravitreal injection of
faricimab, but not of aflibercept, lowers the concentration of unbound Ang-2 in aqueous
humor of patients with diabetic macular edema [37].
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The modulation of VEGF-A145 detrimental changes in the iBREC barrier are observed
only with Ang-2 concentrations which are an order of magnitude higher compared to those
secreted by iBREC; Ang-2 on its own does not affect the stability of the cells’ barrier [17].
Nevertheless, one might speculate that dual binding of both growth factors is superior to
reinstate and, even more importantly, maintain a functional barrier that was compromised
by pre-treatment with VEGF-Aj¢5. Indeed, high concentrations of faricimab (>100 pg/mL)
efficiently reverted changes induced by the growth factor, including normalization of cell
index values and the expression of proteins involved in barrier stabilization, e.g., claudin-1
and claudin-5 [2,5,6]. It is most likely that then both TJ-proteins are part of stable T] com-
plexes at the plasma membrane. Interestingly, iBREC exposed to faricimab only also express
slightly more (<1.5x) claudin-1 and claudin-5 after prolonged treatment with the antago-
nist, an observation also made for the VEGF-binding protein ranibizumab [17,38]. However,
the up-regulation of the TJ-proteins by iBREC exposed to faricimab or ranibizumab for
several days does not translate into an altered function of the cells’ barrier indicated by un-
changed cell index values [17,38]. In accordance with our previous findings, the expression
of the AJ-protein VEcadherin remained largely unchanged by the effectors, although its
amounts were significantly lower after the exposure of the cells to VEGF-A1¢45 followed
by a high dose of the pharmacological formulation of faricimab, i.e., Vabysmo [12,13].
It is a reasonable assumption that the surfactant polysorbate-20—a component of the
formulation—is responsible for the observed altered expression of VEcadherin, because it is
significantly reduced by >0.0002% polysorbate-20 [38]. Surfactants prevent destabilization
and precipitation of proteins, but they can be subject to modification and degradation by
cellular enzymes [39]. However, low amounts of VEcadherin obviously do not necessarily
correlate with a dysfunctional barrier, because the cell index values are still high [38].
Similar to our observations with VEGF-A-binding proteins ranibizumab or brolucizumab,
the lowest faricimab concentration of 10 pg/mL only transiently reinstated low cell index
values [12,13]. Subtle but significant deviations from the normal expression patterns of
TJ-proteins claudin-1 and claudin-5 might account for the observed barrier impairment,
because their reduced expression correlates with a dysfunctional barrier [2,10,27]. Whether
or not these subtle changes result from residual VEGF-A-driven signaling is an interest-
ing speculation. Relevant amounts of unbound intra- or extracellular VEGF-A were not
detected even late after the antagonist’s addition, suggesting that the growth factor is
very likely completely bound by faricimab present in an excess. However, complexing the
growth factor by cellular proteins, e.g., (soluble) VEGF receptors, cannot be ruled out, and
according to the manufacturer’s instructions, these complexes would not be measured by
the used ELISA. Even low amounts of VEGF-A bound to the VEGF receptors—either at the
cell surface or intracellular—could initiate or maintain VEGF signaling, eventually leading
to barrier impairment [4,40].

The low expression of the regulator of transcellular flow PLVAP is a key feature of
microvascular cells establishing a tight barrier, and its increased expression is associated
with higher permeability of the endothelial layer [24,25]. De novo synthesis of PLVAP is
induced by VEGF-A145, and PLVAP mRNA and protein can be detected at the earliest after
one to two days [12,23,24,41,42]. Faricimab prevented further up-regulation of PLVAP by
VEGE-Aj4s5-treated iBREC, but—Ilikely due to a slow turn-over of the protein—this was
achieved only late after the antagonist’s addition. PLVAP was still strongly expressed by
VEGEF-A¢5-challenged cells exposed to faricimab for only two days despite a closed barrier,
as indicated by high cell index values. Therefore, the proper function of the iBREC barrier
appears to be predominantly determined by the balanced expression of TJ-proteins, i.e.,
claudin-1 and claudin-5, and consequently, by restricted paracellular flow. Dual inhibition
of VEGF-A and Ang-2 counteracts VEGF-Aj¢5-induced PLVAP expression to a greater
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extent than blocking VEGF-A alone with ranibizumab, as previously shown, suggesting a
direct or indirect role of Ang-2 in the regulation of PLVAP expression [12,42].

