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Abstract: An increasing body of research indicates that the circulating microbiome plays
a significant role in cancer initiation and progression and the treatment response. The
genomic characteristics of circulating microorganisms may influence the tumor immune mi-
croenvironment, thereby affecting cancer progression and therapeutic outcomes. However,
whether the circulating microbiome can serve as a prognostic biomarker for cervical cancer
patients and its mechanistic role in the tumor immune microenvironment still requires
further investigation. Univariate, Lasso, and multivariate Cox regression analyses were
utilized to identify the circulating microbial signatures associated with overall survival
(OS) in patients with cervical cancer. A circulating Microbial Abundance Prognostic Score
(MAPS) model was constructed based on these findings. A nomogram that integrated
clinical features and MAPSs was developed to predict the OS rates in patients with cervical
cancer. Blood microbiome data were combined with matched tumor RNA-seq data to
analyze the differences in the tumor microenvironment between high- and low-MAPS
groups, elucidating the impact of the MAPS on the tumor immune microenvironment.
Finally, the potential application of the circulating MAPS to predicting the efficacy of
immunotherapy and chemotherapy was assessed. The MAPS predictive model, which
includes 15 circulating microorganisms, has shown independent prognostic value for pa-
tients with cervical cancer. Integrating the MAPS into a nomogram improved the accuracy
of the prognostic predictions. Combined microbial and gene analyses revealed potential
interactions between prognostic tumor microbiomes and the tumor immune microenvi-
ronment. The drug sensitivity analysis indicated the potential of MAPS as a predictor of
chemotherapy’s efficacy. Our findings suggest that circulating microbial signatures hold
promise as novel prognostic biomarkers and may inform personalized treatment strategies
in cervical cancer. Further large-scale and multicenter studies are warranted to validate the
clinical utility of the MAPS.
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1. Introduction
Cervical cancer (CESC) constitutes a pressing global health burden, ranking as the

third most prevalent and lethal gynecological malignancy worldwide in both its incidence
and mortality rates [1]. The traditional research has mainly focused on the impact of the
vaginal microbiome (VMB) on the pathological processes in the pathogenesis of cervical
cancer (CESC), with persistent infection by high-risk human papillomavirus (HPV) be-
ing recognized as a key etiological factor for this disease [2–5]. In recent years, with the
advancement of microbiome research, there has been growing recognition of the poten-
tial role of the circulating microbiome in cancer initiation and progression and immune
regulation [6–8].

The circulating microbiome refers to the bacteria, viruses, and fungi and their metabo-
lites present in the bloodstream. These microorganisms can enter the blood circulation
through various pathways, such as disruption of the gut barrier, oral infections, skin
wounds, and release from tumor tissues [6,9,10]. Studies have shown that the circulating
microbiome can not only influence the host metabolism as distal signaling molecules but
may also affect cancer development by modulating systemic immune responses [11]. Ex-
isting research has demonstrated that the circulating microbiome exhibits characteristic
compositional patterns in several cancers, including early-onset breast cancer, prostate
cancer, colorectal cancer, pancreatic cancer, and hepatocellular carcinoma [12–15]. The vast
microbiota in the host not only help maintain host immune balance but also play a crucial
role in shaping the tumor microenvironment, thereby influencing tumor progression and
the response to therapy [8,16–18].

Although the relationship between the circulating microbiome and various cancers is
gradually being recognized, its specific role in cervical cancer remains unclear, and relevant
studies are still limited. Given the recognized impact of the microbiome on the tumor
immune microenvironment, exploring the potential role of the circulating microbiome in
cervical cancer is significant. This study aims to construct a circulating Microbial Abun-
dance Prognostic Score (MAPS) model based on the abundance features of the circulating
microbiome. The scoring system of this model will be used to group patients, and combined
with tumor immune microenvironment characteristics, its potential application to treatment
response and patient prognoses will be assessed. This study is expected to provide new
insights into the interaction between the circulating microbiome and the immune system,
offering theoretical support for optimizing cancer treatment strategies.

