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Abstract: In this study, we evaluated in situ click chemistry as a platform for discovering
boronic acid-based β-lactamase inhibitors (BLIs). Unlike conventional drug discovery
approaches requiring multi-step synthesis, protection strategies, and extensive screening,
the in situ method can allow for the generation and identification of potent β-lactamase
inhibitors in a rapid, economic, and efficient way. Using KPC-2 (class A carbapenemase)
and AmpC (class C cephalosporinase) as templates, we demonstrated their ability to catal-
yse azide-alkyne cycloaddition, facilitating the formation of triazole-based β-lactamase
inhibitors. Initial screening of various β-lactamases and boronic warheads identified com-
pound 3 (3-azidomethylphenyl boronic acid) as the most effective scaffold for kinetic
target-guided synthesis (KTGS). KTGS experiments with AmpC and KPC-2 yielded tri-
azole inhibitors with Ki values as low as 140 nM (compound 10a, AmpC) and 730 nM
(compound 5, KPC-2). Competitive inhibition studies confirmed triazole formation within
the active site, while an LC–MS analysis verified that the reversible covalent interaction
of boronic acids did not affect detection of the in situ-synthesised product. While KTGS
successfully identified potent inhibitors, limitations in amplification coefficients and spatial
constraints highlight the need for optimised warhead designs. This study validates KTGS
as a promising strategy for BLI discovery and provides insights for further refinement in
fighting β-lactamase-mediated antibiotic resistance.

Keywords: in situ click chemistry; boronic acid; beta-lactamase inhibitors; KTGS; antimicrobial
resistance; BATSI

1. Introduction
Nearly a century after penicillin’s discovery, the development of new antibiotics

continues to lag behind the rapid evolution of antimicrobial resistance (AMR), which has
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significantly impacted β-lactams, the most widely used bactericidal agents [1,2]. Among
various resistance mechanisms in Gram-negative bacteria, β-lactamases play a dominant
role by hydrolysing the β-lactam ring, rendering these antibiotics ineffective [3–6]. β-
lactamases are classified into serine β-lactamases (SBLs; classes A, C, D) and metallo-β-
lactamases (MBLs; class B), each with distinct hydrolytic mechanisms [7–10]. Contemporary
and highly clinically relevant enzymes, such as KPCs, NDMs, and OXAs families, contribute
to resistance against expanded-spectrum cephalosporins (ceftazidime, ceftolozane and
cefiderocol), monobactams, and even carbapenems, threatening the efficacy of “last-resort”
antibiotics [11–15].

Boronic acid transition state inhibitors (BATSIs) are covalent, reversible inhibitors
mimicking the high-energy tetrahedral intermediate during β-lactam hydrolysis, offering a
promising strategy against both SBLs and MBLs (Figure 1) [16–18]. The success of cyclic
BATSIs, including commercially available vaborbactam and Phase III and I candidates
taniborbactam and xeruborbactam, highlights their clinical relevance [4,19–28]. During
the past decades, our group has developed a vast library of acyclic BATSIs [17,29–34]. The
incorporation of a triazole group in the β-position of the boron atom led to the generation
of potent BATSIs, including MB076 and S02030, both exhibiting strong activity against class
A and C β-lactamases [17,19,35,36].
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and biochemical parameters of β-lactamase inhibition of S02030 and MB076.

Both S02030 and MB076 feature a 1,4-disubstituted 1,2,3-triazole moiety, synthesised
via copper-catalysed azide–alkyne cycloaddition (CuAAC) [17]. The triazole’s affinity for
the β-lactamases active site, combined with the broad availability of azides and alkynes,
opens up opportunities for creating novel BATSIs [37,38].

In this context, an attractive approach to obtain triazole-decorated molecules is repre-
sented by kinetic target-guided synthesis (KTGS), an appealing drug discovery method
where the target protein catalyses the synthesis of its own inhibitors [39]. In KTGS, the
protein-templated synthesis of bioactive compounds is achieved once the target facilitates
the approaching of affine reagents with proper orientation, therefore lowering the energy
of activation required for their irreversible binding [39]. KTGS allows for efficient screening
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of small molecules, particularly through in situ click chemistry, where the target enzyme
guides the formation of disubstituted 1,2,3-triazoles from azides and alkynes [40–48]. In situ
click chemistry efficiency is driven by the ability of the target enzyme to overcome the high
energy of activation required for (3 + 2) cycloaddition reactions (>25–30 kcal/mol) [49–51].
Successful examples of this technique are mostly focused on the generation of non-covalent
compounds, starting from previously reported inhibitors in a binary format (pairs of
reagents) [39]. Although KTGS has been known for more than two decades, reports on
its application remain relatively infrequent, with only a few unsuccessful examples being
documented in the literature [39,52,53]. This limited adoption is probably due to the lack
of robust and generalisable protocols. The difficulty in the detection of false negatives
have also contributed to the slow progress of KTGS in drug discovery pipelines [50,54,55].
With fewer than 10% of KTGS studies focusing on covalent inhibitors, examples of this
approach have not yet been reported for developing BATSIs or BLIs [39,46]. This highlights
an untapped potential in using KTGS for covalent drug discovery, specifically in the design
of novel inhibitors targeting β-lactamases.

