‘ International Journal of

S Molecular Sciences

Review

Advancing Forensic Human Chronological Age Estimation:
Biochemical, Genetic, and Epigenetic Approaches from the Last
15 Years: A Systematic Review

Beatrice Marcante 1'2, Laura Marino !, Narjis Elisa Cattaneo !, Arianna Delicati 1>(, Pamela Tozzo

and Luciana Caenazzo '*

check for
updates

Academic Editor: Vittorio Fineschi

Received: 10 February 2025
Revised: 24 March 2025
Accepted: 26 March 2025
Published: 28 March 2025

Citation: Marcante, B.; Marino, L.;
Cattaneo, N.E.; Delicati, A.; Tozzo, P;

Caenazzo, L. Advancing Forensic

Human Chronological Age Estimation:

Biochemical, Genetic, and Epigenetic
Approaches from the Last 15 Years: A
Systematic Review. Int. ]. Mol. Sci.
2025, 26,3158. https:/ /doi.org/
10.3390/1jms26073158

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

1

Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of
Padova, 35122 Padova, Italy; beatrice.marcante@phd.unipd.it (B.M.); laura.marino@studenti.unipd.it (L.M.);
narjiselisa.cattaneo@studenti.unipd.it (N.E.C.); arianna.delicati@phd.unipd.it (A.D.);
pamela.tozzo@unipd.it (P.T.)

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences
and Public Health, University of Padova, 35121 Padova, Italy

Correspondence: luciana.caenazzo@unipd.it; Tel.: +39-04-9827-2234

Abstract: Forensic age estimation is crucial for identifying unknown individuals and nar-
rowing suspect pools in criminal investigations. Over the past 15 years, significant progress
has been made in using biochemical, genetic, and epigenetic markers to estimate chronolog-
ical age. Methods: From research on PubMed a total of 155 studies, related to advancements
in age prediction techniques, were selected following PRISMA guidelines. Studies con-
sidered eligible dealt with radiocarbon dating, aspartic acid racemization, mitochondrial
DNA analysis, signal joint T-cell receptor excision circles, RNA analysis, telomeres, and
DNA methylation in the last 15 years and were summarized in a table. Results: Despite
these advancements, challenges persist, including variability in prediction accuracy, sam-
ple degradation, and the lack of standardization and reproducibility. DNA methylation
emerged as the most promising approach capable of high accuracy across diverse popula-
tions and age ranges. Multimodal methods integrating several biomarkers show promise
in improving reliability and addressing these limitations. Conclusion: While significant
progress has been made, further standardization, validation, and technological integration
are needed to enhance forensic age estimation. These efforts are essential for meeting the
growing demands of forensic science while addressing ethical and legal considerations.

Keywords: age estimation; epigenetics; forensic genetics; review

1. Introduction

The estimation of age at death can provide important information in forensic science.
Over the years, there have been different attempts in the forensic community to establish
and validate methods to address this issue. The natural process of aging triggers progres-
sive changes in tissues and organs at the molecular level throughout a person’s lifetime.
Traditionally, forensic scientists have had limited options for estimating the age of individu-
als in practical casework. Techniques such as morphological examination of bones or amino
acid racemization analysis of teeth are available but are constrained by their reliance on
specific types of samples. Moreover, these techniques are not applicable to biological fluids,
which are more frequently encountered at crime scenes. New methods lend themselves to
improving estimation of the age of a person either dead or alive. Furthermore, the ability
to predict a subject’s age could find significant applications in narrowing down the pool of
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suspects when estimating the age of an individual who left a trace at a crime scene. The
capability to estimate the chronological age of an unidentified individual from a DNA
sample can offer invaluable insights to investigators. This becomes even more powerful
when combined with the prediction of externally visible characteristics (EVCs), many of
which are influenced by age.

An essential aspect to consider is the difference between chronological age and bi-
ological age. Chronological age refers to the amount of time that has passed since birth,
while biological age reflects the actual physiological condition of the body at a cellular and
molecular level. Biological age is shaped by various factors, including chronic illnesses,
epigenetic changes, lifestyle choices, and environmental influences [1].

Humans’ exceptional longevity represents an extreme phenotype and studies have
shown that centenarians exhibit a remarkable compression of morbidity and a resistance
to otherwise lethal illnesses occurring earlier in life, providing important insights into
the underlying molecular mechanisms of aging [2]. In general, aging is the gradual
decline of physiological functions leading to age-dependent fitness loss, diseases, and
eventually mortality [3].

The need for accurate techniques to estimate human biological age in forensic contexts
has never been as important as it has been in recent years. This is due to several factors,
including the increasing number of unidentified cadavers and human remains, cases
requiring age estimation in living individuals without valid proof of date of birth, and the
wide necessity of estimating an unknown stain donor’s age [4].

There have been different approaches for estimating age at death in corpses as well
as in living persons, but a common challenge remains the lack of standardized methods
and sampling procedures, along with concerns about the accuracy of these methods [5]. To
address these limitations, forensic experts have started incorporating genetic knowledge
into their analyses, utilizing biomarkers such as signal joint T-cell receptor excision circles,
telomere length, and somatic gene rearrangements. However, these genetic markers often
demonstrate limited accuracy or are highly susceptible to DNA degradation, especially in
samples recovered from crime scenes. Recently, epigenetics has emerged as a promising
tool for forensic age prediction [6]. Cytosine methylation at CpG sites, in particular,
has been extensively studied and is now recognized as a promising epigenetic marker
for determining chronological age [7]. Several researchers have pinpointed CpG sites
where methylation levels show a strong correlation with age. Leveraging this knowledge,
they have developed age prediction models focusing on a limited number of these sites,
enabling accurate age estimation. These models can be integrated into various assays
using advanced technologies such as pyrosequencing, single-base extension (SBE) with
SNaPshot chemistry, MassARRAY, methylation-specific PCR (MSP), methylation-sensitive
high-resolution melting (MS-HRM), next-generation sequencing (NGS), and a range of
other methodologies. These approaches have been widely employed in recent years,
leading to a flourishing body of scientific literature compared to all other methods, with
varying degrees of success.

Establishing the age in cadavers, human remains, or living people may clarify issues
with significant legal, ethical, and social implications for individuals as well as for the
community [8]. Ideally, an age prediction system suitable for forensic purposes should
exhibit specific properties, including applicability to different tissues, reproducibility across
diverse populations and across various technology platforms, and coverage of the entire
age spectrum. The validation of these systems among different research groups will be
critical for driving future advancements.
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Furthermore, while most forensic age predictors have been previously developed
using whole blood samples, recent studies have also investigated other tissues, such as
saliva or different tissues from postmortem samples [9].