2. Results
2.1. Circulating Microbiome Features Associated with Cervical Cancer Prognosis

To investigate the prognostic value of circulating microbiome features in patients with
cervical cancer, TCGA’s cervical cancer circulating microbiome dataset was analyzed. A
total of 1553 genera were detected across 240 samples. Initially, the univariate Cox regres-
sion analysis identified 142 genera significantly associated with the survival of cervical
cancer (CESC) patients (Figure 1a). Among these, 94 microbial genera were identified as
risk factors (hazard ratio [HR] > 1, p < 0.05), while 48 genera were considered protective
factors (HR < 1, p < 0.05). To refine the prognostic signature further and prevent overfitting,
a Lasso regression analysis was applied using the “glmnet” (version 4.1.8) package in R.
The optimal lambda (penalty parameter) was determined via 10-fold cross-validation by
selecting the value that minimized the partial likelihood deviance (λ. min). In the context
of Lasso regression, the penalty parameter (lambda) plays a crucial role in controlling the
complexity of the model. The lambda parameter penalizes large regression coefficients,
thereby reducing the influence of less relevant genera and promoting sparsity. By applying
cross-validation, we identified the lambda value that struck the best balance between
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the model’s fit and generalizability, ensuring that only the most relevant genera were
retained in the model. The lambda that minimized the partial likelihood deviance was
selected, effectively narrowing down the list of survival-related genera. This approach
helped us to identify the 42 genera with the strongest prognostic relevance while pre-
venting overfitting. Genera with non-zero coefficients under this lambda were retained,
resulting in 42 survival-related genera (Figure 1b,c). Subsequently, a multivariate Cox
regression analysis was conducted using these 42 genera. After adjusting for confound-
ing factors, 15 genera remained statistically significant (p < 0.05) and were considered
independent prognostic indicators for patient survival (Table 1). Among these, eight mi-
crobial genera—Halonatronum, Mastadenovirus, Lambdapapillomavirus, Stanieria, Catonella,
Amycolatopsis, Leifsonia and Rhodothermus—were identified as prognostic risk factors, while
seven genera—Aureimonas, Apibacter, Staphylothermus, Xylella, Oceanimonas, Anaplasma and
Saccharomonospora—were identified as prognostic protective factors.
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Figure 1. Construction and evaluation of a microbiome-associated prognostic model for cervical
cancer patients. (a) A volcano plot illustrating candidate microbial features significantly associated
with overall survival (OS) based on the univariate Cox regression analysis. (b) The selection of
42 microbial features using Least Absolute Shrinkage and Selection Operator (Lasso) regression.
(c) Determination of the optimal lambda value for Lasso regression. (d) Kaplan–Meier survival curve
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for MAPS. (e–h) Kaplan–Meier survival curves for representative microbial features (Lambdapapil-
lomavirus, Mastadenovirus, Oceanimonas, and Staphylothermus). (i) Receiver operating characteristic
(ROC) curves evaluating the predictive performance of the MAPS for 1-year, 3-year, and 5-year
survival rates.

Table 1. Multivariate Cox regression results for the 15 circulating microbial genera in the MAPS
model.

Microorganisms p-Value Coefficient HR (95%CI)

Mastadenovirus <0.001 1.073946 2.93 (1.6420–5.2174)
Lambdapapillomavirus 0.0011 1.002244 2.72 (1.4933–4.9704)

Stanieria 0.0069 0.820008 2.27 (1.2531–4.1141)
Staphylothermus 0.003 −1.05276 0.35 (0.1742–0.6990)

Oceanimonas 0.0055 −0.45548 0.63 (0.4596–0.8749)
Anaplasma 0.0245 −0.8252 0.44 (0.2135–0.8991)
Aureimonas <0.001 −0.7516 0.47 (0.3182–0.6990)

Catonella 0.0071 0.445796 1.56 (1.1289–2.1605)
Xylella 0.0048 −1.13326 0.32 (0.1464–0.7080)

Amycolatopsis 0.0142 0.296814 1.35 (1.0613–1.7059)
Rhodothermus 0.0425 0.503593 1.65 (1.0171–2.6919)

Apibacter <0.001 −0.89583 0.41 (0.2471–0.6746)
Saccharomonospora 0.0443 −0.50069 0.61 (0.3721–0.9873)

Halonatronum <0.001 1.410899 4.1 (2.0107–8.3588)
Leifsonia 0.0148 0.582502 1.79 (1.1208–2.8603)

Furthermore, this study constructed a circulating Microbial Abundance Prognostic
Score (MAPS) model by linearly combining the abundance of the 15 microbial genera
with their multivariate Cox regression coefficients. This model was utilized to assess the
mortality risk of patients.

