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Abstract: Novel drug discovery and repositioning remain critical challenges in biomedical
research, requiring accurate prediction of drug–target interactions (DTIs). We propose
the CPDP framework, which builds upon existing biomedical representation models and
integrates contrastive learning with multi-dimensional representations of proteins and
drugs to predict DTIs. By aligning the representation space, CPDP enables GNN-based
methods to achieve zero-shot learning capabilities, allowing for accurate predictions of
unseen drug data. This approach enhances DTI prediction performance, particularly for
novel drugs not included in the BioHNs dataset. Experimental results demonstrate CPDP’s
high accuracy and strong generalization ability in predicting novel biological entities while
maintaining effectiveness for traditional drug repositioning tasks.

Keywords: novel drug discovery; multi-modal learning; cross-domain knowledge integration

1. Introduction
Novel drug discovery is a complex, multi-stage process focused on identifying com-

pounds that effectively treat specific diseases [1–4]. A key challenge is predicting drug–
target interactions (DTIs), which helps determine which molecules are likely to bind
biological targets [5–9]. Traditional drug discovery methods, such as molecular simulation
and protein structure analysis, rely on physiology-based and target-based approaches [4].
However, these methods are resource-intensive and time-consuming, limiting the rapid
development of new therapeutics.

With the advancement of deep learning (DL) and the growing volume of drug-related
data [10,11], graph neural network (GNN) based methods have emerged as powerful tools
for predicting DTIs by modeling biomedical heterogeneous networks (BioHNs) [12]. These
methods excel in drug repositioning and predicting interactions within the network. For in-
stance, DTINet [6] uses unsupervised learning to generate low-dimensional representations
for DTI prediction. NeoDTI [7] leverages neighborhood information to learn topology-
preserving representations. However, they rely heavily on graph structures, which makes
it challenging to predict DTIs for new drugs lacking existing associations in the graph [10].
GEFA [8], which integrates pre-trained protein embeddings with attention mechanisms,
enhances DTI prediction but faces a decline in effectiveness when dealing with new targets
and drugs. These challenges underscore the limitations of GNN-based methods in the
context of new drug discovery.
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Other approaches, such as pre-trained large language models (LLMs) like GPT [13],
hold promise for application in biomedical research due to their success in zero-shot
and few-shot learning [14–17]. BioGPT [16] is a generative pre-trained transformer for
biomedical text generation, while PMC-LLaMA [15], fine-tuned on 4.8 million biomedical
papers, enhances medical knowledge and improves performance in the domain. However,
they struggle to capture crucial biomedical features, such as molecular structures, protein
sequences, and biological pathways, relying mainly on prior labels rather than structured
data. Esm-2 [18] is a Transformer-based model that learns evolutionary information from
protein sequences by converting amino acid sequences into numerical vectors.

To extend the outstanding DTI prediction capability of GNN-based methods to new
drug discovery, we propose the Contrastive Protein–Drug Pre-Training (CPDP) framework.
We first integrate data from various databases, including DrugBank (v4.3) [19], the Thera-
peutic Target Database (TTD) [20], and PharmGKB [21], to construct BioHNs dataset for
subsequent experiments. Afterward, CPDP integrates GNN-based network representation
methods and biomedical LLMs, to construct a common embedding space through non-
linear projection layers. Through contrastive learning, CPDP aligns actual drug-protein
target associations in BioHNs. We then validate the DTI prediction performance of CPDP
on novel drugs not present in the BioHNs. In summary, our contributions are as follows:

1. We construct a common embedding space through the CPDP framework, which inte-
grates protein and drug representations from various dimensions, thereby enhancing
the prediction of DTIs.

2. We employ contrastive learning for representation alignment to address the issue of
sparse training data, while also designing weak labels to retain diverse DTI informa-
tion from BioHNs and mitigate overfitting.

3. CPDP demonstrates strong performance on novel drug discovery and drug repo-
sitioning tasks without relying on predefined graph structures, showing superior
generalization to unseen biomolecular entities.

