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Abstract: Microbiota have emerged as a promising tool for estimating the post-mortem
interval (PMI) in forensic investigations. The role of oral and nasal microbiota in cadaver
decomposition is crucial; however, their distribution across human cadavers at different
PMIs remains underexplored. In this study, we collected 88 swab samples from the oral
and nasal cavities of 10 healthy volunteers and 34 human cadavers. Using 16S rRNA gene
sequencing, we conducted comprehensive analyses of the alpha diversity, beta diversity,
and relative abundance distribution to characterize the microbial communities in both
healthy individuals and cadavers at varying PMIs and under different freezing conditions.
Random forest models identified Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota,
and Fusobacteriota as potential PMI-associated biomarkers at the phylum level for both
the oral and nasal groups, along with genus-level biomarkers specific to each group.
These biomarkers exhibited nonlinear changes over increasing PMI, with turning points
observed on days 5, 12, and 22. The random forest inference models demonstrated that
oral biomarkers at both the genus and phylum levels achieved the lowest mean absolute
error (MAE) values in the training dataset (MAE = 2.16 days) and the testing dataset
(MAE = 5.14 days). Additionally, freezing had minimal impact on the overall phylum-level
microbial composition, although it did affect the relative abundance of certain phyla. At
the genus level, significant differences in microbial biomarkers were observed between
frozen and unfrozen cadavers, with the oral group showing greater stability compared to
the nasal group. These findings suggest that the influence of freezing should be considered
when using genus-level microbial data to estimate PMIs. Overall, our results highlight the
potential of oral and nasal microbiota as robust tools for PMI estimation and emphasize the
need for further research to refine predictive models and explore the environmental factors
shaping microbial dynamics.

Keywords: 16S rRNA; microbial communities; post-mortem interval; random forest
model; freezing
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1. Introduction
The post-mortem interval (PMI), defined as the time elapsed between death and the

examination of the cadaver, is a crucial parameter in forensic investigations [1]. Traditional
methods for PMI estimation, such as assessing rigor mortis, algor mortis, livor mortis,
cadaveric discoloration, and gastric content digestion, are often affected by external envi-
ronmental factors and rely heavily on the subjective judgment of forensic examiners [2–4].
To enhance PMI estimation, advanced techniques, including forensic entomology [5],
molecular biology (e.g., analyses of RNA, DNA, and proteins) [6–8], spectroscopy [9], and
radiological technologies [10], have been developed. However, these methods often suffer
from drawbacks, such as limited precision, sensitivity to external environmental conditions,
or inefficacy for longer PMIs [3]. Consequently, the development of more precise, reliable,
and stable methods for PMI estimation remains a key focus in forensic research.

Recent studies have shown that microbial communities, both within and outside the
body, undergo predictable and systematic changes after death, which are closely linked to
the PMI [11–15]. Notably, integrating microbiome data with machine learning models has
significantly improved the accuracy of PMI prediction [4,16–18]. These findings highlight
that microbiome-based methodologies could offer a less subjective and potentially more
reliable framework for PMI estimation.

Diverse microbiota residing in the oral and nasal cavities play important roles in
cadaver decomposition, making them promising targets for PMI estimation research [19].
The ease and non-invasive nature of sample collection from these sites further strengthens
their potential for forensic applications. Several studies have explored the relationship
between microbial communities in the oral or nasal cavities and PMIs [17,20–23]. However,
there are some limitations in the existing research. One notable issue is the relatively small
number of studies involving large-scale human samples. Much of the current research
relies on animal models, such as rats [17,20] and mice [4], which may not fully capture
the complexity of human decomposition due to differences in physiology and microbial
communities. Additionally, many human studies are limited by small sample sizes [21]
or narrow PMI ranges [21], which can undermine the generalizability and accuracy of
the findings. Moreover, research on the role of the nasal microbiota in PMI estimation
remains sparse, and there has been relatively little investigation into how environmental
factors, such as freezing, influence PMI estimation, highlighting key areas for further
exploration [24–26].

This study aimed to examine the distribution of oral and nasal microbiota in both
healthy living individuals and human cadavers, considering varying PMIs and different
freezing conditions. We expected to uncover identifiable patterns and biomarkers within
these microbiota that could be instrumental in estimating PMIs, providing valuable insights
for forensic applications.