The optimal cutoff value for the MAPS was calculated using the “maxstat” (version
0.7.25) package in R, with the minimum group size set to greater than 25% and the max-
imum group size set to less than 75%. The final optimal cutoff value was determined
to be −24.843859, based on which patients were stratified into the high- and low-MAPS
groups. Prognostic differences between the two groups were analyzed further using the
“survfit” function from the “survival” (version 3.7.0) package in R, and the significance
of the prognostic differences between groups was assessed using the log-rank test. The
Kaplan–Meier curves and log-rank test results demonstrated that the survival rate of the
CESC patients in the high-MAPS group was significantly lower than that in the low-MAPS
group (Figure 1d). Among the 15 microbial genera identified through the multivariate
Cox regression analysis, we illustrated the impact of four genera—Lambdapapillomavirus,
Mastadenovirus, Oceanimonas, and Staphylothermus—on survival (Figure 1e–h). These
genera were selected based on their strong statistical significance and high prognostic
weight in the model, as reflected by their Cox regression coefficients (Table 1). Among them,
Mastadenovirus demonstrated potential in subsequent discussions regarding its prognostic
and biological significance in cervical cancer. This focused illustration highlights repre-
sentative prognostic features while ensuring the clarity and interpretability of the results.
Finally, the predictive performance of the MAPS for the 1-year, 3-year, and 5-year survival
rates was evaluated using a ROC analysis with the “pROC” (version 1.18.5) package in R.
The area under the curve (AUC) values were 0.97, 0.97, and 0.99, respectively (Figure 1i). To
validate the MAPS model further, we constructed both a Random Survival Forest (RSF) and
a DeepSurv model using the same 15 microbial features. The AUCs of the RSF model for the
1-year, 3-year, and 5-year survival predictions were 0.82, 0.78, and 0.79, respectively. The
DeepSurv model achieved AUCs of 0.97, 0.95, and 0.97 at the corresponding time points
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(Figure S1). Compared to these models, the MAPS model demonstrated a superior or
comparable prognostic performance, indicating its high robustness and predictive power.

For the details of the RSF and DeepSurv models, see Supplementary Materials S2 and S3.

2.2. MAPS as an Independent Prognostic Indicator for Patients with Cervical Cancer

Utilizing the MAPSs and the clinical features (including age, tumor stage, and M
stage), a multivariate Cox regression analysis was conducted to assess whether the MAPS
could serve as an independent prognostic indicator. By integrating the clinical factors
without the MAPS (Figure 2a) and with the MAPS (Figure 2b), a nomogram survival model
was developed for predicting the 1-year, 3-year, and 5-year survival probabilities of patients
with cervical cancer. In this study, we employed the “rms” (version 6.8.1) package in R to
construct a nomogram model by integrating the survival time, survival status, MAPS, and
clinical factors (tumor stage, M stage, and age) using the Cox regression method. The prog-
nostic significance of these features was evaluated across 240 samples. The concordance
index (C-index) for the model incorporating the MAPS was 0.90, whereas the C-index
for the model without the MAPS was 0.66 (Figure 2c,d). Time-dependent ROC curves
demonstrated that the MAPS significantly improved the prognostic predictive performance.
In summary, the circulating microbiome is closely associated with the prognosis of pa-
tients with cervical cancer, and the MAPS model, comprising 15 microbial genera, holds
significant value in prognostic prediction.
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the MAPS for predicting the 1-, 3-, and 5-year survival probabilities in cervical cancer patients.
(b) Comparison with A: a nomogram model with the MAPS and clinical factors for predicting the 1-,
3-, and 5-year survival probabilities in cervical cancer patients. (c) The time-dependent ROC analysis
showing the performance of the nomogram models without the MAPS. (d) The time-dependent ROC
analysis showing the performance of nomogram models with the MAPS. (e,f) Box plots showing the
relationship between the MAPS and clinical characteristics in cervical cancer patients (**** p < 0.0001,
** p < 0.01, * p < 0.05, ns = not significant, p > 0.05). (g) A heatmap illustrating the relationships between
15 microbial features and various clinical characteristics. (h) A volcano plot showing differentially
expressed genes (DEGs) between high- and low-MAPS groups in tumors, as determined by DESeq2
(p < 0.05, |log2FC| > 1). (i) A Venn diagram depicting the overlap between differential genes and
immune genes in the ImmPort database.