2. Results and Discussions
In the following subsections, we first focus on CPDP’s ability to simulate novel drug

discovery, followed by its application in drug repositioning.

2.1. Using CPDP to Simulate Novel Drug Discovery

In the field of novel drug discovery, researchers aim to predict potential interactions
for newly discovered or less studied drugs that lack association information, a challenge
commonly referred to as the zero-shot problem.

We use the incremental drug data from DrugBank v5.1 [22] compared to DrugBank
v4.3 [19], along with their associated DTIs, as the test set. This includes 125 newly intro-
duced drugs and 156 valid DTIs, as detailed in Section 3.1.

To showcase its zero-shot capability, we begin by providing a protein and one known
interacting drug, along with N randomly chosen non-interacting drugs in each case. This
setup simulates real-world research scenarios where the goal is to identify the most promis-
ing drug from a set of candidates. We choose advanced LLMs, specifically Llama-7B [23,24],
for comparison, as LLMs can be considered zero-shot models without explicit instructions
or additional unlabeled data [13].

On the one hand, CPDP filters relevant drugs by calculating association likelihood
scores and evaluates prediction performance using Top-k precision. We test CPDP
with different protein and molecule representation models. For proteins, we apply
MSSL2drug [9], a self-supervised model based on BioHNs. For molecules, we apply
JTVAE [25], Llama [23,24], and BioGPT [16], considering both SMILES [26] and natural
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language representations. This demonstrates CPDP’s ability to generalize network-based
DTI prediction methods to unknown drugs without network association data, simulating
the process of discovering new drugs.

On the other hand, we directly query Llama-7B [23,24] to identify the potential associ-
ated entity from the same candidate drugs. To ensure optimal performance of the LLMs,
we employed the following prompts:

Prompt 1: “Please select one and the most relevant drug for treating or managing <target> from
the following options: <drugs>”.
Prompt 2: “Please select one and the most relevant drug for treating or managing <target> from
the following options: <drugs>. Answer “None” if you cannot select one drug from the list or
require more information. You must start by choosing one from the drug’s name or “None””.

The results are shown in Tables 1 and 2. MSSL2drug-JTVAE CPDP performs best at
both N = 4 and N = 9, improving performance by 13% to 76% compared to other molecu-
lar representations, demonstrating that JTVAE’s high-quality molecular representations
enhance CPDP’s generalization. Particularly when N = 9 (Table 2), LLama’s performance
is unstable due to prompt issues, but CPDP still maintains a strong predictive capabil-
ity. CPDP’s Top-3 accuracy shows an improvement of 85–129% over the Top-1 accuracy,
demonstrating its robustness.

Table 1. Comparison of the performance of CPDP and Llama in predicting DTIs for novel drug
identification (N = 4).

Protein–Molecules
CPDP Top-1 Top-3

MSSL2drug-JTVAE
CPDP

0.407 0.756

MSSL2drug-Llama
CPDP

0.393 0.708

MSSL2drug-BioGPT
CPDP

0.282 0.691

Llama-7B prompt1 0.327 \
Llama-7B prompt2 0.327 \

Evaluation metrics include Top-1 and Top-3 accuracies.

Table 2. Comparison of the performance of CPDP and Llama in predicting DTIs for novel drug
identification (N = 9).

Protein–Molecules
CPDP Top-1 Top-3 Top-5

MSSL2drug-JTVAE
CPDP

0.256 0.512 0.674

MSSL2drug-Llama
CPDP

0.225 0.517 0.663

MSSL2drug-BioGPT
CPDP

0.145 0.390 0.597

Llama-7B prompt1 0.169 \ \
Llama-7B prompt2 0.011 * \ \

Evaluation metrics include Top-1, Top-3, and Top-5 accuracies. * indicates most of Llama-7B queries failed to
recognize the question or required more real-world evidence.