2. Results
2.1. Overall Characterization of 16S rRNA Sequencing Data

A total of 88 swab samples were collected and analyzed from the oral and nasal cavities
of 10 healthy volunteers and 34 human cadavers. The 10 healthy volunteers (Group H)
comprised 5 males and 5 females, with a mean age of 26.3 years. Among the 34 cadavers,
there were 26 males and 8 females, with a mean age of 52.6 years. The PMI in this study
was defined as the time elapsed from death to sample collection. Based on the stages of
cadaveric decomposition [14], the cadavers were categorized into four groups: Group D1
(PMI 1–3 days, fresh decay stage), Group D2 (PMI 4–7 days, bloat stage), Group D3 (PMI
8–15 days, active decay stage), and Group D4 (PMI > 15 days, advanced decay stage).
Detailed information is provided in Table 1.
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Table 1. Description of the cadavers and healthy volunteers analyzed in this study.

Group Individual PMI (Days) Age (Years) Gender Cause of Death Frozen Season of Death

D1 S06 1 41 M Craniocerebral injury No Spring

D1 S08 1 47 M Coronary heart disease No Spring

D1 S09 2 37 F Craniocerebral injury No Spring

D1 S10 2 48 M Coronary heart disease No Spring

D1 S12 3 47 M Drowning No Spring

D1 S40 3 60 F Drug intoxication Yes Summer

D2 S17 4 49 M Coronary heart disease No Spring

D2 S31 4 19 F Traffic injury Yes Summer

D2 S05 5 80 M Stomach tumor and
lung infection No Winter

D2 S16 5 30 F Craniocerebral injury Yes Spring

D2 S30 5 51 M Traffic injury Yes Summer

D2 S24 5 65 M Coronary heart disease Yes Spring

D2 S22 6 27 M Sudden death Yes Spring

D2 S33 6 42 M Electric shock Yes Summer

D2 S25 7 62 F Septic shock and multiple
organ failure Yes Spring

D2 S28 7 57 M Sudden death Yes Spring

D2 S35 7 78 M Aortoclasia Yes Summer

D3 S20 8 54 M Hanging Yes Spring

D3 S21 9 80 M Traffic injury No Spring

D3 S01 9 54 M Craniocerebral injury Yes Winter

D3 S19 10 55 M Acute pulmonary
embolism No Spring

D3 S23 10 71 M Traffic injury Yes Spring

D3 S18 12 51 M Traumatic shock No Spring

D3 S14 12 23 F Injury by fall from height Yes Spring

D3 S38 12 51 M Unknown Yes Summer

D3 S02 15 64 M Sudden cardiac death Yes Winter

D4 S27 18 46 M Traffic injury Yes Spring

D4 S32 19 45 M Traffic injury Yes Summer

D4 S04 22 87 F Coronary heart disease Yes Winter

D4 S07 22 65 F Coronary heart disease Yes Spring

D4 S11 25 28 M Craniocerebral injury Yes Spring

D4 S34 26 74 M Traffic injury Yes Autumn

D4 S39 27 42 M Trauma Yes Summer

D4 S13 31 57 M Coronary heart disease No Spring

H 1 - 20 M - - -

H 2 - 24 F - - -

H 3 - 28 M - - -

H 4 - 27 M - - -

H 5 - 26 F - - -

H 6 - 34 F - - -
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Table 1. Cont.

Group Individual PMI (Days) Age (Years) Gender Cause of Death Frozen Season of Death

H 7 - 28 M - - -

H 8 - 31 M - - -

H 9 - 23 F - - -

H 10 - 22 F - - -

All samples were successfully sequenced on an Illumina platform targeting the V3–V4
region of the 16S rRNA gene, generating a total of 7,277,506 raw reads. After removing
low-quality reads, we obtained 6,376,368 clean reads and identified 8253 bacterial ASV
sequences for the subsequent analysis. The average number of clean reads was 75,586 and
the average number of ASVs was 293 per sample.

2.2. Microbial Diversity

To evaluate the microbial diversity within groups (alpha diversity), we assessed the
richness and evenness of the microbial communities using the Chao1 and Shannon indices
at the amplicon sequence variant (ASV) level. As shown in Figure 1A, the Chao1 index
indicated significantly higher species richness in the healthy volunteer groups than in the
cadaver groups (p < 0.05). Regardless of the group type, the oral samples exhibited greater
richness than the nasal samples. The Shannon index (Figure 1B) was lower in the nasal
samples than in the oral samples. Furthermore, both indices fluctuated with increasing
PMI but showed no consistent trend.
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Figure 1. Analysis of microbial diversity among the studied sample groups. (A) Comparison of Chao1
index (alpha diversity) across groups. (B) Comparison of Shannon index (alpha diversity) across groups.
(C,D) Beta diversity PCoA plots of the studied groups (*** p < 0.001, ** p < 0.01, * p < 0.05).
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To assess the inter-group microbial diversity (beta diversity), a principal coordi-
nates analysis (PCoA) based on Bray–Curtis distances was performed and visualized
in two-dimensional space (Figure 1C,D). The clustering patterns revealed significant differ-
ences between the oral and nasal samples, especially among the healthy volunteer groups
(Figure 1C). In contrast, no significant clustering was observed across the different PMI
groups within either the oral or nasal sample sets (Figure 1D).