2.3. The MAPS Is Closely Associated with the Clinical Features of Patients with Cervical Cancer

To explore the relationship between the MAPS and the clinical features of patients
with cervical cancer further, this study stratified patients into high- and low-MAPS groups
based on their MAPSs. Differences in the clinical features between the two groups were
analyzed. The results revealed that the MAPSs were significantly correlated with several
key clinical features, including the patients’ pathological M stage, pathological N stage,
and pathological T stage (Figures 2e,f and S2). Additionally, a heatmap was constructed to
visualize the abundance patterns of the 15 prognostic microbiota genera across all samples,
with the samples ordered by MAPS and annotated with clinical variables including M
stage, N stage, and overall clinical stage, highlighting the potential associations between
the microbial features and clinical characteristics. These analyses indicate that MAPSs
are closely associated with cervical cancer prognosis. The patients in the high-MAPS
group tended to exhibit poorer prognoses, suggesting that the MAPS may serve as a
potential prognostic indicator. Furthermore, the potential of this scoring system for clinical
application warrants further exploration in future studies to guide personalized treatment
strategies for patients with cervical cancer. Collectively, these results demonstrate that the
MAPS is closely linked to the clinical features of patients with cervical cancer and may play
a significant role in the clinical management of the disease.

2.4. The Integrated Analysis Reveals Potential Immune–Microbial Interactions

Based on the matched tumor RNA-seq data from patients with cervical cancer,
627 differentially expressed genes (DEGs) (p < 0.05, |log2FC| > 1) were identified be-
tween the high-MAPS and low-MAPS groups, effectively distinguishing the two groups
(Figure 2h).

Additionally, based on the ImmPort database, 94 immune-related differentially ex-
pressed genes (p < 0.05, |log2FC| > 1) were identified in the tumors between the high- and
low-MAPS groups (Figure 2i).

The GO and KEGG enrichment analyses revealed that these immune-related differen-
tially expressed genes (DEGs) are extensively involved in multiple biological processes and
signaling pathways. Specifically, as shown in Figure 3a, the DEGs are significantly associ-
ated with immune responses, cell signaling, chemokine activity, and cytokine–cytokine re-
ceptor interactions, indicating their important roles in immune regulation and intercellular
communication. Moreover, the GO analysis in Figure 3b highlights enrichment in processes
related to secretory granules and extracellular regions, suggesting that these genes may
participate in secretion or extracellular signaling modulation. Figure 3c demonstrates that
these DEGs are also enriched in receptor binding and cytokine activity, further emphasizing
their critical roles in signal transduction and immune modulation. The KEGG pathway
analysis shown in Figure 3d reveals the significant enrichment of DEGs in inflammation-
and immunity-related pathways, including the TNF signaling pathway, the NF-kappa B
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signaling pathway, and the IL-17 signaling pathway. These findings support the potential
involvement of DEGs in immune diseases and inflammatory responses. Collectively, these
results suggest that these DEGs play key roles in immune responses, signal transduction,
cytokine activity, and inflammatory processes and may provide new insights into disease
mechanisms and potential therapeutic targets (Figure 3a–d). Furthermore, the univariate
Cox regression analysis combined with the Kaplan–Meier survival analysis of the immune-
related DEGs identified 11 immune-related DEGs significantly associated with the survival
of patients with cervical cancer (Table 2).
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expressed genes (DEGs). (a–d) GO and KEGG enrichment analyses based on immune-related DEGs.
(e–h) Kaplan–Meier survival curves for representative immune-related DEGs (CHIT1, CXCL2, CXCL8,
and EPGN).

Among these, CHIT1, FAM3B, and IL12B were identified as favorable prognostic
factors, while CXCL2, IL1A, EREG, TL1B, STC1, CXCL8, EPGN, and TNF were identified
as prognostic risk factors (Figures 3e–h and S3).



Int. J. Mol. Sci. 2025, 26, 4293 8 of 16

Table 2. Immune-related differentially expressed genes in cervical cancer.