Taken together, faricimab efficiently reverts the VEGF-Aj45-induced dysfunction of
the barrier formed by an iBREC monolayer, and this stabilization can be maintained for
several days with high concentrations of the antagonist. Of course, conclusions drawn from
in vitro experimentation based on models with certain limitations cannot be transferred
directly to the clinical assessment of patients and their used therapy, but, nevertheless, our
findings may at least partially translate to the in vivo situation of (diabetic) macular edema
caused by increased permeability of the retinal capillary endothelial cell monolayer due
to VEGF-A1¢5 present in the vitreous humor [3,43]. The pathogenesis of diabetic macular
edema is also accompanied by elevated concentrations of Ang-2 in the vitreous humor,
and as mentioned above, the growth factor strengthens the detrimental effects of VEGF-
A5 in vitro [17,20,44-46]. Accordingly, clinical studies showed substantially maintained
improvement of visual acuity and central subfield thickness by intravitreal injections of
faricimab [28]. That faricimab strongly down-regulates secretion of Ang-2 in vitro as well
as in vivo, suggests an additional protective role of the antagonist in early and late stages
of diabetic retinopathy, e.g., by counteracting Ang-2-caused loss of retinal pericytes or
Ang-2-stimulated retinal neovascularization [37,47].

4. Materials and Methods
4.1. Antibodies and Reagents

Information on antibodies used in this study is summarized in Table 1. The bi-specific
antibody faricimab (Vabysmo; 120 mg/mL in 3.1 mg/mL L-histidine, 1.044 mg/mL L-
methionine, 1.46 mg/mL NaCl, 54.8 mg/mL D-sucrose, 0.04% polysorbate-20, pH 5.5)
and the Fc fusion protein aflibercept (Eylea; 40 mg/mL aflibercept in 10 mM sodiumphos-
phate, 40 mM NacCl, 0.03% polysorbate-20, 5% sucrose, pH 6.2) were purchased from
Roche Pharma AG (Grenzach-Wyhlen, Germany) and Bayer AG (Berlin, Germany), respec-
tively [20,21]. Recombinant human Sf21-expressed VEGF-A1¢5 (#293VE) was bought from
bio-techne (Wiesbaden, Germany), dissolved and stored as described [17].

Table 1. Primary and secondary antibodies.

Target Host, Type and Conjugate Source ? Working Concentration
. clone 5]J11, Novus Biologicals,
actin mouse, monoclonal #NBP2-25142 700 ng/mL
. clone BA3R, Invitrogen,

[3-actin mouse, monoclonal #MAB-15739 100 ng/mL
claudin-1 rabbit, polyclonal Invitrogen, #51-9000 250 ng/mL
claudin-5 rabbit, polyclonal Invitrogen, #34-1600 100 ng/mL
PLVAP P rabbit, polyclonal Invitrogen, #PA5-110183 2 ug/mL

. . Cell Signaling Technology B.V.,
VEcadherin rabbit, polyclonal #0158 1:2000
. goat, polyclonal, . . )
whole rabbit IgG coupled to HRP Biorad, #170-5046 1:15,000
goat, polyclonal, . ) )
whole mouse IgG coupled to HRP Biorad, #170-5047 1:30,000

2 Biorad, Munich, Germany; Cell Signaling Technology B.V., Frankfurt, Germany; Invitrogen via Thermo Fisher
Scientific, Schwerte, Germany; Novus Biologicals via bio-techne, Wiesbaden, Germany. b HRP, horseradish
peroxidase; PLVAP, plasmalemma vesical-associated protein; VEcadherin, vascular endothelial cadherin.