2.3. Microbial Abundance

The relative abundance of microbial communities across the 10 groups was analyzed
at both the phylum and genus levels.

At the phylum level, Proteobacteria, Firmicutes, and Bacteroidota were predominant
in the oral cadaver groups (Oral cavity-D1, Oral cavity-D2, Oral cavity-D3, and Oral
cavity-D4). In the nasal cadaver groups (Nasal cavity-D1, Nasal cavity-D2, Nasal cavity-
D3, and Nasal cavity-D4), Proteobacteria, Firmicutes, and Actinobacteriota dominated, with
Proteobacteria showing a higher relative abundance than Firmicutes. In the healthy volunteer
groups (Oral cavity-H and Nasal cavity-H), the relative abundance of Actinobacteriota was
higher compared to that of the corresponding oral or nasal cadaver groups. Additionally,
the Nasal cavity-H group exhibited a lower relative abundance of Proteobacteria than the
nasal cadaver groups (Figure 2A).

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 5 of 15 
 

 

D4). In the nasal cadaver groups (Nasal cavity-D1, Nasal cavity-D2, Nasal cavity-D3, and 
Nasal cavity-D4), Proteobacteria, Firmicutes, and Actinobacteriota dominated, with Proteo-
bacteria showing a higher relative abundance than Firmicutes. In the healthy volunteer 
groups (Oral cavity-H and Nasal cavity-H), the relative abundance of Actinobacteriota was 
higher compared to that of the corresponding oral or nasal cadaver groups. Additionally, 
the Nasal cavity-H group exhibited a lower relative abundance of Proteobacteria than the 
nasal cadaver groups (Figure 2A). 

At the genus level, Streptococcus and Haemophilus were the predominant genera in the 
Oral cavity-H group, while Corynebacterium and Staphylococcus were notably more abun-
dant in the Nasal cavity-H group (Figure 2B). In the oral cadaver groups, Streptococcus and 
Prevotella were the predominant genera. The nasal cadaver groups displayed variation in 
the dominant genera across different PMI stages: Escherichia-Shigella was the most abun-
dant genus in Group D1, Klebsiella in Group D2, Corynebacterium in Group D3, and Staph-
ylococcus in Group D4 (Figure 2C). 

 

Figure 2. Composition and relative abundances of dominant microbial communities at the phylum 
and genus levels. (A) Relative abundance of the dominant microbial phyla across all the groups. (B) 
Relative abundance at the genus level within the healthy volunteer groups. (C) Relative abundance 
at the genus level within the cadaver groups. 

2.4. Biomarkers Associated with PMIs 

To identify potential biomarkers for different PMIs in the oral or nasal cadaver 
groups, random forest models were constructed using the samples’ PMIs and the relative 
abundances of bacterial taxa at both the phylum and genus levels. The bacterial taxa were 
ranked based on their mean decrease in Gini values. Among the top 10 taxa, five with 

Figure 2. Composition and relative abundances of dominant microbial communities at the phylum
and genus levels. (A) Relative abundance of the dominant microbial phyla across all the groups.
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At the genus level, Streptococcus and Haemophilus were the predominant genera in
the Oral cavity-H group, while Corynebacterium and Staphylococcus were notably more
abundant in the Nasal cavity-H group (Figure 2B). In the oral cadaver groups, Streptococcus
and Prevotella were the predominant genera. The nasal cadaver groups displayed variation
in the dominant genera across different PMI stages: Escherichia-Shigella was the most
abundant genus in Group D1, Klebsiella in Group D2, Corynebacterium in Group D3, and
Staphylococcus in Group D4 (Figure 2C).

2.4. Biomarkers Associated with PMIs

To identify potential biomarkers for different PMIs in the oral or nasal cadaver groups,
random forest models were constructed using the samples’ PMIs and the relative abun-
dances of bacterial taxa at both the phylum and genus levels. The bacterial taxa were ranked
based on their mean decrease in Gini values. Among the top 10 taxa, five with higher
relative abundances were identified as promising biomarkers for PMIs. Subsequently,
LOESS regression curves were produced for each biomarker.