Genes p-Value HR (95%CI)

CHIT1 0.01631 0.71 (0.5346–0.9385)
CXCL2 <0.001 1.02 (1.009–1.021)
CXCL8 <0.001 1.01 (1.003–1.007)
EPGN 0.002013 1.07 (1.023–1.108)
EREG 0.0001732 1.12 (1.055–1.187)

FAM3B 0.02064 0.96 (0.9297–0.994)
IL1A <0.001 1.02 (1.013–1.036)
IL1B <0.001 1.04 (1.02–1.051)

IL12A 0.004497 0.46 (0.2687–0.7857)
STC1 0.004388 1.01 (1.003–1.015)
TNF <0.001 1.09 (1.048–1.123)

The correlation heatmap (Figure 4a) between the 15 microbial genera, the MAPSs,
and 11 survival-related immune DEGs revealed that the MAPSs exhibited strong positive
correlations with IL1B, CXCL8, and EREG while showing a strong negative correlation
with FAM3B. Additionally, the immune infiltration analysis conducted using CIBERSORT
(Figure 4b) demonstrated a significant difference in the CD8+ T-cell infiltration between the
high- and low-MAPS groups, with a higher expression observed in the low-MAPS group.
Higher levels of infiltration of CD8+ T cells are generally associated with better prognostic
outcomes, which is reflected in the low-MAPS group. The differential characteristics of the
MAPS in the immune infiltration analysis provide significant theoretical foundations and
potential research directions for subsequent studies on immune checkpoint inhibitors and
drug sensitivity analyses.

2.5. The Impact of MAPS Expression on Immune Checkpoints and Drug Sensitivity

Recent studies have demonstrated that the microbiota play a significant role in mod-
ulating responses to cancer therapies. Patients with high expression of PD-1 or CTLA-4
may derive greater benefits from immunotherapy [19]. In this study, we found a significant
difference in the expression levels of the PD-1 immune checkpoint molecule between the
high-MAPS and low-MAPS groups. Therefore, the predictive value of the circulating
MAPS for immunotherapy was explored through a TIDE (Tumor Immune Dysfunction and
Exclusion) immune therapy response assessment. However, no significant differences were
observed between the high-MAPS and low-MAPS groups (Figure 4c–e). This suggests that
the MAPS may have limited utility in predicting the efficacy of immunotherapy.

To elucidate the relationship between MAPS and drug sensitivity further, we pre-
dicted the IC50 values of various drugs in patients with cervical cancer (CESC) using
the “oncoPredict” (version 1.2) package. The results indicated significant differences in
the therapeutic efficacy of certain drugs between the high- and low-MAPS groups. This
study found that the IC50 values for six drugs—AGI-6780_1634, AZD6482_2169, Dapori-
nad_1248, Tozasertib_1096, MK-2206_1053, and Navitoclax_1011—were significantly higher
in the high-MAPS group compared to those in the low-MAPS group (Figures 4f,g and S2),
indicating that the patients with CESC in the high-MAPS group exhibited greater resis-
tance to these drugs. Conversely, the IC50 values for seven drugs—Osimertinib_1919,
PD0325901_1060, SCH772984_1564, Selumetinib_1736, Dasatinib_1079, Ulixertinib_1908,
and WIKI4_1940—were significantly higher in the low-MAPS group compared to those in
the high-MAPS group (Figures 4h,i and S4), suggesting that patients with CESC with high
MAPSs may benefit more from these drugs.
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Figure 4. Association analysis of MAPS with immune microenvironment, immune checkpoints,
and drug sensitivity (** p < 0.01, * p < 0.05, ns = not significant, p > 0.05). (a) Heatmap illustrating
the relationships among the abundance of 15 microbial species, MAPS, and 11 survival-associated
immune-related DEGs. (b) Immune infiltration analysis performed using CIBERSORT and visualized
using box plots. (c–e) Differential expression and variation of TIDE, PD-1, and CTLA4 between
the high- and low-MAPS groups. (f–i) Box plots and correlation plots comparing the IC50 values
of AGI-6780_1634, AZD6482_2169, Osimertinib_1919, and PD0325901_1060 between the high- and
low-MAPS groups.
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3. Discussion
In recent years, research on novel biomarkers has primarily focused on the in-depth

analysis and exploration of genomic and proteomic profiles [20,21]. However, with the
rapid development of high-throughput sequencing technologies and continuous improve-
ments in data analysis tools, the role of the circulating microbiota in cancer has been more
thoroughly investigated. These technological advancements have provided robust support
for further progress in this field [22,23]. Studies have shown that the potential role of micro-
biota in cancer is becoming increasingly prominent, with their critical involvement in cancer
diagnosis and pathogenesis and the treatment of malignant tumors receiving widespread
attention [24–28]. Additionally, recent research on breast cancer patients has revealed that
the features of the microbiome are closely associated with breast cancer prognosis and
exhibit significant clinical predictive value [29]. Relevant circulating microbiota have been
confirmed as reliable prognostic tools for patients with nasopharyngeal carcinoma and
provide a basis for the treatment decisions in patients with varying degrees of malignant
progression [30].