4.2. Cultivation of iBREC

Telomerase-immortalized microvascular endothelial cells from bovine retina (iBREC)—
established in our laboratory—were cultivated on surfaces coated with fibronectin (Corning,



Int. J. Mol. Sci. 2025, 26, 4318

11 0f 15

Amsterdam, The Netherlands) in Endothelial Cell Growth Medium MV (ECGM; #C-22120,
Promocell, Heidelberg, Germany) containing 1 g/L glucose, 0.4% Endothelial Cell Growth
Supplement/H, 90 ug/mL heparin, 10 ng/mL human epidermal growth factor (hEGEF),
100 nM hydrocortisone, 5% fetal bovine serum (FBS; all supplements were from Promocell),
and 300 pg/mL geneticin (Thermo Fisher Scientific, Schwerte, Germany) as described
in great detail elsewhere [2,5,10-13]. Characterization of iBREC which were used from
passages 25 to 50 counting from the stage of primary culture, and their responses to
stimulation with human growth factors have been described in great detail [2,10-13].

4.3. Cell Index Measurements

The cell index (CI) was determined to assess the stability of the barrier formed by a
monolayer of iBREC by electric cell-substrate impedance measurements using the micro-
electronic biosensor system for cell-based assays xCELLigence RTCA DP (Agilent, OLS,
Bremen, Germany) as previously described [5,10]. Briefly, cells were cultured in ECGM-1
(same as ECGM lacking hEGF, but containing 1 ug/mL fibronectin) until a confluent cell
monolayer was reached, indicated by a constantly high cell index (CI ~ 20) about four days
later. Then, the cell culture medium was replaced by ECGM-1, and after one day, VEGF-
Ajg5 (final concentration of 50 ng/mL) was added and cells were incubated for another
24 h. Faricimab (final concentration of 10 ug/mL, 100 ng/mL, or 1 mg/mL) was placed
in the cell culture medium, and the cell index was measured regularly every five minutes
until the end of the experiments three or six days later. Recorded cell index values were
normalized in relation to those measured immediately before the addition of VEGF-A145
(RTCA Software Pro, Version 2.6.1, Agilent), and the results were converted to graphs
showing means and standard deviations with GraphPad Prism 9.4.1 (GraphPad Software,
Boston, MA, USA) [10,12,17]. At the end of each experiment, the integrity of the confluent
monolayer was confirmed by microscopy, cell culture supernatants were collected, and
cells were harvested for the preparation of cell extracts [17]. iBREC were also cultured in
fibronectin-coated T25-cell culture flasks (Sarstedt, Nuembrecht, Germany), treated in a
similar manner as described above for harvesting cell culture supernatants and cells [17].
Samples were stored at —80 °C for further analyses.

4.4. Measurement of VGEF-A1¢5, Ang-2 and IL-6 by ELISA

Confluent iBREC were pre-treated with 50 ng/mL VEGF-Aj¢5 for one day before
either faricimab or aflibercept (final concentrations: 10 ug/mL or 100 pg/mL) were added,
and cell culture supernatants were harvested two and five days after the addition of the
inhibitors. Possibly secreted Ang-2 was determined in undiluted cell culture supernatants
using Angiopoietin-2 Quantikine ELISA Kit (#DNAG20, bio-techne). To determine non-
complexed VEGF-A in cell culture supernatants or cell extracts of iBRECs exposed to
50 ng/mL VEGF-A;¢5 and subsequently to faricimab (final concentrations: 10 ng/mL,
100 pg/mL, and 1 mg/mL) for five days, we used the Quantikine ELISA VEGF-A Im-
munoassay Kit (#DVEQO, bio-techne). The supernatants of cells treated only with VEGF-
A1g5 and cell extracts were diluted 1:100 in phosphate-buffered saline without Ca?* and
Mg?* (Thermo Fisher Scientific); all other supernatants were not diluted [12]. The marker
of cellular stress IL-6 was measured with the IL-6 bovine uncoated ELISA Kit (#£ES50029,
Thermo Fisher Scientific) in undiluted cell culture supernatants of iBREC cultured in ECGM-
1 with or without 50 ng/mL VEGF-A145 for up to nine days [27,29]. Samples were processed
at least in duplicates according to the manufacturers’ instructions, and analyte-dependent
absorbance was measured at 450 nm (reference wavelength: 570 nm) 15-20 min after the
addition of the stop solution, as described previously [12,17,27]. Standard curves for Ang-2
(0 to 3000 pg/mL; minimal detectable dose: 8 pg/mL), VEGF-A (0 to 1250 pg/mL; minimal
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detectable dose: 9 pg/mL), or IL-6 (0 to 5000 pg/mL; minimal detectable dose: <78 pg/mL)
were always generated in parallel to the analyses of samples. Ang-2-specific signals were
normalized to those obtained from control cells, and results are presented as scatter plots
also showing means + standard deviations.