At the phylum level, both the oral and nasal groups shared the same biomarkers:
Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota, and Fusobacteriota (Figure 3A,C). In
the oral group, key turning points were observed on days 5, 12, and 22. From day 0 to
day 5, all biomarkers, except Proteobacteria, showed a decreasing trend, while Proteobac-
teria exhibited an increasing trend. From day 6 to day 12, Firmicutes and Actinobacteriota
increased, while Proteobacteria decreased. From day 12 to day 22, the trends reversed,
with all phyla showing changes opposite to their earlier patterns. After day 22, Firmicutes
and Proteobacteria increased, whereas Bacteroidota and Actinobacteriota declined (Figure 3B).
In the nasal group, similar turning points and trends were observed, but the trends for
Proteobacteria and Firmicutes were reversed compared to the oral group. Moreover, these
two phyla exhibited opposite trends during different PMI stages within the nasal group
(Figure 3D).

At the genus level, five biomarkers were identified in the oral group, including Strepto-
coccus, Escherichia-Shigella, Acinetobacter, Klebsiella, and Leptotrichia (Figure 4A). The trend of
Streptococcus mirrored that of Firmicutes at the phylum level, while the other genera showed
an increasing trend from day 1 to day 7, followed by a decline (Figure 4B). For the nasal
group, Klebsiella, Corynebacterium, Staphylococcus, Escherichia-Shigella, and Streptococcus were
identified as biomarkers (Figure 4C). The trend of Staphylococcus mirrored that of Firmicutes
at the phylum level, and Escherichia-Shigella displayed a trend similar to Proteobacteria at
the phylum level (Figure 4D). Of note, while the oral and nasal groups showed similar
turning points and trends, the trends and relative abundance of certain genera, such as
Proteobacteria and Firmicutes, were reversed between the two groups.

Using the identified biomarkers, PMI inference models were constructed and eval-
uated based on the mean absolute error (MAE) and R2 values (Figure S1A–D). Among
the four models, the oral genus-level and phylum-level models achieved the lowest MAE
values for the training (MAE = 2.16 days) and testing datasets (MAE = 5.14 days). When
biomarkers from both the oral and nasal groups were combined, the phylum-level model
achieved an MAE of 2.66 days, while the genus-level model achieved an MAE of 2.26 days
(Figure S1E,F).
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Figure 3. Phylum-level oral and nasal biomarkers for PMI estimation. (A) Top 10 phylum-level
oral microbial biomarkers identified by the random forest model based on their abundance levels.
(B) LOESS regression model of PMI based on the relative abundances of five selected oral microbial
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model based on their abundance levels. (D) LOESS regression model of PMI based on the relative
abundances of five selected nasal microbial biomarkers.
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2.5. Comparison of Samples from Frozen and Unfrozen Cadavers

In this study, 23 cadavers were stored at −20 ◦C within 12 h postmortem until dis-
section and sampling. To evaluate the potential impact of freezing on the microbiota, we
compared the microbial communities of samples from frozen (Oral cavity-F and Nasal
cavity-F) and unfrozen cadavers (Oral cavity-N and Nasal cavity-N).

The PCoA plots showed no significant clustering differences between the frozen and
unfrozen samples (Figure 5A,B). Since Group D3 had a relatively balanced and comparable
number of frozen and unfrozen samples, it was selected for further analysis. Consistent
with the overall findings, the PCoA results for this group also demonstrated no significant
differences (Figure 5C,D). At the phylum level, the frozen samples exhibited a higher
relative abundance of Proteobacteria and a lower relative abundance of Actinobacteriota
compared to the unfrozen samples, regardless of whether they were from the oral or nasal
cavity (Figure 5E). At the genus level, the composition of the dominant genera in the nasal
group showed substantial differences between the frozen and unfrozen samples (Figure 5F).
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Figure 5. Impact of freezing on microbial communities of cadavers. (A) PCoA plot for oral microbiota
in frozen versus unfrozen cadavers. (B) PCoA plot for nasal microbiota in frozen versus unfrozen
cadavers. (C) PCoA plot for oral microbiota in frozen versus unfrozen cadavers in group D3.
(D) PCoA plot for nasal microbiota in frozen versus unfrozen cadavers in group D3. (E,F) Phylum-
and genus-level composition and relative abundance of dominant microbial members in frozen
versus unfrozen cadavers in group D3.