However, we have to underline that, independently from the techniques used, the
low quality and quantity of DNA usually recovered from crime scene stains are crucial
and currently represent the limiting factor not only in the progress of “traditional” forensic
genetics but also for the application of age prediction epigenetic techniques, independently
from the biological sample type tested.

In such a framework, methods for age estimation have to fulfil specific demands.
The choice of a method has to consider the specific circumstances of the individual case,
which involves assessing the accuracy required by the case, which age range is to be
expected, which epigenetic effects have to be considered, and, for example, in cadavers
the type of biological material analyzed and in living individuals the ethical and legal
regulations considered.

Furthermore, specialized and trained laboratories and personnel are required for
the application of all effective methods in order to avoid systematic errors [10]. Notably,
while numerous methods have been applied by different research groups, each of them
has applied its own methodological protocol and analytical workflow. This led to severe
limitations in comparability, reproducibility, and verification of results. In a time in which
quality control has achieved great importance in all fields of biomedical sciences it is
surprising how few attempts have been made to find common standardization, calibration,
and evaluation procedures for methods for human age prediction. At the moment, there are
no generally accepted guidelines concerning quality assurance in human chronological age
prediction. Efforts in these directions are necessary in order to guarantee quality standards
and adequate answers to the important legal, ethical, and social issues of age estimation in
forensic medicine [4].

Within this context, this systematic review aims to explore recent advancements in the
application of the most commonly used methods for predicting human chronological age
in forensic science. It focuses on research published over the past 15 years, with the goal
of critically evaluating the strengths and limitations of each technique. The review also
addresses challenges related to the adaptability of these methods in forensic laboratories,
the precision required to achieve narrow age ranges, the reproducibility both within the
same laboratory and across different laboratories, and, importantly, the development of
effective prediction tools.

2. Materials and Methods

This review was performed in adherence to the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) guidelines and checklist without a dedicated
review protocol and it was not registered [11]. A systematic literature review regarding
different methods for human age prediction was conducted using the public electronic
database PubMed. The works were selected according to the following queries: (Carbon 14)
AND ((age estimation) OR (age prediction)) AND (forensic); (racemization of aspartic acid)
AND ((age estimation) OR (age prediction)) AND (forensic); (T-cell receptor) AND ((age
estimation) OR (age prediction)) AND (forensic); (mtDNA) AND ((age estimation) OR
(age prediction)) AND (forensic); (RNA) AND ((age estimation) OR (age prediction)) AND
(forensic); (Telomere) AND ((age estimation) OR (age prediction)) AND (forensic); and
(DNA Methylation) AND ((age estimation) OR (age prediction)) AND (forensic). A total
of 510 works were identified through database searching. A total of 35 duplicate records
were removed. Subsequently, different inclusion criteria were considered and 105 records
were removed. Inclusion criteria included: English language restrictions, full-text availabil-
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ity, and a predefined time interval limit of the last 15 years (from 2010 to 2024, extremes
included). Then, the process continued through the screening of titles and abstracts of the
remaining 370 records. In this phase, 183 records were excluded based on the following
criteria: the type of study (reviews, meta-analyses, case reports, and comments were not in-
cluded), focused on non-human subjects, not directly related to age estimation, not related
to forensic applications, or the methodological process was not accurately described. The
article search was conducted by four independent researchers. No automation tools were
used for the full-text data analysis. In cases of any doubt, the consensus opinions of the
two research supervisors were solicited. Both research supervisors worked independently.
A total of 187 articles were further evaluated by full-text examination to exclude irrelevant
content based always on the previously criteria. After a full-text reading of the selected
papers, 155 were considered eligible and included in the review. The most relevant infor-
mation was collected and organized in two tables to give a clear summary of the study’s
results (Supplementary Materials Tables S1 and S2). The PRISMA flow chart in Figure 1
summarizes the workflow of the screening and selection process described above. This
systematic review analyzes in detail different studies, which deal with different approaches
and methods to human chronological age estimation. In order to provide the reader with
a better understanding, we grouped the selected studies on the basis of the methods ap-
plied: (a) radiocarbon dating; (b) aspartic acid racemization (AAR); (c) mitochondrial
DNA (mtDNA) analysis; (d) signal joint T-cell receptor excision circles (sjTRECs); (e) RNA
analysis; (f) telomeres; (g) DNA methylation. Moreover, data were divided considering
different biological material sources and individual characteristics such as gender, age, and
vital status.

‘ Identification of studies via databases and registers

Records removed before
g screening:
£ Duplicate records removed (n
o Records identified from: N =35)
5‘5 PubMed (n =510) Records marked as ineligible
& by automation tools (n = 105)
= Records removed for other
reasons (n = 0)
O Records excluded after manual
_ —»| title and abstract examination
0 =570) (n = 183)
v
Reports sought for retrieval Reports not retrieved
) (n=187) ’ (n=0)
S
& A
Reports assessed for eligibility Reports excluded:
(n=187) —®|  Studytype (n=10)
Non-human subjects (n = 3)
Not directly related to age
estimation (n = 11)
Not related to forensic
applications (n = 5)
— Methodological accuracy (n =
— v 3)
= Studies included in review
;= (n=155)
o Reports of included studies
= (n=155)
—

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020
flow diagram.
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3. Results

In molecular biology, most age estimation techniques rely on degenerative changes
associated with the aging process, which are intrinsically subject to individual variabil-
ity in their timing. Consequently, in forensic science, age estimation methods based
on biochemical processes—such as aspartic acid racemization (AAR) and carbon-14
quantification—have gained prominence, as they involve measurable chemical changes
that occur universally and predictably over time in specific compounds, offering
greater reliability.

3.1. Radiocarbon Dating

The application of radiocarbon (14C) dating in forensic age estimation is based on
the distinct carbon signature created by nuclear bomb tests conducted between 1955 and
1963, which led to a significant increase in atmospheric 14C levels. This radioactive carbon
was absorbed by living organisms, including humans, as they formed biological tissues.
During tooth development, the 14C incorporated into the enamel remains fixed, preserving
the radiocarbon signature throughout an individual’s life. As a result, by measuring the
14C concentration in enamel, researchers can estimate the individual’s birth year with high
precision, as the levels of 14C in the enamel correspond to atmospheric levels at the time of
tooth formation. Over time, atmospheric 14C concentrations have decreased due to mixing
with large marine and terrestrial carbon reservoirs [12]. To estimate age, the measured 14C
in tooth enamel is compared to a calibration curve representing atmospheric 14C levels,
which peaked during the 1955-1963 bomb pulse and subsequently declined [13,14].

