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Abstract: There is an escalating need to comprehend the long-term impacts of nuclear
radiation exposure since the permeation of ionizing radiation has been frequent in our
current societal framework. A system evaluation of the microbes that reside inside a
host’s colon could meet this knowledge gap since the microbes play major roles in a
host’s response to stress. Indeed, our past study suggested that these microbes might
break their symbiotic association with moribund hosts to form a pro-survival condition
exclusive to themselves. In this study, we undertook metagenomics and metabolomics
assays regarding the descending colon content (DCC) of adult mice. DCCs were collected
1 month and 6 months after 7 Gy or 7.5 Gy total body irradiation (TBI). The assessment of the
metagenomic diversity profile in DCC found a significant sex bias caused by TBI. Six months
after 7.5 Gy TBI, decreased Bacteroidetes were replaced by increased Firmicutes in males, and
these alterations were reflected in the functional analysis. For instance, a larger number of
networks linked to small chain fatty acid (SCFA) synthesis and metabolism were inhibited
in males than in females. Additionally, bioenergy networks showed regression dynamics in
females at 6 months post-TBI. Increased accumulation of glucose and pyruvate, which are
typical precursors of beneficial SCFAs coupled with the activated networks linked to the
production of reactive oxygen species, suggest a cross-sex energy-deprived state. Overall,
there was a major chronic adverse implication in male mice that supported the previous
literature in suggesting females are more radioresistant than males. The sex-biased chronic
effects of TBI should be taken into consideration in designing the pertinent therapeutics.

Keywords: ionizing radiation; total body irradiation; sex-bias; metagenomics; metabolomics;
descending colon content; chronic effect; time-course study

1. Introduction
A long history of radiation exposures caused by accidental, medical, environmental,

or terrorist attacks has found a highly radiation-sensitive target, namely the gastrointestinal
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(GI) tract [1]. Radiation-induced damage to the GI tract emerged as a major chronic and
acute subsyndrome of radiation injury that often results in fatality due to multisystem
organ failure, sepsis, and complications due to bleeding. The highly sensitive nature of the
GI tract is attributed to the fact that its epithelial barrier is made of rapidly dividing cells
that could be easily damaged by irradiation, which can interrupt its cellular progression [1].
The compromised integrity of the GI tract usually leads to inflammation, the leaking of the
colon contents into the bloodstream, and changing the ecosystem of the colon’s microbial
community. Studying radiotherapy outcomes revealed that intestinal permeability is often
restored within a week by the regenerative actions of surviving stem cells. However, dys-
biosis in the intestinal microbial ecosystem has far-reaching consequences that have been
associated with obesity [2] and multiple disease pathologies, including cancer [3,4], car-
diovascular disorder [5], immune dysfunction [6], and several psychological illnesses [7,8].
There are multiple ongoing efforts that aim to restore the pre-stress healthy compositions
of the gut microbiome [9–12] with the hope that the reverse engineering of the ecosystem
would revitalize the host. The process of reverse engineering the microbial composition
needs to take into account an array of cofactors, such as lifestyle alterations [13], age [14],
and sex [15], since these cofactors can alter microbial composition [16–18].

The microbial community in and on the host body differs between males and females,
where females host a larger abundance of microbial community than males; the ratio
between the bacterial cells to host cells varies from 1.3 in the adult male to 2.2 in the
adult female [19], and bacteria encompass the largest share of total abundance of resident
microbes. This high microbial cellular load in adult females is attributed to a unique
and complex ecosystem of microbes that is colonized in the female genital tract [20] and
vagina [21,22]. In addition to the metagenomics reports, the multi-omics studies using
animal models have indicated that ionizing radiation causes differential acute and chronic
impacts on male and female cohorts [23,24]. This information potentially underscored the
need to formulate a personalized medication for radiotherapy [25].

Age is another important cofactor that can control the microbial ecosystem [14]. For
instance, microbial shifts that happen during pregnancy or childhood have been linked
to many later health complications, such as obesity [26], diabetes [27], food allergies [28],
and neurological disorders [29]. Among radiotherapeutic patients, gastrointestinal com-
plications remain a long-term side effect and a major adverse effect on their quality of
life [30].

Interestingly, a distinct set of microbes and microbial metabolites have been linked
to those mice that survived irradiation, and a similar outcome was suggested within a
small human cohort [31]. Hence, the evidence-supported hypothesis of the current study is
that the shifts in the gut microbiome due to irradiation would differ between sexes, which
might play a role in determining the chances of surviving lethal radiation.

Our past study suggested a near breakdown of the symbiotic activities between the
host and the bacteria colonized in the rodent’s descending colon at 9 days after exposure
to lethal radiation [32]. We postulated that at times of severe stress, when the resources of
bioenergy become limited, but its demand escalates, the symbiotic relationship between
the host and microbes becomes interrupted. At this stage, the microbes possibly enter their
exclusive pro-survival mode, undermining the host’s health. A tangential support for this
hypothesis was drawn from independent studies that reported higher longevity of the
germ-free mice than that of the wild-type mice [33,34] since the germ-free mice were not
obligated to share their biological resources with the microbes. Taking this observation into
account, the present study was designed to understand the long-term impacts of radiation
on the bacterial community colonized in descending colon contents (DCCs). In addition
to screening the bacterial composition in DCC, we probed the metabolites extracted from
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DCC. Metabolites and biochemicals are the primary messengers that are shared within the
communication grid, encompassing the ecosystem built upon the host and microbes [35–38].
For instance, the metabolites and biochemicals are involved in the majority of biological
events that include genomic, epigenomic, and proteomic activities [35,36]; further, the
metabolites are the typical intermediates of bionetworks and derivatives of the biological
functions that take place in host cells and microorganisms alike [39]. There are around
200,000 metabolites in humans that are linked to nearly 1900 metabolic enzymes encoded in
the genome [40]; on the other hand, there are merely 16,000 metabolites that are produced
by microbes, of which about 11% are produced by microbes only, and rest of them are
synthesized by both human and microbes [41]. Even though the host and microbes share a
similar size of gene loads, the host produces more than 10 times the number of different
metabolites, potentially due to the more complex biological functions that are undertaken
by the host in comparison to the microbe. Two major classes of metabolites produced
by microbiomes are secondary bile acid (SBA) and short chain fatty acids (SCFAs). In
the present work, we have curated the microbiome-specific metabolites and pertinent
biofunctions. By integrating this knowledge with sex-specific metabolites, we aimed to
understand the sex-specific biomechanisms involved in responding to the long-term effects
of radiation.