To better illustrate the differences between CPDP and Llama, we present a specific
example, as shown in Figure 1. The scores represent the predicted likelihood of interaction
between protein and drug pairs. CPDP can calculate the likelihood scores, allowing the
selection of multiple potential drugs in a batch (as shown in Figure 1, Sunitinib and
Bosutinib have significantly higher predicted scores compared to other drugs). LLMs
typically suggest the most likely drug interaction, but their response quality depends on
the prompt, which potentially lead to incomplete or suboptimal recommendations.
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Figure 1. Example of the answer of CPDP and LLama. The bolded drugs are those that actually
interact with PLK2.

Additionally, we list the top 10 cases with the highest predicted association likelihood
scores by MSSL2drug-JTVAE CPDP, along with the corresponding literature evidence,
as shown in Table 3.

Table 3. Top-10 human protein targets ranked by CPDP predicted likelihood scores, along with
supporting evidence.

Human Protein
Target Prediction Likelihood Scores Evidence

PTGFR Travoprost 0.582 [27]
ACE Ramipril 0.546 [28]
DPP4 Sitagliptin 0.532 [29]

AR Methsuximide 0.505 [30]
ACHE Tacrine 0.472 [31]
DHFR Trimetrexate 0.420 [32]

HMGCR Cerivastatin 0.376 [33]
CYP19A1 Exemestane 0.367 [34]

FDPS Pamidronic Acid 0.367 [35]
AGTR1 Eprosartan 0.361 [36]

2.2. Using CPDP to Simulate Drug Repositioning

We found that CPDP naturally possesses the capability to simulate drug repositioning
problems. The core issue lies in identifying potential uses of existing drugs for new disease
treatments or novel therapeutic targets.

Following the experimental approach in Section 2.1, we randomly sample 10% of
proteins from BioHNs as cold-start protein targets, which were not included in the training
process. CPDP then predicts the most relevant drug among randomly selected drugs.
For proteins, we apply MSSL2drug [9], Esm-2 [18], Llama[23,24], and BioGPT [16], con-
sidering different dimensions of representation methods, including network structure,
protein sequences, and natural language. For molecules, we apply JTVAE [25] to repre-
sent them from the perspective of SMILES notation, as Section 2.1 shows JTVAE’s strong
generalization ability.

The results are shown in Tables 4 and 5. Considering Top-1 accuracy, Esm2-JTVAE
CPDP demonstrates strong stability, with only a 7.6% decrease when the number of irrele-
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vant drugs increases by 1.25 times. Compared to Llama, CPDP outperforms LLMs relying
solely on natural language features by 55.9% to 154.6%. This improvement highlights the
effectiveness of integrating multi-dimensional representations. In the BioHNs scenario,
CPDP leverages existing representation models and an embedding alignment framework
to more accurately predict relevant drugs for cold protein targets.

Table 4. Comparison of CPDP and Llama-7B query performance for drug reposition task (N = 4).

Protein–Molecules
CPDP

Top-1 Top-3

Esm2-JTVAE
CPDP

0.798 0.938

MSSL2drug-JTVAE
CPDP

0.787 0.936

Llama-JTVAE
CPDP

0.711 0.886

BioGPT-JTVAE
CPDP

0.631 0.858

Llama-7B prompt1 0.456 \
Llama-7B prompt2 0.309 \

Evaluation metrics include Top-1 and Top-3 accuracies.

Table 5. Comparison of CPDP and Llama-7B query performance for drug reposition task (N = 9).

Protein–Molecules
CPDP

Top-1 Top-3 Top-5

Esm2-JTVAE
CPDP

0.737 0.875 0.925

MSSL2drug-JTVAE
CPDP

0.721 0.860 0.914

Llama-JTVAE
CPDP

0.639 0.797 0.860

BioGPT-JTVAE
CPDP

0.561 0.709 0.821

Llama-7B prompt1 0.406 \ \
Llama-7B prompt2 0.250 \ \

Evaluation metrics include Top-1, Top-3, and Top-5 accuracies.