Using the method described in Section 2.4, we analyzed PMI-associated biomarkers in
both frozen and unfrozen groups. At the phylum level in the oral group, both the frozen
and unfrozen samples shared the same biomarkers: Firmicutes, Proteobacteria, Bacteroidota,
Actinobacteriota, and Fusobacteriota (Figure S2A,C). The LOESS curves analysis indicated
consistent trends between the two groups, although the relative abundance of Proteobacteria
was lower in the unfrozen samples (Figure S2B,D). At the genus level, however, the
biomarkers differed significantly between the two groups (Figure S3). In the nasal group,
the frozen and unfrozen samples also shared common biomarkers at the phylum level:
Firmicutes, Proteobacteria, Bacteroidota, and Actinobacteriota (Figure S4A,C). While the overall
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trends were similar, the relative abundances of these phyla varied between the frozen and
unfrozen samples (Figure S4B,D). At the genus level, Klebsiella was the only biomarker
common to both groups (Figure S5).

To provide a clearer overview of our key findings, we summarized the main results in
Table 2.

Table 2. Summary of main results.

Group Oral Cavity-H Oral Cavity-D Nasal Cavity-H Nasal Cavity-D

Alpha diversity Higher in healthy individual group than cadaver group;
higher in oral group than nasal group

Beta diversity
Oral vs. nasal: significant clustering
Healthy individual vs. cadaver: no significant clustering
Frozen vs. unfrozen: no significant clustering

Dominant phyla

Proteobacteria,
Firmicutes, and
Actinobacteriota

Proteobacteria, Firmicutes, and
Bacteroidota

Proteobacteria,
Firmicutes, and
Actinobacteriota

Proteobacteria, Firmicutes,
and Actinobacteriota

Frozen vs. unfrozen: frozen samples exhibited a higher relative abundance of Proteobacteria and a lower relative
abundance of Actinobacteriota compared to unfrozen samples

Dominant
genera

Streptococcus and
Haemophilus Streptococcus and Prevotella Corynebacterium

and Staphylococcus
Variation across different
PMI stages

Frozen vs. unfrozen: the dominant genera in the nasal group showed substantial differences between frozen
and unfrozen samples

PMI-related
biomarkers

(phylum level)

-

Firmicutes, Proteobacteria,
Bacteroidota, Actinobacteriota,
and Fusobacteriota
Key turning points were
observed on days 5, 12, and 22

-

Firmicutes, Proteobacteria,
Bacteroidota, Actinobacteriota,
and Fusobacteriota
Similar turning points and the
trends for
Proteobacteria and
Firmicutes were reversed
compared to the oral group

-

Frozen vs. unfrozen: shared
the same biomarkers:
Firmicutes,
Proteobacteria, Bacteroidota,
Actinobacteriota,
and Fusobacteriota

-

Frozen vs. unfrozen: shared
the same
biomarkers: Firmicutes,
Proteobacteria, Bacteroidota,
and Actinobacteriota

PMI-related
biomarkers

(genus level)

-

Streptococcus,
Escherichia-Shigella,
Acinetobacter, Klebsiella, and
Leptotrichia

-

Klebsiella, Corynebacterium,
Staphylococcus,
Escherichia-Shigella,
and Streptococcus

- Frozen vs. unfrozen:
different biomarkers -

Frozen vs. unfrozen:
different biomarkers
except for Klebsiella

3. Discussion
This study offers valuable insights into the dynamics of the oral and nasal microbial

communities in both living individuals and human cadavers, highlighting their potential
utility in PMI estimation. Our findings demonstrated distinct differences in microbial
richness, diversity, and composition across the groups, influenced by factors such as host
health status, decomposition stages, and environmental conditions.

Alpha and beta diversity metrics were used to compare microbial communities in
healthy volunteers and human cadavers with varying PMIs. The Chao1 index showed
a significantly higher species richness in healthy individuals than in cadavers, and the
Shannon index reflecting oral and nasal diversity was also higher in the living. This may
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be due to the stable internal environment, adequate nutrition, and favorable conditions in
the oral and nasal cavity during life, which support microbial survival and reproduction.
After death, the loss of physiological functions leads to environmental changes, explaining
the higher alpha diversity in healthy individuals than in cadavers [27]. The oral samples
showed a higher species richness than the nasal samples, likely due to the mouth’s diverse
nutrients and complex microenvironments, while the nose’s primary function and strict
immune defenses limit microbial diversity [28]. The beta diversity analysis revealed clear
clustering by sample site (oral vs. nasal) [29] but no significant clustering based on PMI,
possibly due to individual variations within the PMI groups.