2. Results
C57BL/6 male and female mice were exposed to Co-60 gamma irradiation at two

doses, namely 7 Gy and 7.5 Gy (Figure 1). Descending colon contents were collected
1 month and 6 months post-irradiation, sorted in two aliquots, and processed for 16S
rRNA metagenomics and global metabolomics assays, respectively. Our previous commu-
nication [42] reported the body weight and complete blood count (CBC) of the mice that
were exposed to a much wider dosimetry and were subsequently investigated for a long
time range. From that data pool, we curated the parameters of current interest (e.g., 7 Gy
and 7.5 Gy and the time points 1 m and 6 m post-irradiation) and processed them using
the 3-way ANOVA model (Table S1). All blood cell types were found to be significantly
depleted in the irradiated mice, and a majority of the cell types, including neutrophils,
monocytes, red blood cells, and platelets, were differentially abundant (p < 0.05) between
males and females (Table S1). The cumulative factor, namely Sex × RD, explained the
variability in neutrophils and lymphocytes.

2.1. Sex-Biased Bacterial Diversity Profile

The alpha diversity profiles of DCC microbes are presented in Figure 2A–C. Three-way
ANOVA (Table 1) identified sex as the primary driving factor that caused alterations in
alpha diversity. In addition, Sex × RD, Sex × TSI, and Sex × RD × TSI appeared as
significant factors explaining alpha diversity. RD emerged as the leading cofactor that
explained the significant changes in the Chao-1 index only. Further, alpha diversity was
measured separately for male and female cohorts. For a male population, RD turned out
to be the major cofactor explaining the shift in alpha diversity. Likewise, for the female
population, RD turned out to be a major cofactor explaining the changes in Shannon and
Simpson alpha diversity but not the Chao-1 index.

The box and whisker plots in Figure 2A–C depict sex-specific longitudinal trends in
alpha diversity. In females, at 6 months post-TBI, the alpha diversity was significantly
increased in the 7 Gy TBI cohort, but it was reduced in the 7.5 Gy TBI cohort. In the male
cohort, a significant reduction in alpha diversity was noted 1 m post-radiation for both
doses of radiation.
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Figure 1. Outline of the research strategy. Mice were exposed to 7 Gy and 7.5 Gy total body irradi-
ation (TBI), and their descending colon contents (DCCs) were collected at 1 month (1 m) and 6 
months (6 m) post-TBI. In parallel, non-irradiated control’s DCCs were collected with age-matched 
1 m and 6 m time periods. All DCC collection was conducted post-euthanasia. 
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(TBI), and their descending colon contents (DCCs) were collected at 1 month (1 m) and 6 months
(6 m) post-TBI. In parallel, non-irradiated control’s DCCs were collected with age-matched 1 m and
6 m time periods. All DCC collection was conducted post-euthanasia.

Table 1. Diversity profile analysis to understand the impacts of various cofactors, namely sex (male
and female), dose (TBI doses, 7 Gy and 7.5 Gy), and time (time since irradiation, 1 month and
6 months post-TBI), on alpha and beta diversity. This table shows the levels of significantly altered
diversity within and across the bacterial community in DCC. The diversity values are displayed in
Figure 2. NS: non-significant; * p < 0.05; ** p < 0.01; *** p < 0.001; crossed box: non-applicable cofactor;
RD; radiation dose; TSI: time since irradiation.

Diversity Index Cohort Sex RD TSI Sex × RD RD × TSI Sex × TSI Sex × RD × TSI

Alpha

Shannon

All ** NS NS *** ** NS **

Male -- *** NS -- * -- --

Female -- ** NS -- ** -- --

Simpson
All * NS NS *** * NS *

Male -- * NS -- NS -- --

Female -- * NS -- * -- --

Chao-1

All ** * NS ** * NS ***

Male -- *** NS -- *** -- --

Female -- NS NS -- *** -- --

Beta/PERMANOVA

All *** *** * *** * *** ***

Male -- ** NS -- ** -- --

Female -- *** *** -- *** -- --
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test; **** p < 0.0001, *** p < 0.001; ** p < 0.01; * p < 0.05. (A) Shannon index; (B) Simpson index; (C) 
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Figure 2. Diversity profile of the bacterial community in DCC. Figure (A–C): Alpha-diversity profile
in box and whisker plots. Pertinent legends are at the bottom of each plot. Three-way ANOVA was
computed to understand the impacts of sex, radiation dose (RD), and time since irradiation (TSI) on
the alpha diversity profile. In these figures, changes in individual levels are captured by Welch’s
t-test; **** p < 0.0001, *** p < 0.001; ** p < 0.01; * p < 0.05. (A) Shannon index; (B) Simpson index;
(C) Chao-1 index. Figure (D–F): Beta-diversity profile in Principal Coordinate Analysis (PCoA) plot.
Pertinent legends are on the right side of each plot. (D) All data points were plotted using a Jaccard
index; subsequently, the male and female cohorts were plotted in (E) and (F), respectively.

A PCoA plot using the Jaccard algorithm (Figure 2D) explains nearly 18.5% of beta
diversity (PC1: 10.42% and PC2: 8.12% of the total variance). The samples were primarily
clustered by sex. A 3-way PERMANOVA analysis (Table 1) using the Jaccard algorithm
found sex and RD to be the leading cofactors in explaining beta diversity; p < 0.001 in both
cofactors operating exclusively and cumulatively.

To understand the effects of sex, we re-plotted the male and female samples sepa-
rately. Figure 2E displays the PCoA plot associated with females, where PC1 and PC2 ex-
plained 11.4% and 17.5% of the total variance, respectively. The samples were clustered in
five groups; 7 Gy-1 m and 7.5 Gy-1 m are clustered together, and the rest of the samples,
namely 0 Gy-1 m, 0 Gy-6 m, 7 Gy-6 m, and 7.5 Gy-6 m, are clustered separately. Radiation
dose and its cumulative effects with time (RD × TSI) emerged as the primary factors
explaining the beta diversity in females. This trend was nearly mirrored in the PCoA plot
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of the beta diversity in males (Figure 2F). Here, PC1 and PC2 explained 16.7% and 9.9% of
the total variance, respectively, and the samples were clustered in six groups: for males, the
7 Gy-1 m and 7.5 Gy-1 m are separately clustered. RD and TSI both emerged as the driving
forces to explain the beta diversity in the male population. Figure S1A–C presented a PCoA
plot generated by a weighted Unifrac algorithm, and its clustering pattern was similar to
the Jaccard algorithm (Figure 2D–F).