Furthermore, we evaluate CPDP’s drug repositioning capability from another per-
spective. For each protein, we predict the association likelihood scores with all drugs and
calculate AUPR and AUROC as comparison metrics. CPDP is compared with traditional
GNN-based representation models, including ZeroBind [37], DeepDTA [38], and deep-
DTnet [39]. ZeroBind [37], a protein–ligand binding affinity prediction framework, uses
a meta-learning approach with strong generalization to quickly adapt to new tasks with
limited training samples, making it a few-shot learning method.

The experimental results are shown in Figure 2. CPDP achieves an AUROC of 0.96,
outperforming ZeroBind by 9.2%. DeepDTA and deepDTnet exhibit relatively weaker
performance. CPDP demonstrates a significant advantage in drug repositioning tasks,
enabling more accurate drug–target interaction predictions. Although ZeroBind falls short
of CPDP in terms of AUROC, its high AUPR indicates strong performance in positive
case predictions.
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Figure 2. The AUROC and AUPR values of CPDP and other methods evaluated on drug reposition-
ing task.

2.3. Ablation Experiment

The projection module is essential for mapping and aligning protein and drug rep-
resentations. To analyze the impact of different projection methods and layer depths,
we conducted a series of ablation experiments. Specifically, we examined linear projec-
tion and nonlinear projections with 2, 3, 5, and 12 layers. The study aims to determine
whether protein or drug representations have a greater impact on CPDP and to evaluate
the effects of shallow (linear or two-layer nonlinear) versus deep projections on CPDP’s
representation capability.

Predicting molecules that interact with a specific protein can be formulated as a
classification task. Given the many-to-many DTIs associations in BioHNs, this task can be
further categorized as a multi-label classification problem. To evaluate both the precision
and recall of CPDP, we employ precision@k and recall@k, defined as follows:

precision@k =

∣∣∣y(k) ∩ ŷ(k)
∣∣∣∣∣ŷ(k)∣∣ (1)

recall@k =

∣∣∣y(k) ∩ ŷ(k)
∣∣∣∣∣y(k)∣∣ (2)

where y is the actual label set, ŷ is the predicted label set generated by CPDP. The precision@k
signifies the proportion of correctly predicted labels among the top k predicted labels,
indicating the accuracy rate, while recall@k denotes the proportion of correctly predicted
labels among the actual labels, indicating the comprehensiveness rate.

We then calculate the average precision@k k = 1 (AP) and average recall@k k = 5 (AR) for
each protein to indicate the prediction accuracy of the Top-1 results and comprehensiveness
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of the Top-5 results, respectively. Following this, we compute the mean average precision@k
(MAP) and the mean average recall@k (MAR) for all proteins as follows:

MAP =
1
m

i=1

∑
m

AP@k(k = 1) =
1
m

m

∑
i=1

k=1

∑
j=1

precision@j (3)

MAR =
1
m

i=1

∑
m

AR@k(k = 5) =
1
m

m

∑
i=1

k=5

∑
j=1

recall@j (4)

where m represents the number of proteins. We adopt MAP to reflect the proportion of
correct labels in the Top-1 predictions across all target biological entities, measuring the
model’s precision. We adopt MAR to reflect the proportion of true labels covered in the
Top-5 predictions, evaluating the model’s recall capability.

The results are shown in Figure 3.
The impact of protein projection layers is reflected along the vertical axis. When non-

linear projections are applied to molecular features (i.e., ≥2 layers), both MAP and MAR
consistently remain above 0.9, indicating that protein projection layers have a relatively
minor effect. This may be because the initial protein representations are already strong,
reducing reliance on additional transformations. However, this does not mean protein
projection layers are entirely insignificant. When molecular features are weak (linear
projection), increasing protein projection layers boosts MAP and MAR by up to 88.9% and
49.9%, respectively.

The impact of molecular projection layers is reflected along the horizontal axis. When
the number of layers is ≥2, MAP rapidly increases to 0.95+, and MAR reaches 0.94+, sug-
gesting that optimizing molecular representations plays a crucial role in CPDP’s predictive
performance. This is likely because drug representation is crucial in DTI prediction, as pro-
tein structures are relatively stable, while drug molecules vary significantly, requiring more
complex modeling to capture their features.