Accelerator mass spectrometry (AMS) is the most commonly used and precise tech-
nique for measuring isotope ratios. Kondo-Nakamura et al. [15] analyzed eight teeth
from five Japanese individuals (five males and one female aged between 29 and 75 years),
recommending that accuracy in age estimation can be improved by analyzing multiple
teeth from the same individual or different regions of a single tooth, as these correspond
to various stages of enamel formation. This approach increases precision by accounting
for the distinct growth rates of different teeth and their respective developmental stages,
achieving a difference between actual and predicted age of birth of approximately + 2 years.
Alkass et al. [16] examined 95 teeth from 84 individuals across different geographic regions,
finding that teeth formed before 1955 exhibited negative A14C values, while those formed
during the bomb pulse (1955-1963) had an average birth year error of 1.9 £ 1.4 years.
Teeth formed after the peak (post-1963) showed even better accuracy, with an error of
1.3 £ 1.0 years. Furthermore, no significant geographic variation was observed in the
average birth year estimation error. Teglind et al. [17] combined 14C and amino acid
racemization (AAR) analyses on 63 teeth and 24 bones from 52 individuals. Among the 34
cases, 18 cases were found to be postbomb, indicating tooth crown formation after 1955,
and 9 of these were identified. In these individuals, a high correlation between the esti-
mated and true year of birth was found with an average absolute error of 1.18 & 0.83 years.
Notably, 14C analysis of tooth enamel and dentin demonstrated excellent precision, even
in samples exposed to environmental elements such as soil, air, and water for extended
periods, ruling out significant contamination. In contrast to enamel and dentin, bone tissue
undergoes continuous remodeling, leading to carbon turnover at a rate that complicates
the use of 14C analysis for dating birth. Alkass et al. [18] demonstrated the combined use
of 14C and AAR in 44 teeth from 41 Swedish individuals, revealing a good correlation
between the methods (R? = 0.66, p < 0.05). Radiocarbon analysis achieved an overall abso-
lute error of 1.0 £ 0.6 years, while aspartic acid racemization exhibited precision with an
error of 5.4 & 4.2 years. While radiocarbon analysis provides an estimated year of birth,
racemization analysis determines the chronological age of the individual at the time of
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death. Moreover, four additional teeth of an unsolved homicide case were analyzed with
radiocarbon and aspartic acid racemization, indicating that the victim was probably born
around 1942 and died around 1988.

These studies highlight the advantages of using AMS for radiocarbon dating in forensic
contexts, offering high precision and the ability to analyze small samples without damaging
the specimen. However, there are notable limitations, including the high cost and labor-
intensive sample preparation process. Additionally, organic materials that are poorly
preserved or contaminated may yield inaccurate results. The accuracy of the method
also diminishes for individuals born before 1955, when atmospheric 14C levels were
significantly lower. Therefore, while radiocarbon dating offers a highly accurate means of
estimating birth years, particularly for individuals born during the period of increased 14C,
its application in forensic contexts is subject to certain limitations, including cost, sample
quality, and diminishing precision for those born before 1955.

3.2. Aspartic Acid Racemization (AAR)

Racemization is a chemical process in which the natural L-form (levorotatory) of an
amino acid is gradually converted into its mirror-image D-form (dextrorotatory). Aspartic
acid (Asp) is particularly prone to racemization, especially when incorporated into proteins,
due to the chemical instability of the peptide bond. This process is influenced by conditions
such as elevated temperatures, extreme pH, oxidative stress, and the structural proper-
ties of the protein [19]. Over time, D-aspartic acid residues accumulate in a predictable,
time-dependent manner, making racemization a valuable marker for estimating the age of
biological samples [20].

Stable, long-lived proteins, such as dentin in teeth or elastin in cartilage, are particu-
larly suitable for age estimation, as they accumulate measurable levels of D-aspartic acid
over time. By determining the ratio of D- to L-aspartic acid and comparing it to established
racemization rates [21], researchers can estimate the sample’s chronological age. However,
factors like temperature, humidity, protein composition, and exposure to reactive oxygen
species can affect the racemization rate, necessitating careful calibration.

High-performance liquid chromatography (HPLC), often combined with mass spec-
trometry (MS), is the standard method for quantifying D-aspartic acid. HPLC separates
chemical components in protein extracts, while MS confirms the identity and quantity of
D-aspartic acid with high sensitivity and precision.

Griffin et al. [22] conducted a study to evaluate the natural variability in aspartic acid
racemization (AAR) ratios across different types of human tooth enamel (1 = 129), collected
from both living individuals and archaeological remains. Their analysis considered the in-
fluence of tooth type and its development age on racemization rates. The findings revealed
no significant relationship between tooth type and racemization rates after accounting for
the developmental age of each tooth. Despite this, significant variability in racemization
values was observed between different teeth from the same individual, potentially leading
to age estimation discrepancies of up to 25 years, observed in archaeological remains. This
variability was attributed to factors such as enamel protein composition, the quantity of
enamel sampled, and postmortem environmental conditions, rather than tooth type itself.
A different result was observed considering modern individuals for which the minimal
paired age estimate was 7.1 years.

In a first study conducted by Sakuma and colleagues [23] both dentin and whole teeth
from 12 pairs of canines were analyzed to assess AAR’s correlation with chronological age.
They found a strong correlation for dentin samples (r = 0.98) and a slightly lower correlation
for whole teeth (r = 0.93). The study highlighted the advantage of using whole teeth, which
preserves the sample for additional forensic analyses, such as DNA extraction, while
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reducing variability from localized sampling in dentin. In addition, they evaluated their
model using teeth from two different cases, the result overestimating the age of individuals
by approximately 0.12 and 6.86 years, respectively. In a following study, Sakuma et al. [24]
analyzed three teeth in correlation with five control teeth which generated a regression line
characterized by a strong correlation coefficient (r = 0.99). In this context, the racemization
rate of the two groups was not significantly different, with differences in age between
—1 and + 3 years when considering pink teeth.