2.2. Differentially Abundant Taxa Under Bacterial Kingdom

The abundance profiles of all bacterial taxonomic levels are presented in Figure S2 and
listed in Table S2. At the phylum level (Figure S2A), Firmicutes and Bacteroidetes aggre-
gated maximum abundances, namely 57.3% and 37.0% of total phylum-level abundance.
Verrucomicrobia and Proteobacteria were the third and fourth most abundant phyla, aggre-
gating, on average, around 3.7% and 0.5% of total abundance. The remaining 1.1% of the
abundance profile was populated by a combination of 21 phyla and unclassified entities.

A multiple comparative analysis (Table 2) of these four phyla found a significant
sex bias (p < 0.05) in the shifting of the abundances of Firmicutes and Verrucomicrobia.
Furthermore, the cumulative association between dose and time (RD × TSI) emerged as
the significant cofactor (p < 0.05) causing the shift in the abundances of Firmicutes and
Verrucomicrobia in the male cohort only.

Table 2. Impacts of different cofactors, namely sex (male and female), dose (TBI doses, 7 Gy and
7.5 Gy), and time (time since irradiation, 1 month and 6 months post-TBI) on the abundance profile
of different phyla. This table shows the levels of significantly shifted bacterial phylum level abun-
dance. The abundance profile of these bacterial taxa is reported in Figure S3. NS: non-significant;
* p < 0.05; ** p < 0.01; *** p < 0.001; crossed box: non-applicable cofactor; RD; radiation dose; TSI: time
since irradiation.

Phylum Cohort Sex RD TSI Sex × RD RD × TSI Sex × TSI Sex × RD × TSI

Bacteroidetes

All NS NS NS NS NS * NS

Male -- NS NS -- * -- --

Female -- NS NS -- ** -- --

Firmicutes

All ** NS NS NS NS ** **

Male -- NS * -- * -- --

Female -- NS NS -- NS -- --

Proteobacteria

All NS NS * NS NS NS NS

Male -- NS NS -- NS -- --

Female -- NS NS -- NS -- --

Verrucomicrobia

All *** NS NS NS NS NS ***

Male -- NS NS -- * -- --

Female -- NS * -- NS -- --

In males, the abundances of Bacteroidetes (Figure S3B) and Verrucomicrobia (Figure S3C)
significantly decreased from 1 m to 6 m post 7.5 Gy TBI, as these phyla were replaced by
increasing abundance of Firmicutes from 1 m to 6 m post 7.5 Gy TBI (Figure S3A). In contrast,
the abundance profile of Firmicutes showed no changes in females, although the abundance
of Verrucomicrobia in females increased over time independent of the radiation dose.

In both male and female cohorts, the abundance shifts in Bacteroidetes were caused
by the cumulative factor of RD × TSI. In females, the abundance profile of Bacteroidetes
increased by RD × TSI, but this decreased in the male cohort, and a significant reduction
was reported from 1 m to 6 m post-7.5 Gy TBI.
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Sex-specific LEfSe cladograms depicted those taxa that were differentially abundant
due to radiation doses and/or time. Figure 3A,B depict female- and male-specific clado-
grams. Phylogenetic trees originating from Firmicutes and Bacteroidetes show shifts in
abundance in both sexes, although, in males, the perturbations in Bacteroidetes were compar-
atively prominent and mostly driven by RD × TSI. Abundance shifts were reported in the
phylogenetic tree that originated from a low-abundance phylum named Actinobacteria. In
females, one of its branches stemming from the order Coriobacteriales showed a perturbation
caused by RD × TSI, but the same branch in males was perturbed due to radiation only.
Another low-abundant phylum, Cyanobacteria, showed perturbation only in males, and one
of its branches was perturbed due to RD × TSI.

2.3. Differentially Perturbed Networks Linked to the Bacteria in DCC

Table S3A lists those biofunctions that were linked to the bacterial community colo-
nized in the female descending colon. There were no common networks across all four
experimental conditions, namely 1 month and 6 months post-7 Gy or 7.5 Gy TBI, re-
spectively. Conversely, a majority of these networks (103) were perturbed at 6 months
post-7 Gy TBI.

Likewise, there were 143 unique biofunctions that were differentially linked to the
bacterial community (Table S3A) colonized in male descending colons, and 18 of these
networks were common across all four experimental conditions, namely 1 month and
6 months post-7 Gy or 7.5 Gy TBI, respectively (Table S3B). A majority of these networks
(107) were perturbed at 6 months post-7 Gy TBI.
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and/or TSI.

All these abovementioned networks were classified under the following super families:
metabolism of amino acids, carbohydrates, lipids, and xenobiotics, synthesis of SCFA and
neurotransmitters, regulation of bioenergy, immune functions, and homeostasis of purine
and pyrimidine compounds. Table 3 lists those microbiome-related networks that were
differentially regulated by the cumulative factor (Sex × RD × TSI) in at least one of the
four conditions, namely 7 Gy-1 m, 7 Gy-6 m, 7.5 Gy-1 m, and 7.5 Gy-6 m. Based on the
currently available literature [39,43–49], Figure 4 integrates the functional networks with
the major abundant phyla, Bacteroidetes (Figure 4A) and Firmicutes (Figure 4B). An overall
low-abundant phylum, Actinobacteria, was differentially enriched between male and female
mice; integrative functional analysis indicated that Actinobacteria is associated with lactate
synthesis, which was largely inhibited in the male cohorts (Figure S4). Indeed, the study
of the longitudinal regulation of biofunctions suggested a sex bias. For instance, in the
male mice, the networks linked to acetate biosynthesis by Bacteroidetes and Firmicutes were
mostly inhibited 6 m post-TBI.
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Table 3. Superfamilies of the putative networks linked to bacteria in DCC. The networks with
an LDA score of >|3|. Each cell includes the number of activated networks and the number of
inhibited networks, separated by a hyphen (“/”). The cells are colored red, green, and white,
representing the number of activated networks that were more, less, or equal to the number of
inhibited networks, respectively.