4.5. Western Blot Analyses of Protein Extracts

Proteins of relevance were analyzed by Western blot as previously described [17].
Chemiluminescence signals were scanned with the imaging system Fusion FX6 Edge V0.7
(Vilber Lourmat, Eberhardzell, Germany). To quantify the signals, peak volumes of the
protein-specific bands (>five replicates) determined with EvolutionCapt Edge software
(Version 18.12; Vilber Lourmat) were first standardized in relation to those of 3-actin in the
very same sample, and signals were normalized to those obtained from similarly processed
control cells [12,17]. Because PLVAP is expressed only at very low levels by unchallenged
iBREC, specific signals were normalized to those obtained from cells exposed to VEGF-A1¢5.
For the detection of faricimab, we used polyclonal goat antibodies directed against the
v-chain of an human IgG (Invitrogen, Thermo Fisher Scientific, #62-8420; 1:1000), and
specific signals were set in relation to those obtained from cells exposed to VEGF-A145 and
1 mg/mL faricimab [17]. Data from multiple Western blot experiments performed with
several independently prepared cell extracts were pooled and presented as graphs, or as
scatter plots always containing means and standard deviations.

4.6. Statistical Analyses

The one-sample t-test, which takes the variation of the standard deviation into account
although it appears to be zero, was used to compare antigen-specific Western blot signals
from effector-treated cells to the hypothetical value of 1.00 of normalized signals. To
compare several groups of antigen-specific Western blot or ELISA signals from differently
treated cells, the one-way analysis of variance (ANOVA) followed by Dunnett’s multiple
comparisons test was used. Data obtained by cell index measurements were analyzed
with the two-way ANOVA, followed by Sidak’s multiple comparison test. Differences
resulting in p-values below 0.05 were considered significant. All statistical analyses were
performed with GraphPad Prism 9.4.1; means and standard deviations are provided as
numbers, graphs or in scatter plots.

5. Conclusions

Dual binding of VEGF-A and Ang-2 by the bi-specific antibody faricimab lowered the
secretion of Ang-2, and most importantly, reverted VEGF-A145-induced barrier impairment.
Low cell index values and altered expression of proteins regulating para- and transcellular
flow were normalized, although stabilization was only maintained with high concentrations
of faricimab. The clinical significance of these findings for patients with macular edema
lies in the ability of faricimab to not only counteract direct consequences of VEGF-A145 but
also protect against the detrimental effects of Ang-2.
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Abbreviations

The following abbreviations are used in this manuscript:

AJ adherens junction
Ang-2 angiopoietin-2
CI cell index
EC endothelial cells
ECGM endothelial cell growth medium
FBS fetal bovine serum
hEGF human epidermal growth factor
HRP horseradish peroxidase
HuREC human retinal endothelial cells
(i)BREC (immortalized) bovine retinal endothelial cells
PLVAP plasma lemma vesicle associated protein
REC retinal endothelial cells
TJ tight junction
VEcadherin  vascular endothelial cadherin
VEGEF-A vascular endothelial growth factor-A
VEGFR vascular endothelial growth factor receptor
WB Western blot analyses
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