Among the various KTGS formats available, the multicomponent format (involving a
cluster of reagents) enables broader exploration compared with the binary format (pairing
two reagents), facilitating faster and more efficient screening [39]. To accelerate BATSIs
development and expand the KTGS scope, we applied a multicomponent in situ click
chemistry approach using KPC-2 (class A) and chromosomal AmpC (class C) β-lactamases
as templates (Figure 2). Our strategy involves synthesising azido-functionalised boronic
acid “warheads”, leveraging the ability of boron to selectively target the β-lactamase
catalytic serine located in the active site. The azido group enables further exploration
within the active site through reactions with various alkynes, forming potentially bioactive
triazoles. This work represents the first attempt to perform in situ click chemistry to develop
triazole-based BATSIs using β-lactamases as scaffolds and a 90-component alkyne library
to explore new chemical space.
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Figure 2. KTGS exemplification. (a) Selection of an appropriate β-lactamase and an azido-
functionalised boronic acid warhead; (b) in situ experiment: once within the β-lactamase, the
boronic acid forms a reversible covalent bond with the catalytic serine (in red); (c) upon insertion of
an alkyne library, only alkynes with the proper orientation will be converted into triazoles by the
enzyme. Alkynes attached to various coloured shapes indicate different functionalities linked to the
alkynes; (d) the enzyme dictates a 1,4- or 1,5-regioisomeric preference for the few bioactive triazoles
formed in situ.
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2. Results
2.1. Design and Synthesis of the Warhead

KTGS allows for the development of potent inhibitors without prior knowledge of their
target affinities, provided that one of the two components demonstrates sufficient affinity
to act as an anchor molecule [50]. Previously, even a low level of affinity was reported to be
sufficient for the target-templated reaction [50]. Therefore, to enable in situ click chemistry
within the β-lactamase’s binding pocket, a series of bifunctional “warheads” displaying
two defined features were designed. Firstly, the presence of the boronic acid moiety serves
as an anchor to the SBLs catalytic serine. Secondly, the azido functionalisation guarantees
the clickable building block for generation of bioactive triazoles within the target active site.
Thus, one 2-azido-1-acylamino-ethaneboronic acid and three azidomethyl-phenylboronic
acids were synthesised and characterised (Figure 3). Inspired by one of the most potent
BATSI, S02030 (Figure 2), [17,19,36] compound 1 was obtained through deprotection of the
corresponding pinanediol ester, following a previously reported procedure [17]. Herein,
the amide side chain from cephalothin is well known to interact with various β-lactamases
through van der Waals and H-bonding interactions and can aid the process of recognition
within the target [56]. Although being a promising scaffold for potential novel inhibitors, we
observed by 1H NMR studies that compound 1 partially degrades in phosphate buffer (see
Supplementary Information, Figures S1 and S2); therefore, this warhead was excluded from
further studies. Other warheads inspired by previously developed acyclic boronic acids
were not considered in this manuscript and will be explored in future works [20,33–35].
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Figure 3. Structure for the designed warheads.

Phenyl boronic acids bearing 1,4-disubstituted 1,2,3-triazoles at the m- and p-positions
were reported as potent inhibitors of KPC-2 by Zhou et al. [57,58]. For those compounds,
docking studies revealed the potency of m-analogues deriving from the key hydrogen
bond between the triazole nitrogen and T237 of KPC-2, while the p-substituted com-
pounds were observed to take advantage of the π–π stacking interaction with W105.
Interestingly, the azido starting materials, (3-(azidomethyl)phenyl)boronic acid (3) and
(4-(azidomethyl)phenyl)boronic acid (4), were reported to exhibit sub-µM activity vs. KPC-
2 [58]. Inspired by those scaffolds, compound 2 was also included. Whereas the role of
phenyl boronic acids as BLIs have been extensively discussed in the past decades, KTGS
might allow for further refining for this class of inhibitors. Chemically, azido-derivatives
2, 3, and 4 were synthesised via a single-step transformation starting from the respective
bromo-derivatives, following previously reported procedures [57,58].

2.2. Inhibition (%) of the Warheads on Representative BLs

Selection of an appropriate warhead-bearing reagent is crucial for achieving a success-
ful in situ click chemistry [39]. Thus, we assessed the inhibitory activity of the selected
warheads against a pool of different β-lactamases to verify their binding specificity for the
target. The affinity (inhibitory ability) of 2-4 against 12 representative β-lactamases from
class A, B, C, and D was assessed as the percentage of inhibition at a fixed concentration of
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200 µM (Table 1). Although boronic acids often yield potent nM inhibitors against SBLs,
we reasoned that initiating the screening at higher inhibitor concentrations would enable a
less stringent selection process, potentially identifying warheads with broader applicability,
including activity against MBLs.

Table 1. The % of inhibition at a fixed concentration of 200 µM for warheads 1–4 against 12 β-lactamases.

Entry β-lactamase 1 Class 2 3 4

1 KPC-2 2

A

35 76 72
2 CTX-M-15 0 42 22
3 KPC-53 54 65 55
4 SHV-12 14 38 48

5 NDM-1
B

23 20 24
6 VIM-1 23 24 33
7 IMP-1 12 11 22

8 AmpC 2

C
57 100 81

9 ADC-25 27 67 46
10 CMY-2 19 79 67

11 OXA-24
D

20 24 26
12 OXA-48 <1 2 <1

1 Substrates, proteins and substrates concentrations, and relative constants are reported in Section 4.3. 2 The % of
inhibition at 100 µM.

For both KPC-2 and chromosomal AmpC, this percentage was lowered to 100 µM due
to high activity of some of the warheads at 200 µM.

Unsurprisingly, phenylboronic acids displayed better activity against class A and C,
while they are less prone to inhibition vs. MBLs and class D. Among compounds 2–4, the
m-derivative 3 exhibited the best activity at 100 µM for KPC-2 and chromosomal AmpC,
with 76% (Entry 1) and 100% (Entry 8) of inhibition, respectively. Thus, cpd 3 was chosen
as the ideal warhead-bearing reagent and AmpC and KPC-2 as target proteins to start the
in situ click chemistry screening.