Female Male

1 Month TSI 6 Month TSI 1 Month TSI 6 Month TSI

Superfamilies of Networks 7 Gy 7.5 Gy 7 Gy 7.5 Gy 7 Gy 7.5 Gy 7 Gy 7.5 Gy

Carbohydrate metabolism 1/0 0/0 6/0 3/0 0/4 2/4 0/8 0/4

Lipid metabolism 0/0 0/3 2/1 0/0 1/0 3/3 0/5 0/5

Amino acid metabolism 5/0 0/8 38/4 10/0 1/17 9/27 1/35 4/22

SCFA biosynthesis 0/0 0/2 9/0 4/0 0/4 1/6 0/8 0/66

Purine and pyrimidine homeostasis 1/0 0/8 2/8 1/0 1/0 1/5 0/19 0/12

Bioenergy 0/0 0/0 11/3 4/0 5/0 12/1 4/9 1/7
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Figure 4. Integrative picture of bacterial taxa and associated networks. Here, the two most abundant
phylum are presented. Corresponding networks had an LDA score of >|3.0|; the activated and
inhibited networks are indicated by upward and downward arrows inside the red and blue boxes,
respectively. The impact of sex on the phylum’s abundance is shown in the box at the bottom of the
oval-shaped node containing the phylum’s name. (A) Bacteroidetes and associated bionetworks: The
most enriched networks were the metabolism of amino acids, namely histamine, and the synthesis of
SCFAs, namely acetate and propionate. Corresponding networks that were significantly enriched due
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to these assay parameters are presented. The abundance of Bacteroidetes was not differentially
regulated between the sexes; hence, it is noted as NS or not significant. (B) Firmicutes and associated
bionetworks: Under this phylum, Clostridium spp. and Ruminococcus spp. were significantly enriched
due to RD × TSI in both sexes, and Lactobacillus spp. was significantly enriched due to TSI in females
and RD in males. Corresponding networks that were significantly enriched are presented. The
abundance of Firmicutes was differentially regulated between the sexes, ** p < 0.01.

2.4. Differentially Expressed Metabolites Derived from DCC as Markers of
Host–Microbiome Association

The metabolite profile was analyzed to understand its responses to the cumulative
impacts of three cofactors, namely sex, radiation dose, and time. The PCA of the entire
metabolite landscape (Figure S5A) indicated that at 1 m post-7 Gy, male and female samples
were clustered at two ends along the PC1, explaining 41.9% of the total variance. The overall
trend of the metabolite profile shows a clear separation of the 1 month non-irradiated
samples from the rest, which comprise the entirety of the groups of irradiated samples and
6 month non-irradiated samples.

Male- and female-specific PCA plots (Figure 5A,B) reveal a similar pattern. The female-
specific PCA of the metabolite regulation profile found that the baseline mice (0 Gy) and
mice irradiated at 7 Gy were separated by a time difference (1 m → 6 m) across PC1 (54.5%);
the temporal separation (1 m → 6 m) at 7.5 Gy TBI was minimum. In males, the temporal
separations (1 m → 6 m) were observed in all radiation doses, namely 0 Gy or baseline,
7 Gy, and 7.5 Gy (Figure 4B).
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temporal shifts (1 m to 6 m) of those samples that were exposed to the same radiation doses.
(A) Female- and (B) male-specific metabolite profile. Figure (C–E): Hierarchical clustering plots
using the Euclidian algorithm show the differentially expressed metabolites (DEMs) identified
by ANOVA. The legends are on the right-hand side. (C) Metabolites differentially expressed by
Sex × RD × TSI. (D) Metabolites differentially expressed by Sex × RD. (E) Metabolites differentially
expressed by Sex × TSI.

Hierarchical clustering in Figure 5C–E depicts the impact of sex bias in conjugation
with other cofactors, namely radiation dose and time. There were 20 metabolites that were
differentially expressed by Sex × RD × TSI, and Figure 5C shows a clear dominance of
sex in profiling these metabolites’ regulations. In addition, 39 and 7 metabolites were
differentially expressed by Sex × Dose (Figure 5D) and Sex × TSI (Figure 5E), respectively,
and in both cases, sex emerged as the dominating factor in profiling the metabolites. In
addition, 38 metabolites were differentially expressed by RD × TSI (Figure S5B). Table
S4 lists all these metabolites and a subset of the metabolites; those that showed consistent
changes across the cofactors are shown in Table 4.

Table 4. A subset of the differentially expressed metabolites that showed sex bias in response to
TBI. The list is sorted into two groups. (i) The metabolites that were changed by the cumulative
association among all three cofactors are listed under Sex × TSI × RD. (ii) The metabolites that were
changed by the cumulative association between Sex and RD are listed under Sex × RD. There were
not many features that changed due to Sex × TSI. ♀: Female; ♂: Male.

Sex × TSI × RD

Metabolite Regulation Status Study Relevance

Phenyllactic Acid ♀ + ♂: upregulated.
A microbial metabolite previously identified as the

marker of radiation-induced liver injury [50].
Potential sex-/dose-/time-independent radiation marker.

Adenine ♀ + ♂: upregulated.

Adenine contributes to host purine homeostasis and
supports the growth of Proteobacteria and Firmicutes
[51]. Adenine inhibits intestinal epithelial mucosal

inflammation [52]. As a purine base, it is a precursor
of nucleic acid in intestinal cells and markers of

DNA damage.
Additionally, it is produced by E.coli.

Potential sex-/dose-/time-independent radiation marker.

Indoleacrylic Acid ♀ + ♂: upregulated.

Intestinal microorganisms catabolize tryptophan to
indoles, which are converted into indoleacrylic acid,
an anti-inflammatory agent that helps in bolstering

the intestinal barrier [53].
Potential sex-/dose-/time-independent radiation marker.

Tetradecanedioic
Acid

♀: upregulated.
♂: downregulated,

except 6 m-7 Gy upregulated.

Related to glucose metabolism and radiation
exposure [54].

Glucose
♀: upregulated.

♂: For all RD, 1 m downregulated;
6 m upregulated.

Radiation exposure is typically linked to the
malabsorption of glucose [55].

Pyruvate
♀: upregulated.

♂: For all RD, 1 m downregulated;
6 m upregulated.

Typically, a low abundance of SCFA that are shared
among different microbes for cross-feeding [56,57];
hence, its high abundance is a marker of dysbiosis.
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Table 4. Cont.