(a) (b)

Figure 3. Comparison of MAP (a) and MAR (b) across different projection layer configurations in
CPDP. Zero denotes linear projection and the others represent the corresponding number of non-linear
projection layers.

3. Materials and Methods
We introduce the CPDP embedding alignment framework for biomedical entities, built

on extensive biomedical data and existing biological representation models. Section 3.1
introduces the dataset used in this study. In Section 3.2, we outline the workflow of
CPDP, followed by a detailed explanation of the contrastive learning process in CPDP in
Section 3.3.
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3.1. Datasets

Following established cutting-edge methods, we construct BioHNs, a heterogeneous
biomedical network dataset, according to deepDTnet [39]. Specifically, BioHNs include
object types such as drugs, proteins, and diseases, along with relationship types including
DTIs, drug–disease interactions (DDIs) and drug–drug interactions.

More specifically, we collect DTI information from DrugBank database (v4.3) [19],
TTD [20], and PharmGKB [21]. For each drug, its chemical structure is extracted from
DrugBank [19] in the simplified molecular input line entry system (SMILES) strings [26],
while each protein was mapped to its Entrez ID through NCBI [40]. DDIs are attained from
several public resources, including repoDB [41], DrugBank(v4.3) [19] and DrugCentral
databases [42] by fusing drug indications. We standardized disease names using Medical
Subject Headings (MeSH) and Unified Medical Language System (UMLS) vocabularies [43],
and then mapped them to MedGen ID based on NCBI [40].

Finally, BioHNs include 670 drugs, 1894 proteins, and 431 diseases, along with detailed
interaction data: 4839 DTIs, 1103 DDIs, and 118,364 drug–drug interactions. A sample
illustration of BioHNs data is shown in Figure 4.

Figure 4. This is a partial schematic of the BioHNs network, showing some of the relationships
and structures.

In the data preprocessing stage, we divide the dataset based on DTIs, with a training-
to-validation ratio of 9:1. The test set is sourced from the incremental data of DrugBank
v5.1 [22] compared to v4.3 [19], which is entirely unknown to CPDP. We train CPDP using
a limited number of DTI labels from BioHNs, with a proportion of 0.004 (≈ 4839/(670 ×
1894)). The dataset division is shown in Table 6.
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Table 6. The numbers of nodes and edges in the constructed BioHNs.

Type of Node Total Train Set Valid Set Test Set

Drug 670 603 67 125 *
Protein 1894 1512 382 86 *
Disease 731 \ \ \

Type of edge

Drug-Protein
Interactions 4839 4325 514 156 *

Drug–Disease
Interactions 1103 \ \ \

* indicates incremental data that is not included in BioHNs.

3.2. Workflow

The workflow of the CPDP framework is shown in Figure 5. CPDP establishes a
bidirectional alignment mapping relationship between protein target representation and
molecule representation derived from different representation models.

Using actual DTIs from BioHNs as constraints, we treat the alignment process as a
contrastive learning task, where associated protein–molecule pairs are positive samples,
and others are negative samples.

Figure 5. The schematic workflow of CPDP. (a,b) Protein and molecule representations are derived
using different pre-trained models. (d) CPDP jointly trains a molecule projection and a protein
projection to map their separate embedding space (c) into a shared representation space and predict
the association scores for a batch of (protein, molecule) training examples.

Specifically, given a batch of N proteins and N molecules, where the ith protein is
associated with the ith molecule in actual DTIs, this protein–molecule pair is treated as
a positive sample. As shown in the batch matrix in Figure 5, the diagonal elements of
the matrix represent the positive samples, while the off-diagonal elements represent the
negative samples. The training goal of CPDP is to predict the likelihood scores of actual
associations for all possible N × N (protein, molecule) pairs in a batch.

To achieve this, we first utilize pre-trained biomedical representation models to map
proteins and molecules to their respective representation spaces (see Figure 5a,b). Next,
CPDP employs projection layers to map these separate representation spaces into a shared
embedding space. In this unified space, CPDP aims to maximize the distance between the
actual protein–molecule pairs in the batch, as measured by cosine similarity.