Sirin et al. [25] emphasized the importance of special handling of teeth affected by
caries, as caries significantly compromises the AAR process. To address this issue, the study
analyzed 99 standardized root dentine samples prepared from 25 wisdom teeth with carious
lesions, extracted by dentists due to carious or periodontal diseases, and, as a control,
3 sound wisdom teeth. In control samples they obtained a deviation between estimated
and real ages ranging from —1.87 to 3.69 years. This deviation increased significantly
in affected samples. Therefore, the researchers concluded by recommending the use of
two teeth from the same individual, given the low likelihood of identical caries-induced
degradation kinetics in separate teeth.

Lastly, Arany et al. [26] extended the application of racemization to amino acids
beyond aspartic acid, including glutamate and alanine. The analysis of 24 premolars
collected from patients under periodontal or orthodontics treatment demonstrated that the
D/L-aspartic acid ratio provided the most accurate results.

The applicability of AAR has been validated across diverse populations. For example,
Wochna et al. [27] applied AAR analysis to root dentin from 75 teeth in a Polish population,
including central and lateral incisors, canines, and first premolars. Their study reported
high correlation coefficients (r = 0.96-0.98) and standard errors (SEs) of £2.95 to £4.84 years,
with tooth-specific calibration further enhancing accuracy. Similarly, Rastogi et al. [28] con-
ducted a pilot study using gas chromatography on tooth biopsy specimens from 90 Indian
individuals. Despite differences in methodology, the study reported error margins of 0 to
+ 4 years, comparable to those using HPLC. Chen et al. [29] focused on third-molar dentin
in a Chaoshan population (n = 58), emphasizing the importance of population-specific
calibration. The findings confirmed AAR’s effectiveness and precision in age estimation,
with a correlation coefficient of about 0.97 and a mean absolute error (MAE) of 2.19 years,
with a standard deviation of 4-1.53 years.

Supporting these results, Zapico et al. [30] examined D/L ratios in dentin from 20 third
molars in a Spanish cohort, demonstrating a close linear correlation with chronological
age (r = 0.91) with an MAE of approximately 5 years in the training set and a difference
in accuracy of £2-6 years in the test set. In another study, Elfawal et al. [31] analyzed
89 upper first premolars from a Kuwaiti population, achieving close correlations (r = 0.97)
and a minimal SE of +1.26 years in a test group, with even lower errors of +1.12 years in a
validation group.

To overcome the challenges posed by limited sample availability, Minegishi et al. [32]
developed a heat-treatment approach to accelerate racemization. By heating dentin samples
(n = 39), they created calibration standards that mimicked the natural aging process,
shortening experimental timeframes and improving reproducibility. In particular, through
a more detailed analysis of some samples, they demonstrated that AAR can increase
significantly if a temperature of 110 °C is considered, showing a strong correlation (r > 0.91)
with the relative age of the samples. Moreover, the method obtained an error of &5 years
when age was estimated.

Beyond dentin, alternative tissues such as epiglottis cartilage and sclera have also
shown promise for AAR-based age estimation. Matzenauer et al. [33] analyzed AAR on
65 cartilage samples from the epiglottis and 45 purified elastin samples, showing a closer
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relationship between AAR and age at death in purified elastin from epiglottis (r = 0.84)
compared to unprocessed cartilage (r = 0.76). Klumb et al. [34] analyzed 75 scleral tissue
samples, observing an increase in the extent of AAR with age. However, the relationship
between age and racemization extent (r = 0.92) was lower than in dentin. This is probably
due to molecular inhomogeneities of total tissue samples which, therefore, resulted in
deviations between +6.5 and £32.35 years in the validation set.

In conclusion, AAR-based methods for age estimation demonstrate accuracy and
strong correlations with age across various studies. However, practical application is limited
by factors such as the destructive nature of analysis, the high sensitivity to postmortem
and storage conditions, and the need for population-specific calibration models.

3.3. Mitochondrial DNA (mtDNA) Analysis

Mitochondria, double-membrane organelles responsible for producing ATP through
oxidative phosphorylation, also generate reactive oxygen species (ROS) as by-products
of this process. These ROS, including superoxide and hydrogen peroxide, cause oxida-
tive damage to cellular components, contributing to disease, aging, and senescence [35,36].
Mitochondrial DNA (mtDNA) is particularly prone to ROS-induced damage due to its prox-
imity to the electron transport chain and lack of protective histones, leading to mutagenesis.
Somatic mtDNA mutations impair respiratory chain function, increasing ROS production
and creating a self-perpetuating cycle of damage. This process leads to the progressive
accumulation of mtDNA mutations over time, especially in high-energy, postmitotic tissues
such as skeletal muscles, the brain, and the heart [37].

Studies have demonstrated a strong correlation between mtDNA mutations, deletions,
or duplications with aging, suggesting their potential use as biomarkers for estimating
human chronological age in forensic applications.

For example, Zapico et al. [38] analyzed teeth samples, separating dentin from pulp,
from 25 third molars in Catalonia and 24 in Asturias, collected from individuals aged
20-70 years. Instead of targeting specific mutations, they quantified HV2 region amplifica-
tion in mtDNA using RT-PCR. Since HV2 amplification is influenced by oxidative damage
to nucleotides, the study found a negative correlation between defective amplification
events and age in dentin from both populations with a significance value < 0.01. However,
when analyzing the pulp samples, the correlation between HV2 amplification and age was
weaker and not statistically significant.

Similarly, Lacan et al. [39] investigated three types of miniduplications in the mtDNA
D-loop (150 bp, 190 bp, and 260 bp) in muscle and bone samples from 82 individuals aged
2-87 years. Using a pair of primers (L336/H335) previously linked to age-related somatic
mutations in muscle, the researchers developed a sensitive method combining back-to-back
primers with capillary electrophoresis to detect low levels of heteroplasmy. Their findings
confirmed a correlation between age and the frequency of duplications, with a higher
prevalence observed in muscle tissue compared to bone, with up to three duplications in
the first case and two in the second one, predominantly in elder individuals.