Sex × TSI × RD

Metabolite Regulation Status Study Relevance

Deoxyadenosine
Triphosphate (dATP)

♀: In 7 Gy, regulation status shifted to
upregulated with time. Contrastingly, in

7.5 Gy, regulation status shifted to
downregulated with time.
♂: Mostly downregulated.

Reduced dATP is a marker of mitochondrial dysfunction.

Sex × RD

Cytosine ♀ + ♂: upregulated. Markers of DNA damage.
Potential sex-/dose-independent radiation marker.

Adenosine
Monophosphate

(AMP)
♀ + ♂: upregulated.

An overloaded AMP molecule, along with a depleted ATP
concentration, is a signature of an energy-deprived

condition [58]. In the present condition, we found a reduced
concentration of dATP.

Potential sex-/dose-independent radiation marker.

1-Methyladenosine
♀: upregulated.

♂: downregulated.
Biomarker of tumors.

Potential sex-specific radiation marker.

Xanthosine
♀: upregulated.

♂: downregulated.
Important marker of host purine homeostasis [51].

Potential sex-specific radiation marker.

Taurine
♀: switched from 7 Gy (downregulated)

to 7.5 Gy (upregulated)
♂: upregulated.

A bile acid component that helps mitigate gut permeability
[59], although a high load could cause

gastrointestinal discomfort.

Methylthioadenosine
(MTA)

♀: switched from 7 Gy (upregulated) to
7.5 Gy (downregulated)

♂: upregulated.

Participates in purine salvage pathway and suppresses
tumorigenesis [60].

Guanosine
♀: upregulated.

♂: switched from 7 Gy (upregulated) to
7.5 Gy (downregulated).

Neuroprotective agent against ischemic damage [61].

Pantothenate

♀: switched from 7 Gy (upregulated) to
7.5 Gy (downregulated).

♂: switched from 7 Gy (downregulated)
to 7.5 Gy (upregulated).

Agent to form coenzyme-A (CoA); hence, it is critical in the
metabolism and synthesis of carbohydrates, proteins,

and fats.

Table 5 indicates the biofunctions that were significantly enriched by the metabolites
that were altered by cumulative cofactors, namely Sex × RD × TSI. In addition, Table S5A,B
presents the networks enriched by those metabolites, which were altered by RD × TSI and
Sex × RD. No networks met the significance threshold for Sex × TSI. Figure S6 shows a
Venn diagram depicting the distribution of these networks across all the cofactors. There
were no common networks among all three cumulative cofactors. Nevertheless, there
were four networks, namely Production of reactive oxygen species, Cellular homeosta-
sis, Concentration of lipid, and Insulin Secretion Signaling Pathway, common between
RD × TSI and Sex × RD × TSI. A particular trend stood out in the regulation dynamics of
Production of reactive oxygen species and Insulin Secretion Signaling Pathway (Table 5).
Both networks were primarily activated 1 m post-TBI and inhibited 6 m post-TBI across
both doses of irradiation. At the sex level, these networks were mostly activated in males,
irrespective of radiation dose and time. In females, these networks were activated 1 m
post-TBI and inhibited 6 m post-TBI across both doses of irradiation. In addition, there
were four networks, namely Quantity of carbohydrate, Necrosis, Activation of cells, and
Metabolism of nucleic acid component or derivative that were co-regulated by RD × TSI
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and Sex × RD. Likewise, the network linked to Quantity of amino acids was co-regulated
by Sex × RD and Sex × RD × TSI.

Table 5. DCC metabolite-enriched bionetworks that were differentially perturbed by the cumulative
impacts of all three cofactors, namely sex, radiation dose, and time (Sex × RD × TSI). Networks that
scored |z| > 1.5 in any of the featured condition are reported here. Green boxes: |z| > 1.5; red boxes:
|z| < −1.5; white boxes: −1.5 < |z| < 1.5.

Female Male

1 Month TSI 6 Month TSI 1 Month TSI 6 Month TSIBiofunctions
7 Gy 7.5 Gy 7 Gy 7.5 Gy 7 Gy 7.5 Gy 7 Gy 7.5 Gy

Concentration of lipid 1.26 −0.46 1.26 −0.46 1.72 1.72 −0.49 1.98

Quantity of amino acids 0.30 0.91 0.30 0.91 −0.61 −0.61 0.61 1.83

Production of reactive oxygen species 2.61 0.43 2.61 0.43 3.34 2.17 −2.61 1.16

Insulin Secretion Signaling Pathway 3.58 0.89 3.58 0.89 3.58 2.68 −3.58 0.00

Synthesis of purine nucleotide 3.00 2.00 3.00 2.00 2.00 1.00 −2.00 2.00

Synthesis of nucleotide 1.79 0.89 1.79 0.89 1.78 0.89 −0.89 2.68

Cellular homeostasis 1.09 −1.81 1.09 −1.81 −1.49 0.27 −1.09 0.41

3. Discussion
Our previous report studying a similar mouse model found a significant sex bias

in survival from lethal radiation and came to the conclusion that female mice had an
increased survival rate 6 months after total body irradiation [42]. Indeed, similar inferences
have been suggested in the past, namely that female mice are potentially more resistant
to irradiation [62–64], although the biological reason behind this potential sex bias is yet
unclear. Meeting this knowledge gap, we focused on one aspect that differentiates males
and females, namely the size and diversity of the microbial community that particularly
colonizes inside the gut lumen [19–21].

An increasing number of studies have linked an array of host biofunctions to the
microbial community that colonizes in and on the host [39,44]. For instance, the microbial
roles in forging the host’s bioenergy [65] and other bio-expensive functions [44,66,67] have
been documented. Our study showed that in moribund irradiated mice, the symbiotic
relationship between the host and gut bacterial community broke down, as the gut bacterial
community potentially forms a pro-survival environment exclusively for themselves [32].
Taken together, the current objective is to determine the long-term dose-dependent impact
of irradiation on gastrointestinal (GI) health. Since gut microbial composition significantly
differs between sexes, it was justified to conduct this research across the sexes and compre-
hend the metagenomic underpinnings to explain the female rodent’s higher radioresistant
capability than that of its male counterpart.