2.3. Generation of a 90-Component Alkyne Library

To facilitate KTGS in a multicomponent format with the azido-bearing warhead
3, a diverse 90-member alkyne library was designed (Figure 4) [45,59]. Based on their
availability, alkynes were either purchased from commercial sources or synthesised through
a one- or two-step synthesis. Synthesis was carried out mostly using propargyl amine,
propargyl alcohol, or propargyl bromide as sources of the alkyne functional group (see SI).
To explore the chemical diversity in the potential bioactive triazoles formed, the library was
divided into 10 clusters containing nine alkynes each. Clusters were created by including
alkynes capable of interacting with the target via van der Waals force (columns 1 and 2),
π-stacking and H-bonding (columns 3, 6, 7, and 8), and π-cation, π-anion, and H-bonding
(columns 4 and 5). A miscellany of different relevant alkynes capable of interacting with
the β-lactamases active site through some of the above interactions were included in the
last two columns.
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2.4. In Situ Click Chemistry with KPC-2

Based upon the outcome of Table 1, initial efforts to perform the multicomponent in
situ click chemistry were attempted using KPC-2 as template. Starting from the azido-
functionalised boronic acid 3, optimised conditions (see SI Table S2) were applied in
combination with the 90-component alkyne library. The reactions were conducted in 0.2 mL
microtubes in a 95:5 sodium phosphate 50 mM pH 7.0:DMSO mixture (final volume 100 µL),
stirring at 300 rpm at 37 ◦C for 24 h (Scheme 1).
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Scheme 1. Multicomponent in situ click chemistry between 3 and an alkyne library in the presence
of KPC-2.

The experiments were conducted in triplicate, using a reaction mixture containing one
equivalent of warhead 3, five equivalents of each alkyne cluster (9 alkynes), and 20 mol%
KPC-2 as the catalyst. Product formation was monitored directly from the crude mixture
using a hybrid quadrupole orbitrap LC–MS system in the ESI+ or ESI- mode after 24 h.
Peak areas of the desired products were compared across three conditions: with KPC-2,
without any enzyme, and with bovine serum albumin (BSA). Both no enzyme and BSA
were used as controls; therefore, only a negligible amount of product was expected to be
observed in their presence. The resulting ratio, named as the amplification coefficient (AC),
was calculated from the peak area of the product obtained in the presence of KPC-2 vs.
the one acquired with the controls [54,60]. CuAAC reactions employing CuSO4, sodium
ascorbate, and tris(3-hydroxypropyltriazolylmethyl)amine (THPTA) served as the control,
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regioselectively yielding the 1,4-regioisomer. To evaluate the presence of the 1,5-regioisomer
in the KTGS experiment, a second control was obtained using thermal reaction conditions
(80 ◦C for 24 h), which resulted in a mixture of both 1,4- and 1,5-regioisomers. Out of
90 potential combinations, three triazole-based BATSIs (triazoles deriving from alkynes
Al-32, Al-39, and Al-57) were identified with AC values exceeding three compared with
the controls (Figure 5). Whereas the derivative from Al-39 was exclusively formed as
a 1,4-regioisomer in the presence of KPC-2, both derivates from Al-32 and Al-57 were
observed as mixture of regioisomers. Interestingly, the previously reported KPC-2 inhibitor
1,4-disubstituted 1,2,3-triazoles were not detected in this experiment, despite their known
inhibition constants (Ki) for KPC-2, ranging from 32 nM to 1 µM (alkyne derivative =
cyclopropyl (Al-15), 3-pyridinyl (Al-24), 3-thiophenyl (Al-26), COOH (Al-43), and phenyl
substituents (Al-52)) [57,58].
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protein template.

To verify their biological activity, compounds 5 (triazole derivative from Al-32),
6 (derivative from Al-39), 7, and 7a (derivatives from Al-57) were synthesised, purified, and
characterised at bench scale (Figure 6). While compound 5, 6, and 7 are 1,4-disubstituted
1,2,3-triazoles, compound 7a referred to the 1,5-regioisomers of the triazole derived from
Al-57, respectively. Compound 5a, corresponding to the 1,5-regioisomer for the triazole
derived from Al-32 could not be synthesised under the conditions reported in Figure 6b.
Some control compounds, which either were not formed in the KTGS experiment or had
AC values below three during the KPC-2 screenings, were also synthesised for compar-
ative analysis; thus, derivatives 8 (from Al-2), 9 (Al-7), 10 (Al-12), and 11 (Al-31) were
also prepared.

The ability of the KTGS technique to identify good inhibitors of KPC-2 was evaluated
by comparing the Ki values of screened and control compounds against KPC-2. Using a
four-step synthesis starting from commercially available m-bromomethylphenyl boronic
acid, compounds 5–11 were prepared and tested biologically (Figure 7). Compound 7
(1,4-regioisomer), selected from the screening with an AC of 5-6, displayed a Ki of 1.7 µM.
The correspondent 1,5-regioisomer 7a exhibited a Ki of 4.6 µM. Compounds 5 and 6, with
ACs of 3-4, exhibited similar inhibitory activity (Ki = 0.73 µM and 0.8 µM, respectively).
For both cpds 5 and 6, a 3-fold improvement compared with the warhead activity (Ki =
2.3 µM) was observed. However, some control compounds, notably compound 11, showed
comparable or superior activity (Ki = 0.46 µM), despite not being identified in the KTGS
screening (false negative).
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bromomethylphenyl boronic acid (1.0 eq.), (+)-pinanediol (1.0 eq.), THF, rt, on, quantitative. (ii) Com-
pound 15 (1.0 eq.), NaN3 (10.0 eq.), MeOH, reflux, 5 h, 82%. (iii) Compound 16 (1.0 eq.), alkyne
(1.0 eq.), CuSO4 (0.05 eq.), Na ascorbate (0.2 eq.), THPTA (0.05 eq.), t-BuOH:H2O 1:1, 60 ◦C, 1–8 h,
80–99%. (iv) Protected triazoles (1.0 eq.), MeB(OH)2 (10.0 eq.), HCl 0.2 M (1.0 eq.), DCM, rt, on,
50–99%. (b) General synthesis for 1,5-derivatives BATSIs starting from compound 16. (v) Compound
16 (1.0 eq.), alkyne (1.1 eq.), Cp*RuCl(PPh3)2 (0.025 eq.), THF, 70 ◦C, 8 h, 38–41%. (vi) Protected
triazoles (1.0 eq.), MeB(OH)2 (10.0 eq.), HCl 0.2 M (1 eq.), DCM, rt, on, 45–50%.
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screening. Substrate: nitrocefin (NCF). KM (NCF) = 16 ± 1.2 µM; [NCF]: 100 µM; [KPC-2] = 67 nM.
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2.5. In Situ Click Chemistry with AmpC