In the test phase, a zero-shot approach is used to predict potential DTIs as in Figure 6.
First, candidate drugs are extracted from a database and mapped into a shared embedding
space using a pretrained molecular projection module. Then, the target protein is processed
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through a representation model and a protein projection module to obtain its embedding P1.
By computing cosine similarity between the protein and all candidate drugs M1, M2, · · · , Mn,
CPDP predicts the likelihood of interaction between the target protein and each candidate drug.

Figure 6. Diagram of the CPDP framework validation process.

3.3. More Details for CPDP

To mitigate over-fitting, we employ a weak labeling approach wherein each indepen-
dent sample was considered a distinct category, even if multiple instances of the same
protein or more than one related drug may appear within a batch. For a batch of sample
pairs S = {(p1, m1), (p1, m2), · · · , (pi, mi), (pi, mi+1), · · · (pN , mN)}, where pi represents
the ith protein and mj represents the jth drug molecule, the label is defined as follows:

yij =

{
1, if i = j
no constraint, if i ̸= j

(5)

That is, for each pair(pi, mi), the label is set to 1, ignoring
(

pi, mj
)
(i ̸= j) potential

association labels within this batch. By not explicitly specifying interactions for the remain-
ing pairs, CPDP is guided to focus on real protein–molecule interactions while effectively
preserving interaction information in many-to-many DTIs scenarios.

The association likelihood between each protein–molecule pair is measured using
cosine similarity and converted into probability scores through softmax.

During the validation phase, CPDP ranks the probability scores and selects one or
more highly relevant molecules for the target protein. This approach allows for evaluating
both the prediction accuracy and recall of CPDP.

During the experimental phase, we employ a bidirectional cross-entropy Loss, con-
sidering both the likelihood score Pi,j of a protein matching a molecule and vice versa Qj,i.
The loss function consists of two parts:

LP→M = − 1
N

N

∑
i=1

logPi,i

LM→P = − 1
N

N

∑
i=1

logQi,i

L =
1
2
(LP→M + LM→P)

(6)
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Here, LP→M optimizes the association likelihood score when using a protein as the
query, while LM→P optimizes the association likelihood score when using a molecule as the
query. This ensures the model learns stable feature representations from both perspectives.

4. Conclusions
We explore the potential of generalizing network-based DTI prediction to unseen

biological entities. Building on existing biological representation models, we propose
CPDP, a novel alignment framework for biomedical applications. By leveraging contrastive
learning, we bridge associations between different biological entities (e.g., drugs and
proteins) and use geometric distances to predict DTI likelihood scores, expanding the scope
of drug screening and target discovery.

Inspired by the zero-shot concept, CPDP predicts associations between unseen bi-
ological entities for drug discovery and repurposing. It bypasses GNN limitations by
generalizing DTI prediction via structural or textual representations without prior network
associations. Compared to LLMs, CPDP enhances accuracy and adaptability through
multimodal alignment.

In theory, CPDP can be extended to other biomolecular interactions, given informative
representations and interaction data. However, this would require designing new alignment
modules for each specific interaction type.

Despite these promising results, there is still room for improvement. Inspired by
LLMs’ scale and zero-shot capabilities, incorporating larger biological datasets could
expose the model to more types of biological entities, potentially driving the model toward
a more generalizable direction. Since medical networks have sparse associations, future
research could use self-supervised learning and domain adaptation to improve the model’s
adaptability to sparse data.
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Abbreviations
The following abbreviations are used in this manuscript:

DTIs Drug–Target Interactions
GNN Graph Neural Network
BioHNs Biomedical Heterogeneous Network
LLMs Large Language Models
TTD Therapeutic Target Database
DDIs Drug–Disease Interactions
SMILES Simplified Molecular Input Line Entry System
AUPR Area Under the Precision–Recall Curve
AUROC Area Under the Receiver Operating Characteristic Curve
AP Average Precision
MAP Mean Average Precision
AR Average Recall
MAR Mean Average Recall
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