The bacterial diversity profile of DCC showed different longitudinal shifts between
the sexes. Alpha diversity, which measures the evenness and richness of microbial profile
within a community [68], showed a sex-specific longitudinal shift for both radiation doses.
Overall alpha diversity was reduced from the baseline in female mice that were exposed
to 7.5 Gy; contrastingly, the alpha diversity in male mice increased at 6 m post 7.5 Gy
TBI. A rather prominent sex bias was observed in the beta diversity. When measuring the
trans-community occurrences, the Jaccard index showed clear distinctions between the
irradiated male and female cohorts [38,68]. The Jaccard index-based diversity profile was
mirrored by that measured by a weighted Unifrac that takes into account the abundances
of different taxa [38].
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As indicated by the beta diversity, the taxa-level abundance profile varied between
the sexes in the context of time and dose. In the male cohort that was exposed to 7.5 Gy,
the decreased abundances of Bacteroidetes and Verrucomicrobia were gradually replaced by
the increased abundance of Firmicutes. There were not many phyla-level perturbations in
female mice; nevertheless, the LefSe cladogram displayed a sex-based variability in the
high-level taxa. Briefly, the Firmicutes branch showed major perturbation in both sexes,
and the perturbations of sub-branches like Firmicutes–Clostridia–Clostridiales–Clostridiaceae–
Clostridium were mostly conserved between the sexes. On the other hand, a phylum named
Cyanobacteria was only perturbed in the irradiated male cohorts.

These microbes undertake very specific biofunctions; hence, any sex bias in the mi-
crobial abundance profile directly impacts the biofunctions. For instance, Bacteroidetes
are primarily linked to the synthesis of SCFAs, like butyrate, propionate, and acetate [47].
Reduced abundance of Bacteroidetes in irradiated males was manifested by inhibited net-
works linked to SCFA generation. The Clostridium species in the Firmicutes branch [39,69] is
also responsible for acetate generation, and its reduced abundance in males was further
manifested by the inhibited networks of acetate synthesis. Likewise, inhibited propionate
metabolism networks were linked to the male DCC Ruminococcus spp. under the Firmicutes
phylum [39,70].

There was an overall inhibition of SCFA biosynthesis in the irradiated male mice
but not in the female mice. In conjugation, the metabolomics assay found upregulated
pyruvate abundance in the irradiated male mice. As the precursor of all major SCFAs,
pyruvate produces acetate and butyrate via an acetyl co-A intermediate and generates
propionate via the succinate pathway [71]. Lactate and its derivatives, like propionate,
are additional downstream products of pyruvate metabolism. Upregulated pyruvate in
DCC suggested a dysbiosis, with inhibited synthesis of some of the major SCFAs. This
observation is particularly important in the context that the high concentrations of three
SCFAs, namely acetate, butyrate, and propionate, in the gut lumen were observed in mice
that survived lethal irradiation [31]. The same study identified tryptophan in the gut lumen
as an additional survival marker [31]. Our study found a rather clear, distinctive profile
of the pertinent networks in male vs. female mice. In the irradiated male cohorts, the
networks linked to propionate synthesis and tryptophan metabolism were mostly inhibited;
however, they were activated or remained unchanged in females.

Inhibited SCFA synthesis often co-occurred with the accumulation of lactate in the
gut milieu as a sign of dysbiosis [45], and we observed a similar result in the irradiated
males only. Lactate is the primary precursor of one of the major SCFAs, namely propi-
onate. There was a diverging trend in the regulation profiles of the networks linked to
propionate synthesis (inhibited in males) and lactate synthesis (activated in males). A
somewhat contrasting picture emerged in the female groups, where activated networks
linked to propionate synthesis were aligned to inhibited networks linked to lactate syn-
thesis. In a healthy gastrointestinal lumen, lactate and pyruvate are typically used for
cross-feeding for SCFA production [72]; thus, the concentrations of these metabolites are
typically low [73]. Increased accumulation of pyruvate and lactate in the gut lumen could be
triggered by the systematic replacement of Firmicutes and Bacteroidetes by lactate-producing
microbes [45,72]. Positively, our study reported an increased aggregation of the lactate-
producing phylum Actinobacteria in irradiated males 1 month post-TBI, although it sharply
decreased at 6 months post-TBI.

Overall, the metabolite profile of the DCC in the current study showed a time-
dependent and less sex-biased distribution. Hypothetically, the gut metabolite landscape
captures both the host and microbial response to irradiation [38]; therefore, it could be
postulated that the host–microbe cumulative response to radiation was primarily controlled
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by the delayed time point, and it thereby took a diverging pattern from microbial response
dynamics, which was primarily controlled by sex. The differentially expressed metabolite
profile suggested time-/sex-/dose-independent radiation biomarkers, such as phenyllactic
acid, which is a microbial metabolite synthesized via the metabolism of phenylalanine; this
metabolite has been previously identified as a marker of radiation-induced liver injury [50].
Indeed, the higher load of phenyllactic acid, glucose, and pyruvate across the sexes in-
dicates metabolism disorder and bioenergy deprivation. All these chemicals are typical
inputs or intermediates of metabolism chains and the components for cross-feeding across
microbes to produce energy; hence, these molecules are low in abundance in healthy hosts.

Activated reactive oxygen species (ROS) producing networks in the DCC metabolite
analysis further suggest an energy-deprived condition in the hosts [74]. In the females
irradiated at 7 Gy TBI, the activated network linked to ROS production had a long-term
impact; in contrast, in the irradiated male mice, the increased ROS production at 1 m post-
TBI returned to baseline levels at 6 m post-TBI. Increased ROS concentration in the intestinal
lumen causes long-term dysbiosis, which was suggested by the comprehensive inhibition
of metabolism of SCFA synthesis in the irradiated male mice. Again, there was a sign of
divergence in the female microbial functional profile, as the inhibited SCFA metabolism
was found only at 1 month post-7.5 Gy TBI. In the rest of the samples, these networks were
activated concurrently with bioenergy-producing networks; all these potentially indicate a
regression dynamic exclusive to the irradiated female cohorts.

The current study is limited by the sample depth; to compensate, we employed a
multi-omics assay and comprehensive integrative model. Further, we presented 16s rRNA
metagenomics data that, despite recent advancements in pertinent analytical pipelines,
have a few inherent limitations. For instance, the resulting data have limited power in
terms of confidence to explain beyond the family level. Since the current study is mostly
focused on the bacterial community, there was a limited scope in drawing inferences about
cross-kingdom communication in response to stress. Nevertheless, the present study was
able to suggest potential sex-specific mechanisms to explain the long-term impacts of lethal
radiation exposure. We observed a significantly altered microbial ecosystem 1 month
and 6 months post-TBI in a murine model, which was nearly equivalent to 3 years and
18 years of human lives, respectively [75]. Even after such a long recovery period, the
host–microbiome association was apparently still damaged and rather diverged between
male and female mice. Chronic inhibition of SCFA synthesis in the irradiated males but
not in the irradiated female mice is a potential explanation for the comparatively high
radioresistant characteristics of female mice. The present data could be instrumental in
developing next-generation customized medication strategies as studies begin promoting
the concept that radiotherapy would be more effective should the sex factor be taken into
account [25].