The results in Table 1 indicate that warhead 3 completely inhibits AmpC at a concentra-
tion of 100 µM, demonstrating a promising target–warhead combination for optimising and
enhancing KTGS outcomes. Following the same conditions used for the multicomponent
screening with KPC-2, the in situ click chemistry experiment was performed using AmpC
as template. Similarly, out of 90-potential triazoles, only three products were formed with
an amplification coefficient >3 (Figure 8). In the first case, cycloaddition of 3 with the alkyne
Al-12 produced regioisomers 10 and 10a (ratio 21:79) with an AC between 5 and 6. An
acceptable AC was also obtained for Al-57, which was transformed into the triazole 7 and
7a in a 50:50 regioisomeric ratio. Eventually, the 1,5-product of the reaction between the
warhead 3 and Al-88 was exclusively formed with AC 3-4 compared with controls.
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protein template.

Potentially bioactive BATSIs and controls were synthesised following the synthesis
reported in Figure 6 and characterised. Despite several attempts, the 1,5-product 12a
(derivative from Al-88) could not be synthesised due to the low catalytic efficiency of
the Cp*RuCl(PPh3)2 catalyst used, and only the 1,4-product 12 was successfully obtained.
Similarly, for compound 5a (derivative from Al-32), a potential inhibitor derived from the
KPC-2 screening, the same outcome was observed. Notably, to the best of our knowledge,
only one example of RuAAC involving a boronic acid has been reported in the literature,
and not with the ruthenium catalyst available to us [61,62]. This highlights the added value
of KTGS as it can reveal bioactive compounds that would otherwise be challenging or
inefficient to access through conventional synthetic methods.

Microbiological assays with AmpC highlighted the 1,5-regioisomer 10a (Figure 9, AC 5-6)
as the most potent inhibitor, showing a Ki value of 140 nM. The corresponding 1,4-regioisomer
10, observed at 21% in the screening, displayed nanomolar potency (Ki = 600 nM), yet it
was four-fold weaker with respect to the 1,5-regioisomer. Compounds 7 and 12, identified
with ACs of 4-5 and 3-4, respectively, were also effective inhibitors (Ki = 300 and 400 nM,
respectively). The relative 1,5-regioisomer 7a exhibited an excellent inhibitory activity with Ki

of 170 nM. Notably, warhead 3 itself exhibited a Ki of 700 nM. Control compounds (cpds 8,
9, 11, and 13) displayed a various range of activity. While controls 8 and 9 exhibited worse
inhibitory activity (Ki = 1.5 and 11 µM, respectively) when compared with warhead 3, cpds
11 and 13 demonstrated similar activity (Ki = 280 and 800 nM, respectively) to the triazoles
selected from the AmpC screening.
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Figure 9. Compounds synthesised and their biological evaluation. AC = Amplification coefficient. In
the AC column, between brackets reports the regioisomeric ratio observed (1,4- vs. 1,5-) and bold
reports the regioisomers synthesised. Light blue indicates the compounds from the AmpC screening.
Substrate: nitrocefin (NCF). KM_NCF = 118 ± 2 µM; [NCF]: 100 µM; [AmpC] = 36 nM.

To assess whether the in situ click chemistry takes place within the AmpC active site,
a control experiment was performed. SM23, a known AmpC inhibitor (Ki 1 nM) previously
reported by our group [18,63], was added to the reaction aiming to assess if the catalysis
was affected by a BATSI obstructing the target active site (Scheme 2). For this experiment, a
binary combination between warhead 3 and a model alkyne (Al-12) was selected.

In the absence of SM23, 20 mol% AmpC catalyses the formation of both regioisomers
10 and 10a (Table 2, Entry 3, regioisomeric ratio 21:79) compared with no enzyme (Entry
1) and BSA (Entry 2). Predictably, even 1 mol% SM23 in combination of 20 mol% AmpC
affects the ratio of formation of triazoles 10/10a. In this case, AmpC catalyses only the
formation of 10a with an AC of 1-2 (Entry 4). An even more dramatic drop in conversion is
observed when the amount of SM23 was equal to the AmpC one, with neither AC > 1 nor
regioselectivity observed (Entry 5). Therefore, those findings suggest that the in situ click
chemistry between warhead 3 and alkyne Al-12 happens within the AmpC catalytic site.
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Table 2. AmpC catalytic activity in the presence of an SM23 inhibitor. Acn = Amplification Coefficient.