The analysis of microbial community composition across the 10 groups (Oral cavity-
D1, Oral cavity-D2, Oral cavity-D3, Oral cavity-D4, Nasal cavity-D1, Nasal cavity-D2,
Nasal cavity-D3, Nasal cavity-D4, Oral cavity-H, and Nasal cavity-H) revealed distinct
patterns reflecting the health status and post-mortem changes. At the phylum level, Pro-
teobacteria, Firmicutes, and Bacteroidota dominated in the oral cadaver groups, consistent
with the findings from previous studies on human cadavers [30], rats [17], and mice [22].
In nasal cadaver groups, Proteobacteria, Firmicutes, and Actinobacteriota were predominant,
with a particularly high abundance of Proteobacteria, aligning with our earlier study [31].
The higher Actinobacteriota levels in nasal samples likely reflect the nasal cavity’s greater
exposure to environmental microbes [32]. In the healthy volunteers, Actinobacteriota was
significantly more abundant in both the oral and nasal samples compared to those from
cadavers, likely due to their preference for aerobic conditions, while decomposition favors
anaerobic bacteria. Additionally, the nasal samples from the healthy individuals had a
lower relative abundance of Proteobacteria compared to the cadavers, suggesting the post-
mortem proliferation of Proteobacteria, which plays a crucial role in nutrient recycling during
decomposition [33]. At the genus level, Streptococcus was dominant in both the healthy and
cadaver oral groups, serving as a foundational pioneer species in the oral cavity due to
its adaptability. In the healthy individuals, aerobic Haemophilus was prevalent in the oral
samples, while anaerobic Prevotella dominated in the oral cadaver groups, reflecting a shift
driven by the anaerobic and protein-rich environment of decomposition [34]. The nasal
cadaver groups displayed genus-level variations across different PMIs, reflecting temporal
microbial succession during decomposition as opportunistic and environmentally adaptive
microbes progressively replace commensal species [32].

The random forest models identified PMI-associated biomarkers in the oral and nasal
microbiomes. At the phylum level, Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota,
and Fusobacteriota emerged as key biomarkers, consistent with previous studies [21]. These
biomarkers exhibited non-linear abundance patterns, with turning points on days 5, 12,
and 22. In the oral microbiome, Firmicutes and Bacteroidota dominated from day 0 to day 5
but gradually declined, while Proteobacteria steadily increased. These patterns align with
previous studies [21,35] and may be driven primarily by changes in the environment and
nutrient availability. The progressive depletion of oxygen may suppress the metabolic activ-
ity of anaerobic and facultative anaerobic bacteria like Firmicutes and Bacteroidota, whereas
the aerobic and microaerophilic bacteria within Proteobacteria adapted and proliferated.

From day 6 to day 12, Firmicutes increased, aligning with previous findings [21], while
Bacteroidota decreased and Actinobacteriota rose, consistent with the observations reported
in [24]. In this period, the accumulation of decomposition byproducts, such as short-
chain fatty acids and amino acids, favors Firmicutes [11], while the depletion of complex
polysaccharides reduces Bacteroidota [12]. Actinobacteriota thrive on secondary metabolites,
while Proteobacteria are inhibited under progressively anaerobic conditions. Interspecies
resource competition and metabolic cooperation likely further influence these trends [36].
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After day 12, the oral microbiome of the cadavers displayed distinct changes, with a
turning point on around day 22. Firmicutes initially declined but later rebounded, while
Bacteroidota increased before decreasing. Actinobacteriota showed a continuous decline,
whereas Proteobacteria steadily increased. These shifts reflect the evolving decomposition
environment. Specifically, Firmicutes experienced an early decline due to resource depletion
and increasingly anaerobic conditions but later rebounded as decay-adapted taxa, such
as Clostridium, proliferated under the putrefactive conditions. Bacteroidota likely utilized
short-term decomposition products for initial growth but their growth decreased as the
resources became exhausted. The persistent decline of Actinobacteriota suggests their limited
adaptability to complex decomposition environments. In contrast, Proteobacteria used their
metabolic flexibility and adaptability to anaerobic conditions to thrive and occupy the
available ecological niches by relying on late-stage decomposition products.

In the nasal groups, similar trends and turning points as those in the oral groups were
observed. However, the abundance patterns of Proteobacteria and Firmicutes were reversed.
This divergence likely resulted from the environmental differences between the two cavities.
The nasal cavity, an open system with higher oxygen levels, favors aerobic bacteria like
Proteobacteria while inhibiting anaerobes like Firmicutes. In contrast, the hypoxic oral cavity
provides a suitable environment for anaerobic bacteria [29]. Additionally, the nasal cavity’s
immune defenses may limit anaerobic growth, promoting aerobic taxa instead.