3.4. Quantification of Signal Joint T-Cell Receptor Excision Circles (sjTRECs)

In molecular biology, one of the most encouraging methods for age estimation is the
quantification of signal joint T-cell receptor excision circles (sjTRECs) from blood samples.
T-cell receptor excision circles (TRECs) are extrachromosomal DNA by-products generated
during the rearrangement of gene segments encoding the variable regions of the TCR
o- and p-chains in developing TCR a3+ lymphocytes. These episomal DNA fragments
are stable and non-replicative, meaning they are exclusively present in newly emigrated
(naive) T-cells from the thymus; as thymic output diminishes with age due to thymic invo-
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lution [40], the number of TRECs declines. Among these, syTRECs—produced specifically
during the rearrangement of the TCR «-chain gene—are widely recognized as a reliable
surrogate marker of thymic activity [41]. Research has explored the potential of sjyTRECs
quantification for age estimation, employing qPCR to analyze blood samples from individu-
als of known ages. Studies conducted across various populations, such as Chinese, Korean,
Egyptian, Dutch, and Japanese groups, have consistently demonstrated a strong negative
correlation between sjTRECs levels and age. For instance, a study by Ou et al. [42] in a Chi-
nese cohort (n = 248) reported a correlation coefficient of approximately —0.82 and an error
margin of approximately £10.47 years. Similarly, Cho et al. [43] refined the method using
TagMan probes in a Korean population (1 = 172), achieving an error margin of +8.49 years.
Comparable findings have been reported in other studies: Ibrahim et al. [44] analyzed
blood samples from 153 healthy Egyptian individuals, obtaining an SE of £ 7.35 years,
Zubakov et al. [45] obtained an error of 8.9 years from 195 healthy Dutch individuals, and,
lastly, Yamanoi et al. [46] reported an error of 8.0 years when considering the 194 Japanese
samples for which the analysis was successfully performed. Moreover, the latter observed a
significant decrease in sjTRECs quantification when bloodstains were stored for over 1 year.
To expand the applicability of s;TRECs quantification, some studies assessed its use in dried
bloodstains, which are more commonly encountered in forensic scenarios. Ou et al. [47]
analyzed bloodstains from 264 Chinese individuals stored under various conditions and
found a strong negative correlation between sjTREC levels and donor age (r = —0.871)
with an SE of £9.42 years. However, when further samples stored for different periods
were analyzed, they observed that older bloodstains exhibited reduced accuracy due to
time-dependent degradation of sjTREC levels, emphasizing the need for standardized
methodologies to account for storage effects.

The relationship between sjTRECs and chronological age can also be influenced by
health conditions. The immune systems of individuals affected by certain diseases may
show signs of early immune senescence, weakening the correlation between sjTREC levels
and chronological age. For instance, Cho et al. [48] examined 149 blood samples from a
biobank of individuals with adverse drug reaction, including anaphylaxis, urticaria, drug
reaction with eosinophilia and systemic symptoms, Stevens—Johnson syndrome, drug-
induced liver injury, and simple rash, in comparison to 172 healthy individuals of their
previous study [43]. While sjTREC levels still correlated with age, the association was
weaker in individuals with compromised immune systems, with a mean absolute deviation
(MAD) of approximately 11.59 when predicting the age of unhealthy individuals using the
equation based on healthy individuals. Similarly, Farag et al. [49] collected blood samples
from 233 Egyptian individuals divided into three groups, namely 90 with autoimmune
diseases, 58 confirmed COVID-19 patients, and 85 healthy controls, and observed significant
correlations between chronological and predicted age. In particular, MAD values were
9.40,11.04, and 9.71 years for healthy individuals, autoimmune patients, and COVID-19
patients, respectively. Recognizing that aging is a complex process influenced by genetic,
developmental, and physical factors, the accuracy of the assay might be further improved by
an approach that uses multiple predictors derived from independent sources. For example,
Cho et al. [50] firstly analyzed samples based only on sjTRECs analysis, obtaining a MAD
value of 10.33 years, and then combined sjTRECs quantification with DNA methylation
profiling on blood samples collected from 100 healthy Korean individuals, achieving
highly accurate models, with correlations exceeding 96% and a MAD of approximately
+3.31 years. Similarly, Elmadawy et al. [51] combined sjTREC levels with telomere length
measurements on blood and buccal swab samples from 124 healthy Egyptian individuals,
yielding stronger predictive accuracy (r = —0.876, p < 0.001) compared to either biomarker
alone, leveraging the complementary decline of these markers with age. Considering only
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sjTRECs, the obtained SE was £12.6 years. Overall, the data from this study provided
enhanced evidence that human age estimation from blood using sjTRECs quantification is
feasible at reasonably high accuracy and superior to telomere length estimation.

In conclusion, typical errors range from +7 to +13 years, with factors such as eth-
nicity, health conditions, storage duration, and detection methods influencing outcomes.
Incorporating additional biomarkers, such as DNA methylation or telomere length, can
further enhance predictions. Thus, sjTRECs quantification emerges as a promising tool
for forensic and biomedical applications, with significant potential for refinement through
ongoing research.

3.5. RNA Analysis

With advancements in molecular biology, genetics, and detection technologies,
non-coding RNAs (ncRNAs), including microRNA (miRNA), circular RNA (circRNA),
P-element-induced wimpy testis (PIWI)-interacting RNA (piRNA), along with mRNA,
are increasingly being recognized for their significant potential in forensic medicine ap-
plications due to their potential to provide quite accurate and reliable information from
biological samples [52]. The forensic utility of RNA is rooted in several key characteristics,
including the stability of some RNA types, under specific environmental and experimental
conditions, its high degree of tissue specificity, and its dynamic nature, as RNA expression
patterns can change significantly in response to various factors such as age, environmen-
tal influences, and physiological states. These properties make RNA an invaluable tool
offering insights into both the origin of biological samples (such as blood, saliva, or tissue
samples, even in trace amounts or degraded conditions) and the temporal aspects of gene
expression [53], helping in age estimation particularly when traditional morphological
methods are unavailable or impractical. Numerous authors have investigated the various
types of RNA, both independently and in combination with one another, as well as in
conjunction with other age estimation techniques.