Entry * Enzyme %SM23 Regioselectivity
(10:10a) AC 10/10a

1 None - 50:50 -
2 BSA (20 mol%) - 60:40 -
3 AmpC (20 mol%) - 21:79 5–6
4 AmpC (20 mol%) 1 mol% 0:100 1–2
5 AmpC (20 mol%) 20 mol% 50:50 0–1

* Reactions were run in 0.2 mL microtubes with a total volume of 100 µL. Conditions: 3 (1 eq.), Al-12 (5 eq.), 95:5
sodium phosphate 50 mM pH 7.0: DMSO; 300 rpm; 37 ◦C; 24 h. For Entry 4 and 5, SM23 was added as a last
component before starting the reaction.

Given that boronic acids act as transition-state inhibitors by binding the catalytic
serine of β-lactamases through a reversible covalent bond, we aimed to determine whether
the in situ click chemistry reaction products were quantitatively detected during LC–MS
analysis. Although boronic acids are reversible binders, their fast on–slow off behaviour
raised concerns that triazole product formation might be underestimated due to covalent
adducts forming with the protein target [64]. To investigate this, compound 10a, warhead
3, and compounds 8 and 9 were incubated with AmpC (1:1 or 1:5 protein:compound ratio),
and their detection was monitored over 24 h (Figure 10). The selection of these compounds
was designed to assess whether potent inhibitors (e.g., compound 10a, Ki = 140 nM) had
a different impact compared with less effective scaffolds (e.g., compound 9, Ki = 11 µM).
The percentage of boronic acids detected was estimated using peak area measurements
in the LC–MS-targeted SIM mode, with quantification being performed using calibration
curves. The experiments were conducted at 37 ◦C in a 95:5 sodium phosphate 50 mM pH
7.0:DMSO mixture.

For compound 10a, the most potent AmpC inhibitor reported in this study, a slight
decrease in detection was observed over 24 h, with 83% of 10a remaining in the presence
of 20 mol% of the target protein. However, when 10a and AmpC were incubated at a
stoichiometric ratio, 10a levels remained stable throughout the experiment. A similar trend
was observed for compounds 8 and 9, indicating that the inhibitors affinity for the protein
target did not influence its detection in the LC–MS analysis. Additionally, no differences
were observed when warhead 3 was incubated with either a limiting or stoichiometric
amount of AmpC. These findings suggest that the covalent nature of the warhead and the in
situ click chemistry products did not interfere with the KTGS experiments or their outcomes.
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2.6. Molecular Docking Studies

To gain a better understanding of the mechanism of the AmpC-catalysed in situ
click chemistry, molecular docking simulations were implemented. LibDock score was
used as a relative metric for comparing ligand poses (warhead 3 and compounds 10 and
10a) derived from the AmpC screening, prioritising complementarity and stability in the
binding site (e.g., VDW vs. electrostatic) [65,66]. In this regard, the higher the score, the
higher the probability of a compound with a high binding affinity. Based on this scoring,
for AmpC, the conformations of warhead 3 have the lowest score (less than 80). 1,5-
regioisomers 10a have the highest score (120–123), followed by its relative 1,4-regioisomers
10 (112–115). Binding free energy was also estimated between each ligand and enzyme.
Using CHARMm-based energies and implicit solvation methods, the overall binding free
energy was determined from ligand energy, protein energy, and entropic energy [67]. The
interaction energy protocol was used to calculate the non-bound interactions (i.e., van
de Waals, electrostatic) between each compound and active site residues. As expected,
warhead 3 had the worst interaction energy (−12.23 kcal/mol), while the best compound
10a had the highest (−21.3 kcal/mol), therefore supporting the data obtained from the
AmpC screening. Furthermore, the molecular docking of warhead 3 into the active site of E.
coli AmpC revealed that hydroxy boronate maintains the tetrahedral conformation observed
in prior X-ray structures, forming hydrogen bonds with conserved catalytic residues Y150
and A318 (Figure 11A). Moreover, the phenyl ring engages in π–π interactions with N152
or Y221. Warhead 3 allows for two different conformations with comparable interaction
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energies (~12.23 kcal/mol). The alkyne fragments may preferentially bind with any of the
conformations (left or right), and the new formed triazole will bind with residues T319,
N343, or Q120. The docking of the 1,4-regioisomer 10 and the 1,5-regioisomer 10a into
the active site of AmpC shows two distinct binding patterns (Figure 11B). The shared
phenylboronate core maintains steric interactions with N152. The 1,5-regioisomer 10a,
which has the highest binding affinity (140 nM) and the most favourable interaction energy
(−21.43 kcal/mol), forms interactions between its triazole and T319 and between SO2 and
Q120. Its cyclohexane group engages in steric interactions with A216 and V121. In contrast,
the 1,4-regioisomer 10a has a less favourable interaction energy (−13.38 kcal/mol) and
positions its cyclohexane group toward R204.
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3. Discussion
In this work, we investigated whether in situ click chemistry can be readily employed