Through a systematic analysis of the features of the microbiome, this study revealed a
potential association between the circulating microbiota and cervical cancer progression,
successfully constructing a circulating Microbial Abundance Prognostic Score (MAPS)
model based on 15 circulating microbial genera. This model demonstrated significant
correlations with patients’ overall survival (OS) and exhibited a robust prognostic predic-
tive performance when validated in an independent cohort, providing a novel tool for
individualized prognosis assessments in patients with cervical cancer. Further research
indicated that the characteristic microorganisms in the MAPS may influence the disease
progression by modulating the tumor immune microenvironment [31]. Notably, this study
proposed that the MAPS could serve as a potential biomarker for predicting the sensitivity
to chemotherapy in patients with cervical cancer, offering new insights for optimizing treat-
ment strategies. These findings contribute to a deeper understanding of the mechanisms
underlying immune–microbial interactions during tumor initiation and progression while
providing theoretical foundations and potential intervention targets for precision medicine
in cervical cancer. For example, we observed that the expression of immune checkpoint
genes, such as PD-1, differed significantly between the high- and low-risk MAPS groups,
suggesting potential differences in immune regulation. However, the TIDE analysis did
not reveal a significant difference in the predicted response to immunotherapy between
the two groups, indicating that risk stratification alone may have limitations in forecast-
ing immunotherapeutic efficacy. Nevertheless, the IC50-based drug sensitivity analysis
revealed significant differences in the responses to several targeted agents between the
MAPS groups, suggesting the potential role of MAPS in guiding personalized targeted
therapies. These findings suggest that while the MAPS may offer insights into the immune
landscape and therapeutic response, further validation is warranted to clarify its role in
clinical decision-making.

To interpret the biological relevance of the identified microbial signatures further, we
performed GO and KEGG enrichment analyses based on the differentially expressed genes
(DEGs) between the high- and low-risk MAPS groups. The results revealed that these DEGs
were predominantly enriched in immune-related biological processes, such as immune
response, cytokine activity, and chemokine signaling, indicating that the microbiome may
influence host immunity and tumor behavior through immune regulation. In addition, the
KEGG pathway enrichment demonstrated strong associations with key inflammatory and
tumor-related pathways, including the TNF signaling, NF-kappa B, and IL-17 pathways.
These findings suggest that the prognostic value of MAPS is not merely correlative but
may reflect real biological mechanisms through which the microbiota contribute to tumor
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immune evasion or immune activation. This biologically grounded evidence further
supports the hypothesis that circulating microbiomes may serve as a bridge connecting
systemic immune dysregulation and tumor progression in cervical cancer.

In this study, some of the microbial genera constituting the MAPS have been previ-
ously reported in various studies. Emerging evidence suggests that certain intracellular
bacteria may influence tumorigenesis by modulating the host immune system and altering
the tumor microenvironment [17]. The observed variation in the abundance of Catonella is
consistent with findings from oral cancer microbiome research, reinforcing the potential
association between the oral microbiota and tumor development [32,33]. As a typical
oral commensal, Catonella may gain access to distant anatomical sites, such as the cervix,
through hematogenous dissemination, particularly under conditions of mucosal injury
(e.g., oral ulcers or periodontitis), thereby contributing to local immune dysregulation and
a pro-tumorigenic niche. Similarly, Mastadenovirus has been extensively documented in
association with respiratory tract infections (particularly in pediatric populations), conjunc-
tivitis, gastroenteritis, and urinary tract infections, and it possesses the capacity to cause
severe systemic infections in immunocompromised individuals [34]. Notably, its detection
in fecal samples suggests possible colonization in the gut, supporting the hypothesis that it
may influence the cervical microenvironment via the gut–reproductive tract axis [35,36].
This axis, which is gaining increasing attention in microbiome research, describes the
immunological and microbial interplay between the gut and reproductive systems [37],
raising the possibility that Mastadenovirus may contribute to cervical cancer progression by
modulating local or systemic immunity. The remaining microbial genera identified in this
study have not yet been reported in disease-related contexts. Nevertheless, their presence
in cervical cancer patients warrants further investigation to elucidate their potential roles
in tumor biology and prognosis.