At the genus level, the key biomarkers identified in the oral group included Strep-
tococcus, Escherichia-Shigella, Acinetobacter, Klebsiella, and Leptotrichia. The abundance of
Streptococcus mirrored the trends observed for Firmicutes at the phylum level, indicating
that Streptococcus is a major PMI-associated genus within the Firmicutes phylum. Other
biomarkers showed an initial increase from day 1 to day 7, followed by a decline, likely
driven by the depletion of short-term decomposition products that initially supported their
growth. In the nasal microbiome, Klebsiella, Corynebacterium, Staphylococcus, Escherichia-
Shigella, and Streptococcus were identified as biomarkers, with Staphylococcus mirroring the
trend of Firmicutes and Escherichia-Shigella and aligning with changes in Proteobacteria. This
suggested that these genera are key representatives of their respective phyla in the nasal
microbiome. While similar trends and turning points were observed in both the oral and
nasal groups, the abundance of genera from Proteobacteria and Firmicutes showed opposite
trends between the two environments, reflecting the oxygen-rich, open environment of
the nasal cavity, which favors aerobic and facultative anaerobic taxa like Proteobacteria,
compared to the hypoxic, closed oral cavity that supports anaerobic taxa like Firmicutes [28].

Using the identified biomarkers, PMI inference models were constructed. The models
based on oral biomarkers at both the genus and phylum levels demonstrated superior
accuracy, achieving the lowest MAE values in the training (MAE = 2.16 days) and testing
datasets (MAE = 5.14 days). These findings indicate that the oral microbiota provide more
reliable biomarkers for PMI estimation compared to the nasal microbiota. Furthermore,
the MAE achieved by our model is comparable to that from a previous study utilizing a
k-nearest neighbor (KNN) regression model based on phylum-level nasal and ear canal
microbiome data, which estimated PMI with an MAE of approximately 55 accumulated
degree days, equivalent to around three days [23]. It is worth noting that PMI inference
models based on animal microbiomes are more common in the current research. For
instance, Wang et al. analyzed oral microbiota from 21 rats sampled at seven time points
within 168 h postmortem. Using genus-level microbial abundance and a random forest
model, they achieved an R2 of 98.76% and an MAE of 6.93 ± 1.19 h [16]. In contrast,
the lower accuracy of our model could be attributed to the human samples’ higher inter-
individual variability and the study’s longer time span, with fewer samples collected at
each time point.
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Our study also examined the impact of freezing on postmortem microbiota dynamics
by comparing the oral and nasal microbiota from frozen and non-frozen cadavers across
varying PMIs. The results showed that freezing had minimal impact on the overall micro-
biota composition at the phylum level, consistent with a previous study [26]. However,
freezing significantly altered the relative abundance of certain phyla, such as Proteobacteria
and Actinobacteriota. This shift likely resulted from selective pressures induced by freezing,
including low temperature and limited nutrient diffusion, which favor cold-tolerant taxa
like Proteobacteria while suppressing taxa like Actinobacteriota that thrive in stable aerobic
conditions. At the genus level, the freezing effects were more pronounced in the nasal
microbiota than in the oral microbiota, indicating that the oral microbiota were less af-
fected by temperature fluctuations. This suggests that oral microbiota may offer a more
stable foundation for PMI estimation. Additionally, the PMI-associated biomarkers varied
between the frozen and non-frozen groups, highlighting the necessity of accounting for
temperature effects when selecting biomarkers for accurate PMI estimation.

We investigated the dynamics of the oral and nasal microbiota in both healthy indi-
viduals and human cadavers, identifying PMI-associated biomarkers and their nonlinear
temporal trends. In addition, we developed random forest-based models for PMI prediction
and examined the impact of freezing on cadaver microbiota. However, there were certain
limitations to this study. First, the distribution of the frozen and non-frozen cadavers across
the different PMIs was uneven, potentially introducing bias. Second, despite constructing
PMI prediction models, the relatively high MAEs suggest limited model accuracy, likely ow-
ing to the uneven sample size across the PMIs and individual variability. Moreover, we did
not explore the potential impact of environmental temperature on microbiota-based PMI
estimation. Future research should aim to increase the sample size at each PMI and control
environmental variables to improve the PMI inference models’ accuracy and precision.

4. Materials and Methods
4.1. Sample Collection

Sample collection was conducted in a controlled environment using sterilized equip-
ment. The technicians adhered to stringent aseptic practices, including the use of sterile
gloves, masks, and, protective clothing, to minimize contamination from the environment
or personnel sources.