as a platform to discover boronic acid-based β-lactamase inhibitors. Previously, triazole-
containing boronic compounds were discovered following standard procedures (CuAAC)
on the mgs scale, leading to the discovery of potent β-lactamase inhibitors [17]. In contrast,
the synthesis of inhibitors within the catalytic site of an enzyme using a multicomponent
assay offers different advantages. Firstly, this approach is timesaving, as 90 reactions can
potentially be conducted simultaneously, allowing for a rapid identification of inhibitors.
A second advantage is operability, as the boronic group contained in the warhead does
not require tedious protection and deprotection steps, which are often required when a
click reaction is conducted under conditions of chemical catalysis with Cu(I). Eventually,
small-scale reactions represent an economically viable solution for avoiding an excessive
consumption of reagents. In this study, two enzymes belonging to separate classes of
β-lactamases were used as the template, the class A carbapenemase KPC-2 and the class C
cephalosporinase AmpC. Despite sharing the same mechanism of action, those enzymes
possess different specificity towards β-lactam antibiotics, reflecting the diversity of their
catalytic sites. Analysis on KPC-2 and AmpC active sites with the DoG site scorer, an auto-
mated tool able for predicting and evaluating binding pockets for druggability assessment,
reveals significant differences on the physicochemical properties of the two target pockets
chemistry (see SI Table S4 and Figures S11–S14) [52]. While KPC-2 possess a narrow and
enclosed active site, suggesting a lower pre-disposition to accommodate KTGS building
blocks, AmpC, display larger volume, broader surface, and favourable physicochemical
parameters. Microbiological screening of the azidomethylphenyl boronic warheads de-
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signed revealed boronic warhead 3, bearing the substituent in the meta position, as the most
active towards both KPC-2 and Amp-C. When the in situ click chemistry experiment was
conducted in the presence of those enzymes, few alkynes were selected for the formation of
the triazoles, indicating that both β-lactamases can catalyse the azido-alkyne cycloaddition
reaction. Catalysis in the presence of KPC-2 reveals the formation of three out of 90 poten-
tial triazoles with an amplification coefficient > 3 relative to controls. When in situ click
chemistry is repeated with AmpC, whose catalytic site exhibit more favourable druggabil-
ity parameters than KPC-2, results are comparable in both amplification coefficient and
number of hits. Interestingly, in some cases, AmpC dictates a specific preference for the
formation of 1,5-regioisomer triazoles (i.e., with Al-12 and Al-88).

These results further demonstrate that overcoming the energy barrier typical of the
cycloaddition reaction is possible only with appropriate spatial orientation in the catalytic
site of both azide and alkyne. To prove that click chemistry takes place within the catalytic
site, a binary experiment was attempted with warhead 3 and alkyne Al-12 in the presence
of SM23, a potent AmpC inhibitor (Ki = 1 nM). At a concentration of 1 mol% inhibitor, the
AC drops from a value of 5−6 without inhibitor to a value of 1−2. With an equimolar
concentration of SM23 and enzyme (20%), a negligible triazole peak is visible, suggesting
that the high affinity of the inhibitor for the catalytic site prevents the appropriate spatial
arrangement of azidoboronate and alkyne for cycloaddition. These combinations of results
prove the role of β-lactamases in promoting cycloaddition reaction within their active site.
Further control experiments confirmed that both the warhead and reaction products were
efficiently detected during LC–MS analysis when incubated with AmpC. This suggests that
the reversible covalent bond between the boronic acid and the β-lactamase catalytic serine
does not interfere with the quantification of the in situ click chemistry products. For both
KPC-2 and AmpC, the synthesised triazoles prove to be better inhibitors than warhead 3 (Ki

vs. KPC-2 = 2.3 µM; Ki vs. AmpC = 700 nM), reaching values of Ki = 730 nM for compound
5, the best KPC-2 inhibitor, and Ki = 140 nM for 10a, the best AmpC inhibitor. In support
of our findings, docking simulations performed reveal that compound 10a has both the
highest binding energy and the highest LibDock score compared with the regioisomer
10 and warhead 3. These data further confirm the validity of KTGS as a platform for
BLIs discovery.

Triazole-based BATSIs derived from the reaction of other alkynes that were not selected
in situ were also synthesised and tested. Some of them proved to be comparable inhibitors
as the hit compounds against both enzymes, suggesting how this technique can un-detect
potential inhibitors. This problem of “false negative”, however, is inherent in the technique
itself [49–51,68]. Furthermore, structural rigidity and steric constraints of the boronic acid
scaffold likely restricted the conformational freedom required for effective alignment of
reactants. While the reversible covalent interaction between the catalytic serine and the
electrophilic boron anchors the warhead within the active site, it also limits the spatial
and conformational flexibility needed for alkyne fragments. These limitations emphasise
the necessity of designing more flexible and adaptable warheads, such as warhead 1, that
might balance inherent activity with catalytic efficiency for inhibitors formation through
KTGS applications. Future work will focus on expanding the application of in situ click
chemistry to a broader range of warheads and β-lactamases, with particular emphasis on
optimising reaction conditions tailored to each specific target.

4. Materials and Methods
4.1. Chemistry

Methods. All reactions dealing with air- and moisture-sensitive compounds were
carried out in dry reaction vessels under a nitrogen atmosphere. Flash column chromatog-
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raphy (CC) was performed using silica gels (particle size 35–70 µm). Solvents used in CC
were commercially available and distilled before use. Thin-layer chromatography was used
for product detection using silica gel-coated plates, with visualization effected via exposure
to UV light at 254 nm or staining and heating with potassium permanganate (KMnO4) or
Pancaldi solution (phosphomolybdic acid and Ce(IV)sulphate in 4% sulphuric acid).

Instrumentation. 1H NMR, 13C NMR, and 11B NMR spectra were obtained on a Bruker
Ascend 400 instrument at 400 MHz (1H NMR at 400 MHz, 13C NMR at 101 MHz, 11B NMR
at 128 MHz) and Bruker Ascend 600 instrument at 600 MHz (1H NMR at 600 MHz, 13C
NMR at 151 MHz, 11B NMR at 193 MHz) at ambient temperature with CDCl3, CD3OD, D2O,
or d6-DMSO as the deuterated solvent. All chemical shifts δ are reported in parts per million
(ppm), and the residual solvent peak was used as an internal reference: proton (CDCl3 δ

7.26, MeOD δ 3.31, D2O δ 4.79, DMSO δ 2.50), carbon (CDCl3 δ 77.0, MeOD δ 49.0, DMSO δ

39.5), or tetramethylsilane (TMS δ 0.00) were used as a reference. Coupling constants (J)
were reported in Hertz (Hz) and referred to apparent peak multiplets. Data for 1H NMR
spectra were reported as follows: chemical shift (ppm), multiplicity (given as s (singlet),
d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) or a combination of them),
coupling constants (Hz), and integration. 13C NMR and 11B NMR were only reported
as chemical shifts. High-resolution mass spectra (HRMS) were recorded on an Ultimate
3000 UHPLC coupled to a Q-Exactive hybrid quadrupole-orbitrap mass spectrometer
via an HESI-II heated electrospray ionisation source (Thermo Fisher Scientific, Waltham,
MA, USA).