Despite the promising performance of the MAPS in predicting cervical cancer prog-
nosis, certain limitations remain. Firstly, the lack of independent datasets hinders the
validation of our findings. Secondly, the potential contamination inferred from the sequenc-
ing data may compromise the reliability of the dataset. Furthermore, variations in the
microbiome analysis techniques could introduce bias, and the possibility of false positives
cannot be ruled out. These factors may affect the robustness and generalizability of the
results. To address these potential biases, it is essential to adopt standardized protocols for
microbiome analysis and validate the findings using independent, multicenter datasets.
Therefore, there is an urgent need for comprehensive, prospective, multicenter studies in
the future to validate the prognostic utility of circulating microbiome features further and
mitigate these potential biases.

In summary, this study preliminarily reveals the correlation between circulating mi-
crobiome features and the tumor microenvironment, as well as prognosis, in patients with
cervical cancer. As an increasing number of microorganisms have been confirmed to be
closely associated with the development and progression of various malignancies [38–43],
the microbiome demonstrates significant potential in cancer research, positioning it as a key
focus for future studies. The contribution of the microbiome to cancer biology is expected
to become a pivotal area of cancer research in the next decade [44].

4. Materials and Methods
4.1. Data Collection

We acquired data from all patients with cervical cancer (n = 240) with available
circulating microbial data, tumor transcriptomic data, and survival information across all
stages and grades. The transcriptomic data were obtained from The Cancer Genome Atlas
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(TCGA) database (https://portal.gdc.cancer.gov/projects/TCGA-CESC (accessed on 1 July
2024)).

The microbiome data were derived from prior cancer microbiome studies, including
whole-genome and transcriptomic sequencing data for cervical cancer from TCGA [45].
Advanced data processing tools were employed to minimize the sample contamination,
ensuring that the data were solely based on whole-transcriptome sequencing results [46].
The final dataset comprised paired circulating microbiome and transcriptomic data, along
with survival and clinical information from the samples.

4.2. The Construction of the Circulating Microbial Abundance Prognostic Score (MAPS) Model

Using the cervical cancer blood microbiome data from TCGA on 240 samples, cir-
culating microbial prognostic features were selected, and a robust prognostic model was
constructed using the “survival” (version 3.7.0), “glmnet” (version 4.1.8), and “survminer”
(version 0.4.9) packages in R (version 4.4.0). Candidate microbial features significantly
associated with overall survival (OS) were identified through a univariate Cox regression
analysis (p < 0.05), followed by Lasso regression with 10-fold cross-validation to refine
the feature set. Multivariate Cox regression was then applied to selecting independent
prognostic features (p < 0.05), and the circulating Microbial Abundance Prognostic Score
(MAPS) was calculated for each patient by linearly combining the OS-related microbial
abundance with the multivariate Cox regression coefficients:

MAPS = ∑15
i=1(risk coe f f icient o f microbe i)× (abundance o f microbe i)

For details on the Cox regression and Lasso models, see Supplementary Materials S1.
The optimal cutoff value for stratifying the patients into the high-MAPS and low-

MAPS groups was determined using the “maxstat” (version 4.1.8) package in R. The
predictive performance of the MAPS for overall survival (OS) was evaluated using Kaplan–
Meier curves and a receiver operating characteristic (ROC) analysis. Subsequently, a clinical
correlation analysis was performed by integrating the collected clinical features (age, M
stage, N stage, tumor stage, and status) with the MAPSs.

To facilitate the prediction of the 1-year, 3-year, and 5-year overall survival (OS) rates
in patients with cervical cancer, a prognostic nomogram model was developed by inte-
grating the clinical features (age, M stage, and tumor stage) with the MAPSs using the
“rms” (version 6.8.1) package in R. The performance of the model was assessed using a
time-dependent receiver operating characteristic (ROC) analysis and the concordance index
(C-index).To characterize the landscape of the tumor microenvironment in the patients in
the high-MAPS and low-MAPS groups, matched tumor transcriptomic data from these two
subtypes were analyzed. The “DESeq2” (version 1.44.0) package was used to identify totally
differentially expressed genes (DEGs) between the groups. Subsequently, immune-related
DEGs were filtered based on the ImmPort database (https://www.immport.org/home
(accessed on 15 July 2024)). Furthermore, an enrichment analysis was conducted to func-
tionally annotate the immune-related differentially expressed genes (DEGs) and explore
their involvement in biological processes and pathways. The analysis was performed using
the Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform
(https://david.ncifcrf.gov/tools.jsp (accessed on 15 September 2024)), which provides com-
prehensive functional interpretations of large gene lists. This approach helps to elucidate
the biological significance of immune-related DEGs and their potential contributions to
cervical cancer’s progression and immune regulation.