Samples of oral and nasal microbiota were collected from 10 healthy volunteers and
34 cadavers using sterile cotton swabs (Finegene Biotech, Shanghai, China). Healthy
volunteers were recruited based on strict exclusion criteria, ensuring that individuals with
dental pathologies (e.g., periodontitis, caries) or smoking habits—both of which could
influence the oral microbiota—were not included. For the frozen cadavers, the time between
death and refrigeration did not exceed 12 h. Separate swabs were used for each anatomical
site, which were gently rotated and rubbed over the sampling area for 3–5 s to ensure
adequate microbiota collection. The collected samples were immediately stored at −80 ◦C
until further processing.

Written informed consent was obtained from all volunteers. The cadavers were
acquired for scientific research through the documented consent of the donors and/or their
legal next of kin. Ethical approval for the study was granted by the Ethics Committee of
Fudan University (No. 2023C011).

4.2. DNA Extraction, Amplification and Sequencing

Microbial DNA was extracted from the collected swabs using the DNeasy PowerSoil
kit (Qiagen, Hildesheim, Germany). The DNA concentration and integrity were measured
using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
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and agarose gel electrophoresis. The V3-V4 hypervariable region of the microbial 16S
rRNA gene was PCR-amplified in a 25 µL reaction using universal primer pairs (343F:
5′-TACGGRAGGCAGCAG-3′; 798R: 5′-AGGGTATCTAATCCT-3′). The reverse primer
contained a sample barcode and both primers were connected with an Illumina sequencing
adapter. Sequencing was conducted on an Illumina NovaSeq6000 with paired-end reads of
250 bases each (Illumina, San Diego, CA, USA; OE Biotech Company, Shanghai, China).

4.3. Data Analysis

The raw sequencing data, in FASTQ format, underwent quality trimming and filtering.
Low-quality reads were removed, and DADA2 [37] was used to denoise, merge reads, and
detect the chimeric sequences. These steps were performed using the default parameters
of QIIME2 (https://qiime2.org/ (accessed on 11 September 2024)) [38]. Representative
sequences for each ASV were selected through QIIME2, and annotations were carried out
using the Silva database, version 138 (or Unite) (16s/18s/ITS rDNA), and the q2-feature-
classifier with the default parameters. The microbial diversity within the groups was
evaluated using alpha diversity metrics, including the Chao1 [39] and Shannon indices [40],
which was calculated using QIIME2. Pairwise comparisons between the groups were
conducted using the Wilcoxon test. Beta diversity, which indicates inter-group microbial
composition variation, was analyzed using PCoA based on Bray–Curtis distance matrices.
Group differences were statistically tested using the Adonis test, with the significant
threshold set at p < 0.05.

4.4. Random Forest and LOESS Regression Modeling

For each anatomical site, the samples were randomly split into training (70%) and test
datasets (30%). The relative abundances of bacterial taxa at the phylum or genus level were
regressed against the cadavers’ PMIs using the “randomForest” package (https://cran.r-
project.org/web/packages/randomForest/index.html (accessed on 12 December 2024)) in
R [41]. Feature importance was assessed by ranking bacterial taxa based on their mean
decrease in Gini values. Based on these rankings and the relative abundance data, potentially
valuable PMI-associated biomarkers were identified. The performance of the PMI estimation
models was evaluated by calculating the mean absolute error (MAE) and the goodness-of-fit
(R²) values. Regression curves illustrating the relationship between biomarker changes and
PMI were generated using the Locally Estimated Scatterplot Smoothing (LOESS) method. All
statistical analyses and visualizations were conducted using R software (v4.4.1).

5. Conclusions
This study investigated the dynamics of the oral and nasal microbiota in healthy

individuals and human cadavers, uncovering time-dependent changes in the microbial
composition and abundance during decomposition. Potential PMI-associated biomarkers
were identified, which demonstrating nonlinear changes with key turning points on days 5,
12, and 22. The random forest-based PMI prediction models showed promising results,
laying the foundation for estimating PMI using microbiome data from these two body
sites. A comparison between frozen and unfrozen cadavers unveiled the minimal impact
of freezing on the microbial composition at the phylum level, although certain phyla,
such as Proteobacteria and Actinobacteriota, showed altered relative abundances. Notably,
the oral microbiota exhibited greater stability when subjected to temperature changes
and superior predictive performance compared to the nasal microbiota. This work offers
valuable insights into leveraging oral and nasal microbiome data for PMI estimation and
highlights future directions to enhance model accuracy and understand microbial changes
under varying environmental conditions.

https://qiime2.org/
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
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