Materials. All reagents and solvents were of commercial quality from freshly opened
containers. All substances that are not described in the following synthetic procedures were
obtained from commercial suppliers, such as:BLD Pharmatech GmbH (Reinbek, Germany),
Merck KGaA (Darmstadt, Germany), Thermo Fisher scientific, Santacruz biotechnology
(Dallas, TX, USA) and Enamine (Kyiv, Ukraine). Anhydrous 1,4-dioxane, toluene, and
other solvents were purchased and used under a N2 atmosphere.

Synthesis and characterisation data. Detailed synthetic procedures, compounds char-
acterisation, and spectral data are available in the Supplementary Materials.

4.2. In Situ Click Chemistry

Materials. Reactions were incubated in a TS-100C (Biosan, Riga, Latvia) thermo-shaker
equipped with an interchangeable heating block for microtubes and PCR plates.

Cluster of alkynes preparation. Mixtures of alkynes (cluster 1 to 10, see Figure 4)
were prepared from a dimethylsulphoxide (DMSO) 50 mM stock solution of each alkyne;
mixtures X (10 clusters of 9 alkynes): mixing 10 µL of DMSO to 10 µL of stock solutions of
9 alkynes to reach a 5 mM final concentration of each alkyne.

Azide preparation. Warhead 3 was dissolved in DMSO at a 50 mM final concentration.
For reactions, warhead 3 was diluted to 1 mM in DMSO.

Binary and multicomponent KTGS. In a 0.2 mL microtube, 2.5 µL of azide 3 (stock
concentration of 1 mM in DMSO), 2.5 µL of an alkyne mixture (stock 5 mM in DMSO), 6.9 µL
of AmpC (stock 72 µM in NaPi pH 7.0) and 88.1 µL of 50 mM sodium phosphate buffer pH
7.0 were mixed to reach a final volume of 100 µL. The final concentrations are the following:
azide 25 µM (1 eq.), alkyne cluster 125 µM (5 eq. × 9), AmpC 5 µM (20 mol% or 0.02 eq.),
DMSO 5%. For experiments in the presence of KPC-2, 3.27 µL of KPC-2 (stock 153 µM in
NaPi pH 7.0) was used to afford a final concentration of 5 µM (20 mol% or 0.02 eq.). The
microtube was shaken at 300 rpm at 37 ◦C for 24 h. Reactions were transferred into a LC–MS
vial and directly injected (10 µL) for liquid chromatography–mass spectrometry (LC–MS).
Reactions were analysed with an Ultimate 3000 UHPLC coupled to a Q-exactive hybrid
quadrupole-orbitrap mass spectrometer via an HESI-II heated electrospray ionisation
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source. The chromatographic separation was performed injecting a 10 µL sample volume
on a Hypersil Gold C18 100 × 2.1 mm, 1.9 µm column (Thermo Fisher Scientific), kept at
30 ◦C eluting with 0.3 mL/min flow of ultrapure water (A) and methanol (B), both with
0.1% formic acid as mobile phase. A linear gradient profile was applied from 2% to 98%
B over 10 min followed by a reconditioning step pending successive sample injection. A
data-dependent mass spectrometric data acquisition strategy was used for full MS/DD-
MS2. Full MS experiments were acquired by alternating positive and negative ionisation
mode at 35,000 FWHM (at 200 m/z) resolving power with a 250 < m/z < 1000 scan range
,and AGC target and maximum injection time set at 3 × 106 and 243 ms, respectively. The
top 2 mono-charged ions were selected for MS2 acquisition at 17,500 FWHM using a 4.3
m/z (1.0 offset) wide isolation window, with AGC set at 2 × 105 and 100 ms maximum
injection time. An inclusion list was eventually used to target the MS2 spectra acquisition of
preferred ion species. Detection was based on calculated [M+H]+ and [M−H]− molecular
ions with a 5 ppm accuracy tolerance for their respective ion chromatogram extraction.
Peak retention time and area of detected target compounds was used for their detection
and semi-quantitative evaluation in between reaction batches.

For controls (buffer and BSA), AmpC/KPC-2 is replaced with no enzyme (buffer
volume 95 µL) and BSA (stock 100 µM, final concentration 5 µM, buffer volume 90 µL).
Hits were identified in each cluster by mass and retention time and compared with both
controls (buffer and BSA) and synthetically prepared triazoles obtained in mixtures. The
peak area of each triazole obtained in the presence of the proteins (AmpC and KPC-2) was
compared with the peaks observed with controls to calculate the amplification coefficient
(AC, PAKPC-2/AmpC/PANo protein/BSA).