Messenger RNA (mRNA) is one of the most extensively studied RNA molecules.
However, it is intrinsically less stable than DNA due to its susceptibility to degradation by
ubiquitous ribonucleases (RNases) [54-56]. This RNA molecule serves as an intermediary
between DNA and protein synthesis and it carries the genetic instructions encoded in
DNA to the ribosomes, where this information is translated into specific proteins, playing
a central role in gene expression [57]. Deng et al. [58] examined the relationship between
the expression levels of ERCC1 and XPF mRNA (key enzymes in nucleotide excision re-
pair, NER) and age in peripheral blood mononuclear cells (PBMCs) from 150 healthy Han
Chinese individuals. After the RT-PCR, regression formulas were established to estimate
age based on mRNA levels. The results showed that ERCC1 and XPF mRNA levels in
PBMCs decline with age (ERCC1: r = —0.578; XPF: r = —0.844, p < 0.01), indicating a strong
negative correlation. Zubakov et al. [59], instead, using genome-wide microarray analy-
sis on peripheral venous blood collected from healthy males, identified 222 age-related
mRNA markers, of which 9 were selected for validation. Among these, the NRCAM mRNA
marker showed the strongest correlation with age. However, the general prediction model
showed a MAD of approximately 9.20 and the markers were primarily downregulated with
age, except for CFH, which was upregulated. In addition, they showed that combining
mRNA with other biomarkers, such as DNA methylation markers, improved age predic-
tion accuracy. A model including five DNA methylation markers and one mRNA marker
(NRCAM) achieved a MAD of 4.60 years, suggesting that mRNA provides information
that is independent of and complementary to that of DNA-based methods. Despite their
lower predictive power compared to DNA methylation markers, mRNA markers hold
promise when integrated into multimarker models for age estimation. One of the more
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recent studies, published by Dgrum and colleagues [60], used RNA-Seq data to investigate
potential RNA markers for age prediction in blood samples, including forensic-style dried
blood stains. Two approaches were applied to select age-related markers: DESeq2 differ-
ential expression analysis, which identified genes with expression changes linked to age,
and machine learning with lasso regression, which optimized gene selection for predictive
accuracy. Both methods produced lists of 270 candidate genes. To evaluate the predictive
power of these genes, lasso regression was performed on both the DESeq2-derived and
lasso-derived lists. In the US dataset (publicly available sequencing data), the lasso list
incorporated 201 genes with an MAE of 4.35 years, compared to an MAE of 7.78 years for
the 30 genes of the DESeq?2 list. In the RNAgE dataset (data containing five different sample
batches), the lasso list included 77 genes with an MAE of 4.46 years, while the DESeq?2 list
had 73 genes and an MAE of 12.1 years. Despite the promising results, the study faced
challenges, including a reliance on public RNA-Seq datasets to supplement their limited
sample size (117 dried blood samples) and the inherent variability of blood transcriptomes,
which are influenced by environmental and tissue interactions. Additionally, saliva samples
analyzed through RNA-Seq and miRNome profiling presented difficulties due to low RNA
quality and a high proportion of microbiotic content, making them less reliable for forensic
age estimation compared to blood.

Fang et al. [61,62] investigated the potential role of microRNAs (miRNAs), small non-
coding RNAs with high stability (even in trace or stored bloodstain samples) and tissue
specificity, for chronological age prediction. In a first study they analyzed the miRNA
expression profiles of blood samples from Han Chinese individuals aged 20-69 years
massive parallel sequencing (MPS). Six age-associated miRNAs (miR-98-3p, miR-324-3p,
miR-32-3p, miR-330-5p, miR-374¢c-5p, and miR-342-3p) were identified through linear
regression and Pearson correlation, with some showing positive and others negative
correlations with age. An age prediction model was built using these miRNAs and the
AdaBoost algorithm, achieving MAEs of 5.52 years for males and 7.46 years for females [61].
Subsequently, in a second study, instead, they aimed to investigate the potential of PIWI-
interacting RNAs (piRNAs) and miRNAs for age estimation; piRNAs are small non-coding
RNA molecules, 24-32 nucleotides in length, involved in the PIWI-piRNA pathway, a
common route through which transposons are suppressed in most animals. By using
MPS, five age-related piRNAs were identified in blood samples stored for eight years.
Real-time PCR analysis confirmed that two piRNAs (piR-000753 and piR-020548) were
effective for age estimation, alongside two miRNAs (miR-324-3p and miR-330-5p). A
machine learning model using gradient boosting yielded the lowest MAE (approximately
3.17 years), demonstrating high accuracy in age estimation, with over 81% of the samples
showing an error of less than five years, highlighting the potential of combining two
different markers, especially for aged blood samples [62].

In 2022 Wang et al. published two studies [63,64] focusing on age estimation by
analyzing circular RNAs (circRNAs), which regulate gene expression, via interaction
with miRNAs and RNA-binding proteins as molecular sponges [65]. The first study [63]
identified over 40,000 circRNAs in the blood of 13 healthy individuals aged 20-62 years
using circRNA sequencing. By applying three statistical methods, namely false discovery
rate, lasso regression, and support vector machine, 28 circRNAs were selected for validation
in 30 additional individuals via RT-qPCR. From these, five age-related circRNAs were
chosen to construct age prediction models using 100 blood samples from individuals aged
19-73 years. The regression tree and random forest regression (RFR) models achieved the
highest accuracy in the testing subset, with MAEs of approximately 8.77 and 9.13 years,
respectively. However, models performed better for younger individuals (under 40) and
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males, with an MAE of about 6.13 years in males compared to 10.92 years in females using
the regression tree model.

In another study, Wang et al. [64] used a modeling set composed of blood samples
from 200 volunteers aged 20-80 years (102 females and 98 males) to develop predictive
models using miRNAs and circRNAs as biomarkers. They constructed models based
on 15 ncRNAs (11 miRNAs and 4 circRNAs) using various machine learning techniques,
including RFR and support vector regression. Among these, the RFR model demonstrated
the best performance, achieving an MAE of 3.68 years in the training set and 6.84 years
in the test set. Combining miRNAs and circRNAs resulted in better accuracy compared
to using either biomarker alone. However, the study noted systematic prediction errors,
with age being underestimated in older individuals and overestimated in younger adults.
Additionally, both Wang’s studies presented the absence of children and adolescents in
the sample set and significant sex effects, with models yielding less accurate predictions
for females.

Finally, Salignon et al. [66] utilized 103 plasma samples from healthy individuals,
aged 20 to 83 years, to assess age-related molecular changes in proteins and small RNAs.
Proteomic analysis identified 21 age-associated proteins, with increased abundance of
complement system components correlating with age. Small RNA sequencing revealed
315 age-altered small RNAs, primarily miRNAs, which showed a significant age-related
decline and were predicted to target genes linked to growth, cancer, and senescence.
Age-predictive models demonstrated that proteins were most accurate (R? = 0.59), while
miRNAs were the most predictive small RNA class (R? = 0.54). Combining proteomic and
miRNA data improved predictive accuracy (R? = 0.70), underscoring their complementary
roles in capturing age-related physiological changes.