4. Materials and Methods
4.1. Animals

Pathogen-free male and female C57BL/6 mice (11–14 weeks old) were purchased
from Jackson Laboratories (Bar Harbor, ME, USA). Animals were housed as reported
previously [42,76] in the Uniformed Services University of the Health Sciences (USUHS)
Department of Laboratory Animal Resources (DLAR) facility and acclimated for a minimum
of 5 days prior to use in experiments. All animals were identified by unique tail tattoos. Both
room and cage humidity were maintained between 30–70%, and 10–15 air changes/hour
occurred in the housing room. An automated lighting system was used, providing a 12 h
light, 12 h dark cycle. Mice were provided Harlan Teklad Global Rodent Diet 8604 ad
libitum from the feeder rack within the cage. The water provided was acidified pH~2.5 from
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an Edstrom water bottle filling station. All procedures related to animal manipulation
were reviewed and approved by the USUHS Institutional Animal Care and Use Committee
(IACUC) using the principles outlined in the National Research Council’s Guide for the
Care and Use of Laboratory Animals and performed in accordance with relevant guidelines
and regulations. Animal studies were conducted in compliance with ARRIVE (Animal
Research: Reporting of In Vivo Experiments) guidelines. Handling of the animals was
conducted in accordance with the USUHS IACUC policy. Animals were examined by the
veterinary staff as well as laboratory staff, as warranted by clinical signs or changes in
appearance [76].

4.2. Whole-Body Gamma Irradiation

The animals were transported in a climate-controlled van to the Armed Forces Radiobi-
ology Research Institute (AFRRI) Co-60 gamma irradiation facility. After arrival, they were
rested for a minimum of 60 min prior to irradiation in custom-made Lucite restrained boxes
with 8 compartments. After radiation exposure, animals were returned to their cages and
ultimately returned to the DLAR facility via the climate-controlled van. Non-anesthetized
mice were irradiated bilaterally (simultaneously) at an estimated dose rate of 0.6 Gy/min.
An alanine/Electron Spin Resonance (ESR) precise dosimetry system (American Society for
Testing and Material Standard E 1607) was used as described earlier [76].

4.3. Ethics Statement and Veterinary Care Following Radiation

This study was conducted under an animal use protocol approved by the USUHS
IACUC, Protocol Number: AFR-20-999, following the USDA Animal Welfare Act (21 CFR
Part 9) and Public Health Service Policy, the Guide for the Care and Use of Laboratory
animals, and the Office of Laboratory Animal Welfare, as applicable. The Testing Facility is
accredited by the Association for the Assessment and Accreditation of Laboratory Animal
Care (AAALAC) International.

Since animals were irradiated from non-lethal to sub-lethal doses, they were monitored
three to four times daily following exposure [76]. The model used does not include
supportive care in the form of analgesia. Animals that were found dead in the course of
the study were documented and removed from the cage. Mice were considered moribund
when they exhibited certain symptoms, including an inability to remain upright, were
cold, unresponsive, or displayed decreased or labored respiration. Morbid animals were
monitored very closely according to their health condition in accordance with pre-defined
criteria described and approved in the IACUC protocol. Moribund mice were euthanized
according to American Veterinary Medical Association (AVMA) guidelines.

4.4. Post-Euthanasia Sample Collection

Mice were exposed to 7 Gy and 7.5 Gy total body irradiation (TBI), and their descend-
ing colon contents (DCC) were collected at two time points, namely 1 month (1 m) and
6 months (6 m) post-TBI. In parallel, non-irradiated (0 Gy) control’s DCC were collected
with age-matched 1 m and 6 m time periods. Each group included 5 mice. Post-euthanasia,
the entire intestine was incised on ice; the DCCs were removed from the descending colon
tissues, cryogenically homogenized, and subsequently stored at −80 ◦C (freezer) for long-
term storage. On the day of sample extraction, the DCCs were aliquoted for 16S rRNA
metagenomics gene sequencing and metabolomics assays, respectively.

4.5. 16S rRNA Sample Processing Using Descending Colon Contents

DCC samples were divided into two aliquots: one for the 16S rRNA metagenomics
assay, and the other one was assigned to metabolomics assay. The PowerSoil DNA Isolation
Kit (MoBio Laboratories, Inc., Carlsbad, CA, USA) was used to extract DNA from DCCs
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following our previously published method [32,77,78]. The extracted DNA from DCCs was
used for the 16S rRNA gene sequencing study following the guidelines provided by the
Illumina 16S Metagenomics Library Preparation manual (Illumina, Inc., San Diego, CA,
USA). Briefly, a set of pre-designed primers extracted the hyper-variable V3 and V4 regions
of the 16S rRNA amplicon [79]. The samples were barcoded using Nextera indexes, and
target amplicons of nearly 460 bases long were subsequently generated. The libraries were
pooled and sequenced on the Illumina MiSeq platform, using paired-end 300 bp reads and
Illumina MiSeq v3 reagents. The end of each read was overlapped to generate high-quality,
full-length reads of the V3 and V4 regions.

4.6. 16S rRNA Metagenomics and Functional Network Analysis

This analysis was conducted following our previously published protocols [32,78,80].
The raw demultiplexed FASTQ files were imported into R and processed using the
DADA2 [81] package from Bioconductor [82], following the standard procedure on demul-
tiplexed sequences. Briefly, the reads were inspected for quality, filtered, and truncated
at 220 bp; the paired reads were merged, a sequence table of amplicon sequence variants
(ASVs) was constructed, and chimeras were removed. The ASV table was imported into
QIIME2 v.2019.7 [83].