CuAAC positive controls. In a 0.2 mL microtube, 2.5 µL of azide 3 (stock concentration
of 1 mM in DMSO), 2.5 µL of an alkyne mixture (stock 5 mM in DMSO), 2.5 µL of CuSO4

(stock 1 mM in water), 2.5 µL of sodium ascorbate (stock 5 mM in water) 2.5 µL of THPTA
(stock 2 mM in water), 40 µL of water, and 47.5 µL of t-BuOH were mixed to reach a
final volume of 100 µL. The final concentrations are the following: azide 25 µM (1 eq.),
alkyne cluster 125 µM (5 eq. × 9), CuSO4 25 µM (1 eq.), sodium ascorbate 125 µM (5 eq.),
THPTA 50 µM (2 eq.), DMSO 5%, t-BuOH 47.5%, water 47.5%. The microtube was shaken
at 300 rpm at 37 ◦C for 24 h. Reactions were transferred into an LC–MS vial and analysed
in the same way as described in the binary and multicomponent KTGS section above.

Thermal reactions. In a 0.2 mL microtube, 2.5 µL of azide 3 (stock concentration of
1 mM in DMSO), 2.5 µL of an alkyne mixture (stock 5.1 mM in DMSO), and 95 µL of 50 mM
sodium phosphate buffer pH 7.0 were mixed to reach a final volume of 100 µL. The final
concentrations are the following: azide 25 µM (1 eq.), alkyne cluster 125 µM (5 eq. × 9).
The microtube was shaken at 300 rpm at 80 ◦C for 24 h. Reactions were transferred into an
LC–MS vial and analysed in the same way as described in the binary and multicomponent
KTGS section above.

4.3. Microbiology and Determination of Ki

The β-lactamases used in the present study were from a Clinical Biochemistry Labora-
tory collection (Department of Biotechnological and Applied Clinical Sciences, University
of L’Aquila, L’Aquila, Italy). All enzymes show a purity degree of higher than 95%. The
concentration of each enzyme was determined by a Bradford assay. The KM values of
each β-lactamase for nitrocefin were determined following the hydrolysis of the substrate
under the initial rate and by linearisation of the Michaelis–Menten equation using the
Hanes-Woolf method [69].

Competitive inhibition assays were monitored directly using, as a reporter substrate,
100 µM nitrocefin. Ki values were calculated using the following equation:
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v0/vi = 1 + (KM × I)/(KM + S) × Ki (1)

where vi and v0 are the initial rates of hydrolysis of nitrocefin with or without an inhibitor,
respectively; I is the concentration of the inhibitor, Ki is the inhibition constant, KM is the
Michaelis–Menten constant, and S is the concentration of reporter substrate. The plot v0/vi

versus [I] yielded a straight line of slope KM/(KM + S) × Ki [70].
The IC50 value for each compound was graphically calculated, plotting residual

activity (%) versus [I].
For the β-lactamases test at a fixed concentration previously reported in Table 1, the

following conditions were applied (Table 3):

Table 3. Conditions and kinetic values for the 12 β-lactamases tested.

β-lactamase Buffer Substrate KM substrate [Substrate] [β-lactamase]

KPC-2 NaPi 1 NCF 3 10 ± 1 µM 50 µM 1 nM

CTX-M-15 NaPi NCF 35 ± 1 µM 25 µM 2.5 nM

KPC-53 NaPi NCF 106 ± 2 µM 100 µM 30 nM

SHV-12 NaPi NCF 50 ± 3 µM 25 µM 7 nM

NDM-1 HEPES 2 MPM 4 80 ± 1 µM 100 µM 4.5 nM

VIM-1 HEPES MPM 130 ± 4 µM 150 µM 22 nM

IMP-1 HEPES MPM 30 ± 1 µM 80 µM 13 nM

AmpC NaPi NCF 118 ± 2 µM 142 µM 14 nM

ADC-25 NaPi NCF 120 ± 3 µM 24 µM 3 nM

CMY-2 NaPi NCF 8 ± 1 µM 24 µM 2.5 nM

OXA-24 NaPi NCF 29 ± 1 µM 142 µM 4 nM

OXA-48 NaPi IMI 5 13 ± 1 µM 50 µM 75 nM
1 NaPi 50 mM pH 7.0; 2 HEPES 20 mM pH 7.0+ 20 µM Zn. 3 NCF = Nitrocefin; 4 MPM = Meropenem;
5 IMI = Imipenem.

4.4. Docking Studies

The crystal structures of E. coli AmpC (PDB: 1KE4) were used for molecular docking.
The structures were prepared for docking using DS2020 version 20.1 (Discovery Studio
Client 2020, Dassault Systèmes BIOVIA, San Diego, CA, USA) modelling software. The
crystallographic waters were removed, and the structures were further minimised using
the conjugate gradient method, with an RMS gradient of 0.001 kcal/(mol × Å). Generalised
born with a simple switching (GBSW) solvation model was used, and long-range electrostat-
ics were treated using a particle mesh Ewald method with a periodic boundary condition.
The SHAKE algorithm was applied. The azide warhead 3 and compounds were built and
docked into the active site of AmpC using the LibDock protocol. In this high-throughput
algorithm, ligand conformations are aligned to polar and apolar receptor interaction sites
(hotspots), and the best scoring poses are reported. Because some of the output poses may
have hydrogen atoms near the receptor, a CHARMm minimisation step was enabled to
optimise the docked poses. Furthermore, the generated poses were analysed and the best
poses were ranked based on the scoring functions (a higher score predict a more favourable
binding affinity), and the minimum distance from boron atom to catalytic serine (S64 for
AmpC) was used to create the enzyme–ligand complexes. The complexes were further
minimised to assess the stability of the systems. From the initially generated conformations
(several hundreds/compound), the first 50 conformations with the highest LibDock score
were selected and analysed. Binding free energy was estimated between each ligand and
enzyme. Using CHARMm-based energies and implicit solvation methods, the overall
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binding free energy was determined from ligand energy, protein energy, and entropic
energy. The interaction energy protocol was used to calculate the non-bound interactions
(i.e., van de Waals, electrostatic) between each compound and active site residues.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms26094182/s1.
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