3.6. Telomere Length Analysis

Specific DNA sections called telomeres are found at the ends of chromosomes. By
employing a novel methodology, investigating these areas can yield data and enable us
to calculate their chronological age since telomere length gradually decreases over time.
This is precisely the reason why they can be used as biomarkers for the study of aging and
chronological age. Telomere length has been analyzed and investigated in a number of
studies in the literature using data from various biological sources, including blood, saliva,
muscle, teeth, and dental pulp.

Elmadawy et al. [51] analyzed data from 248 buccal swabs, collected from 124 individ-
uals (68 males and 56 females) aged from 0 to 78 years, to estimate the relationship between
telomere length and assumed chronological age. They used the TeloITTAGGG telomere
length assay and emphasized that length decreases with age, using a correlation index with
a negative value. A correlation index with a value of 0.726 was the outcome of their subse-
quent combination of the findings from a multivariate model with the addition of extra
molecular variables. The resulting mean prediction error was 12.5 years. These findings
emphasize the necessity of integrating the outcomes of several biological parameters in
order to improve forecast accuracy.

The research group of Srettabunjong et al. [67] processed 100 blood samples, collected
from 50 males and 50 females, from fresh cadavers to explore the correlation between aging
and telomere length. The results of this study showed that the decrease in telomere length
is proportional to advancing age, resulting in a correlation index with a negative value.
With a quadratic correlation score of 0.391, they were able to demonstrate the importance of
appropriate sample conditions for increased accuracy and the necessity of starting samples
of sufficient quality.
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Differently, Magi et al. focused their attention on semitendinosus muscle biopsies.
They included biopsies of 26 healthy males aged between 20 and 50 years. Their multiple
regression analysis revealed that age is a significant independent variable associated with
telomere length. Moreover, they observed that age is also independently correlated with
oxidized environments and partially influenced by lifestyle habits [68].

Other studies have focused on the analysis of dental samples and the processing of
dental pulp.

The study conducted by Marquez-Ruiz et al. [69] analyzed 91 permanent teeth from
77 individuals (20 men and 53 women) aged between 15 and 85 years, using quantitative
PCR to measure telomere length. In this study, the data showed a negative correlation
reflected in the shortening of the length with the progression of time and consequently with
chronological age. However, the study obtained an MAE of approximately 9.85 years, high-
lighting the importance of integration between different methods in complex forensic cases.

Finally, Tejasvi and colleagues [70] used 30 dental pulp samples from individuals
aged between 15 and 35 years, divided into three groups: 11-20 years, 21-30 years, and
31-40 years. Telomere length was measured by real-time quantitative PCR (qPCR), with the
use of a standard curve to calculate absolute telomere length, resulting in a kilobase-level
reduction ranging from 9.92 to 9.13 for the young and the elderly, respectively. However,
the individual variability in the data demonstrated how important further standardization
of methods is to ensure more robust results.

These studies highlight a convergence on the role of telomeres as useful biomarkers for
age estimation. Telomere length remains a key parameter, with potential forensic and clini-
cal applications. This is despite limitations related to interindividual variability and DNA
quality. The next step towards improving the precision and reliability of these analyses
could be integrating molecular techniques and more sophisticated statistical methods.

3.7. DNA Methylation

Many authors have identified CpG sites where methylation level is correlated with
age and built age prediction models targeting small numbers of sites that can be incorpo-
rated into assays to estimate age with high accuracy, using technologies such as: Sanger
sequencing, methylation-specific PCR (MSP), methylation-sensitive high-resolution melt-
ing (MS-HRM), MassARRAY, next-generation sequencing (NGS), single-base extension
(SBE) using SNaPshot chemistry, pyrosequencing, and various other techniques. These
techniques have mainly focused on whole blood, with some studies on other tissues such
as saliva, semen, bone, and teeth [71].

Almost all the studies applied bisulfite conversion in order to discriminate between
methylated and non-methylated cytosine [72]. It is required to generate DNA sequence
variants; otherwise, methylated cytosine and non-methylated cytosine will be amplified
with no alterations in the sequence during PCR amplification. When non-methylated cyto-
sine is exposed to sodium bisulfite (NaHSO3), it deaminates and changes to uracil; instead,
methylated cytosine remains intact, allowing their detection in downstream analysis [73,74].

3.7.1. Sanger Sequencing

The Sanger sequencing technique has proven to be a useful tool for DNA methylation
analysis for the prediction of chronological age. Through the study of this technique, it was
possible to explore specific sites for chronological age prediction and the corresponding
correlation in specific CpG sites on different biological matrices, as well as in multitissue
predictive models, both in living and deceased individuals.

The research groups of Correia Dias et al. have, in fact, conducted several in-depth
studies using the Sanger technique in order to predict age in forensic contexts [75-77]. Their
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first study [75] analyzed 70 blood samples from deceased individuals. The results obtained
showed a strong correlation between methylation level and chronological age at the level
of the ELOVL2 gene (R = 0.785). Additional markers, such as Clorf132, PDE4C, EDARADD,
and FHL2, were also studied to create a multivariate linear regression predictive model.
This model obtained a MAD value of 6.08 years in the training set and 8.84 years in the
test set. Their study also emphasized the applicability with the use of degraded starting
samples, making the model suitable for postmortem samples.

The research group of Correia Dias et al. [76] also performed a study on samples
obtained from living individuals. They analyzed 53 peripheral blood samples to study a
set of four genes: ELOVL2, FHL2, EDARADD, and PDE4C. Their model yielded a MAD
result of 5.35. The same model was validated through a pool of 18 additional samples that
resulted in a MAD value of 4.98 years. Subsequently, the model was used for the analysis
of an additional 51 cadaveric samples, resulting in a significantly increased MAD value
of 9.72 years. The same research group [77] decided to extend the application of Sanger
sequencing to multiple matrices with a follow-up study on a pool of 185 samples from
blood, bone, and teeth. A combination of seven CpGs were analyzed for a multimatrix
model, yielding results with significant levels of correlation between methylation level and
chronological age, with a final MAD result of approximately 6.06 years.