Alpha diversity was measured using the Simpson [84], Chao1 [85], and Shannon [86]
indices. Two-way ANOVA was computed in R Studio (R version 2022.12.0) to determine
alpha group significance across the cofactors, namely radiation dose (RD) and time since
irradiation (TSI); the significance value cutoff was p < 0.05. Beta diversity was calculated
using the Bray-Curtis and Euclidean algorithm [87], and the Principle Coordinate Analysis
(PCoA) was estimated using q2-diversity. The Adonis plugin in QIIME2 [88] computed a
two-way permutational multivariate analysis of variance (PERMANOVA), where the two
cofactors were RD and TSI, respectively, with the significance cutoff at p < 0.05. To note,
all the subsequent multi-factorial comparison analyses used these two cofactors, namely
RD (7.0 Gy vs. 7.5 Gy) and TSI (one month and six months post-TBI), and their cumulative
model, e.g., RD × TSI.

The taxonomic classification of the ASVs was generated by a q2-feature-classifier [89]
via the classify-sklearn plugin [90] using the GreneGenes reference database (13-8-99-515-
806 classifier). Next, linear discriminant analysis effect size (LEfSe) curated the top-ranked
taxonomic classifiers that discriminated 7 Gy from 7.5 Gy at three time points post-TBI
using the lefser package (R package version 1.14.0), and subsequently, the cladogram plot-
ted those taxa, which met cutoff LDA > |2| [91]. Further, Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States (PICRUSt2) was used to predict the
MetaCyc pathway abundances using the sequencing-derived taxonomic ASVs to generate
the functional profile—a list of networks that are potentially enriched by microbial metabo-
lites; here, the non-irradiated CTR mice were used as the global baseline in LEfSe with
cutoff LDA >|2| [92–96].

4.7. Global Metabolomics Assay of DCC

The second aliquot of DCC samples was used for untargeted metabolomics profiling
following our standard protocol [97,98]. For the metabolomics sample preparation, 150 µL
of DCC solution was mixed with internal standards containing 5 mL water, 5 mL methanol,
10 µL debrisoquine (1 mg/mL in ddH2O), and 50 µL of 4-nitrobenzoic acid (1 mg/mL in
Methanol) (per 10 mL). Further, 150 µL of chilled (~20 ◦C) acetonitrile was mixed with
the ice-cold metabolomics samples and incubated together at −20 ◦C for 20 min. Lastly,
the samples were centrifuged at 15,493× g for 20 min at 4 ◦C, and the supernatant was
transferred to an MS vial for LC-MS analysis. Two microliters of each prepared sample was
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injected onto a Waters Acquity BEH C18 1.7 µm, 2.1 × 50 mm column using an Acquity
UPLC system coupled to a Xevo G2-S quadrupole-time-of-flight mass spectrometer with
an electrospray ionization source (UPLC-ESI-QToF-MS) (Waters Corporation, Milford, MA,
USA). The mobile phases consisted of 100% water (solvent A), 100% acetonitrile containing
0.1% formic acid (solvent B), and 100% isopropanol with 0.1% formic acid (solvent C).
The solvent flow rate for the metabolomics acquisition was set to 0.4 mL/min, with the
column set at 60 ◦C. The LC gradient was as follows: Initial—95% A, 5% B; 0.5 min—95%
A, 5% B; 8.0 min—2% A, 98% B; 9.0 min—11.8% B, 88.2% C; 10.5 min—11.8% B, 88.2% C;
11.5 min—50% A, 50% B; 12.5 min—95% A, 5% B; 13.0 min—95% A, 5% B. The column
eluent was introduced into the Xevo G2-S mass spectrometer by electrospray operating
in either negative or positive electrospray ionization mode. Positive mode had a capillary
voltage of 3.00 kV and a sampling cone voltage of 30 V. Negative mode had a capillary
voltage of 2.00 kV and a sampling cone voltage of 30 V. The desolvation gas flow was set to
600 L/h, and the desolvation temperature was set to 500 ◦C. The cone gas flow was 25 L/h,
and the source temperature was set to 100 ◦C. The data were acquired in the sensitivity
MS mode with a scan time of 0.300 s and an interscan time of 0.014 s. Accurate mass was
maintained by infusing Leucine Enkephalin (556.2771 [M + H]+/554.2615 [M − H]−) in
50% aqueous acetonitrile (2.0 ng/mL) at a rate of 10 µL/min via the Lockspray interface
every 10 s. The data were acquired in centroid mode with a 50.0 to 1200.0 m/z mass range
for TOF-MS scanning. An aliquot of each sample was pooled and used as a quality control
(QC), which represented all metabolites present.

The spectral features acquired herein were first converted to the NetCDF unified data
format using the Databridge tool in MassLynx (Waters Corporation, Milford, MA, USA).
The XCMS R package (Scripps Institute, La Jolla, CA, USA) was used for peak detection,
and the interpolated warping algorithm was utilized for retention time correction and
parameters optimized using the Isotopologue Parameter Optimization (IPO) R package. [99]
The mass-to-charge ratio and retention time features were normalized based on the internal
standards (debrisoquine and 4-nitrobenzoic acid present in the extraction solution in
positive and negative modes, respectively) as well as QC-RLSC (QC robust LOESS signal
correction) normalization.

4.8. Functional Metabolomics Analysis

The spectral features were analyzed by repeated measures two-way ANOVA with
three cofactors, namely sex (male and female), time (one month and six months post-TBI),
and radiation dose (7 Gy and 7.5 Gy). The spectral features that scored above the threshold
of p < 0.05 were curated as the significantly differential peaks for the following four
experimental parameters, namely Sex × Time since irradiation (Sex × TSI), Sex × Radiation
Dose (G × RD), Time since irradiation × Radiation Dose (TSI × RD) and Sex × Time
since irradiation × Radiation Dose (G × TSI × RD). The differentially expressed spectral
features were annotated using the CEU Mass Mediator 3.0 database (https://ceumass.
eps.uspceu.es/, accessed on 4 April 2025), and the molecules were screened based on
the following guidelines [97,98]: (a) ppm error < 1; (b) chemical formula comprised of
the adducts: +H, −H, +Na, +K, +NH4, and −Cl; (c) annotation by Human Metabolome
Database (HMD); and (d) chemical type of one of the following categories: (i) endogenous
mammalian; (ii) drugs; (iii) toxicant; (iv) reagents. Thereby, we identified the differentially
expressed metabolites (DEMs). Annotated metabolites were seeded into Ingenuity Pathway
Analysis (IPA, QIAGEN, Germantown, MD, USA) to curate the networks with a cutoff
z score > |1.5|.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms26094227/s1.
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