https://portal.gdc.cancer.gov/projects/TCGA-CESC
https://www.immport.org/home
https://david.ncifcrf.gov/tools.jsp
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4.3. Prognostic and Correlation Analyes of the Immune-Related DEGs

To comprehensively assess the prognostic significance of immune-related differentially
expressed genes (DEGs) in cervical cancer, we conducted both a univariate Cox regression
analysis and a Kaplan–Meier survival analysis. Univariate Cox regression was performed
to identify DEGs significantly associated with overall survival, and Kaplan–Meier survival
curves were generated to visualize the differences in survival between groups with high
and low expression of key DEGs. The log-rank test was used to determine the statistical
significance. Furthermore, we explored the potential associations between immune-related
DEGs and circulating microbial prognostic features. A Spearman’s correlation analysis was
employed to evaluate the relationships between the DEG expression levels and microbial
abundance, aiming to uncover potential interactions between the immune landscape and
the microbiome in cervical cancer prognosis. These findings provide insights into the
interplay between host immune responses and microbial signatures, which may contribute
to personalized therapeutic strategies.

4.4. The Immune Infiltration Analysis

CIBERSORT, which provides expression data for 22 immune cell types and functional
states (LM22), was used to convert the gene expression data from TCGA’s cervical cancer
samples into the immune cell composition. CIBERSORT allows for precise estimations of
the relative abundance of different immune cell types within tumor samples, helping to
reveal the characteristics of the immune microenvironment. In this analysis, we stratified
the cervical cancer samples into high- and low-MAPS groups and performed an immune
infiltration analysis.

By comparing the immune infiltration characteristics between the high- and low-
MAPS groups, we were able to explore the potential role of the immune cells in cervical
cancer and evaluate the impact of the abundance of different immune cell types on patient
prognosis. A further analysis revealed differences in the distribution of the immune cells
in the tumor microenvironment, which may be closely associated with tumor immune
evasion mechanisms and therapeutic responses.

4.5. The Drug Sensitivity Analysis

In this study, the predictive value of the MAPS for the efficacy of immunotherapy and
chemotherapy was explored. Tumor Immune Dysfunction and Exclusion (TIDE) scores
were used to predict the immunotherapy responses for each patient. The “oncoPredict” (ver-
sion 1.2) package in R was employed to estimate the half-maximal inhibitory concentration
(IC50) of the drugs and predict the drug sensitivity for each patient.

4.6. The Statistical Analysis

The statistical analyses and graphical visualizations were performed using R (version
4.4.0) and Sangerbox (http://sangerbox.com/home.html (accessed on 15 October 2024)).
Comparisons of continuous variables between groups were conducted using the t-test
or Wilcoxon’s rank-sum test. A p-value < 0.05 was considered statistically significant
(two-tailed).

5. Conclusions
This study successfully identified 15 circulating microbial genera significantly associ-

ated with patient survival and constructed a circulating Microbial Abundance Prognostic
Score (MAPS) model which demonstrated a robust performance in predicting the prog-
nosis of patients with CESC. Additionally, the integrated analysis preliminarily revealed
potential interaction mechanisms between features of the circulating microbiome and the

http://sangerbox.com/home.html
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tumor immune microenvironment. A functional enrichment analysis of DEGs between the
MAPS-defined groups revealed immune-related biological pathways, suggesting potential
immunomodulatory roles of the microbiota. Furthermore, the integration of the MAPS
into a nomogram analysis alongside the M stage and tumor stage improved the predictive
accuracy of the model, further supporting the clinical utility and independent prognostic
value of the MAPS. The drug sensitivity analysis further indicated that the MAPS model
holds significant potential as a biomarker for predicting the efficacy of chemotherapy in
patients with CESC. These findings provide novel insights into the interactions among
microbiota, tumors, and the immune system, offering valuable theoretical references for
precision medicine research and individualized treatment strategies for CESC.
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