Finally, the study by Khan et al. [78] conducted a pilot investigation using the Sanger
sequencing technique on samples obtained from buccal swabs, analyzing the NPTX2 gene
in 26 individuals (13 male and 13 female) aged between 1 and 65 years. In contrast to
previous studies, no significant correlations were found between methylation levels and
the chronological age of the individuals. The study did, however, emphasize integrity at
the technique level, affirming that the discrepancies may be attributable to the different
biological matrix and not to methodological problems.

3.7.2. Methylation-Specific PCR (MSP)

Analysis of DNA methylation level can be carried out through a technique called
methylation-specific PCR (MSP), which has been used by numerous studies to estimate
chronological age from different biological matrices.

The study by Cui et al. [79] analyzed eight CpG sites at the promoter level of the
hTERT gene out of a total of 12 initial blood samples, then used 32 samples to validate the
method. From the 12 blood samples, the MAD value of each CpG site ranged from about
4.29 to 5.95 years, showing small deviations. On the other hand, with regard to the set of
32 validation samples, the MAD level was slightly higher with a value of about 4.35 years,
according to what was obtained from the test set.

Another study that considers the h'TERT gene was conducted by Xin et al. [80] by
combining traditional methylation-specific PCR with quantitative real-time PCR. The
starting pool involved the use of 60 blood samples for model development and an additional
validation set comprising 30 samples. The model based on methylation-specific PCR
achieved a MAD value of approximately 6.60 years, while the result is slightly lower
when the technique is paired with quantitative real-time models, reaching a MAD value of
5.19 years. These results have undoubtedly provided further insights into the methylation
level of the hTERT gene promoter for age prediction in forensic contexts.

The real-time MSP technique was also applied by the research group of Kondo et al. [81]
to study the methylation levels of the ELOVL2 gene using samples obtained from the teeth
of 29 individuals aged between 20 and 79 years. The analysis highlighted a significant level
of correlation with a Pearson correlation coefficient of r = 0.843, which increases with the
individual’s chronological age. Regarding the MAD value obtained, it was approximately
8.94 years, due to the greater variability in older subjects.
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The study by Ogata et al. [82] also used methylation-specific PCR technique with real-
time analysis by analyzing CpG sites at the level of two genes: ELOVL2 and EDARADD.
Ninety-nine teeth from Japanese donors were analyzed. The samples were divided into
a training group with a total of 59 samples and the remaining 40 samples constituted
the test set. The EDARADD gene showed a correlation with a negative value while the
ELOVL2 gene showed an opposite trend with a positive correlation value. The multiple
regression model combining both genes improved the accuracy of the estimate, with an
MAE of 6.69 years in training samples and 8.28 years in test samples. However, accuracy
was slightly lower in older individuals than in young and middle-aged individuals.

The study conducted by Soedarsono et al. [83] represented another step forward in
the application of MSP, integrating it into a broader context to develop prediction models
based on epigenetic age. They analyzed three genes in a sample pool from 43 teenagers
of Indonesian origin between the ages of 11 and 20 years. The ELOVL2 gene showed a
strong correlation between methylation level and chronological age (r = 0.964), with a
positive value emphasizing the increase in methylation levels with advancing age. With
regard to the other two genes (PRKG2 and EDARADD), the Pearson correlation index
values obtained are r = —0.955 and r = —0.942, respectively. In contrast to ELOVL2, these
two values are negative, meaning that the methylation level decreases with increasing
chronological age of the individual.

3.7.3. Methylation-Sensitive High-Resolution Melting (MS-HRM)

Methylation-sensitive high-resolution melting (MS-HRM) is a method that measures
methylation profiles, where the PCR amplification of bisulfite-treated DNA is followed by
melting analysis. Therefore, the methylation status of each cytosine is directly converted
into the sequence, where it alters the thermodynamic stability of double-stranded DNA,
distinguishing methylation profiles through changes in the melting curve. In forensics,
it can be used for age prediction at the level of related genes. This technique can be
applied starting from different biological matrices such as saliva, blood, and buccal cells
but also extending to less conventional samples such as cigarette butts, highlighting the
method’s flexibility.

Several studies in the literature demonstrated the flexibility of the technique itself.
Oka et al. [84] studied salivary samples from 79 voluntary donors of Japanese origin and
34 donors of Indonesian origin, comparing these different populations. The work analyzed
the methylation levels of the genes ELOVL2, EDARADD, and FHL2. The accuracy of
the analysis is ensured by the premelting and postmelting temperatures specific to each
gene. The methylation levels of the EDARADD gene in particular showed significant
divergences in the two populations. The MAD value obtained considering all samples was
11.1 years, while the MAD value obtained when the model was settled, distinguishing the
two populations, was 10.8 years. This study was able to show that, for groups with a higher
age, the ethnicity factor flattens out more and more, thus resulting in a lesser impact on
methylation analysis. However, limited information is available on whether these methods
are accurate across different populations.

Finally, the research group of Hamano et al. [85,86] analyzed both salivary and blood
samples by the MS-HRM technique, conducting two different studies. The first study
considered 74 blood samples: 22 were from living individuals and the remaining 52 from
deceased bodies (aged between 0 and 95 years), analyzing the two genes ELOVL2 and
FHL2 to try to obtain a predictive model combining both living and deceased individuals.
The model validation, evaluating both genes simultaneously, obtained a MAD value of
7.44 years. They also performed an analysis by gender that did not lead to significant
differences, underlining how the method may be universally applicable [85]. In the second
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study, they analyzed 263 saliva samples from healthy individuals and samples taken from
cigarette butts donated by 16 volunteers; the donors ranged in age from 1 to 73 years and
the methylation levels of the two genes ELOVL2 and EDARADD showed linear correlations
with age. The chronological age prediction model obtained a MAD value of 5.96 years in
the training set and a range of approximately 6.25 years in the validation set. The highest
accuracy is found in the age range of younger individuals, consequently the analysis is
less reliable when dealing with older individuals. The application of the method to a
non-conventional biological matrix such as cigarette butts obtained, after data analysis, a
MAD value of 5.64 years [86].

3.7.4. MassARRAY and Microarray

The MassARRAY technique is based on the study of DNA methylation using mass
spectrometry, usually matrix-assisted laser desorption/ionization time-of-flight (MALDI-
TOF), to quantitatively analyze the methylation of CpG sites by specifically cutting the
bases at particular sequences, allowing the prediction of chronological age by analyzing
biological samples such as teeth, blood, or saliva. This technique thus makes it possible
to identify changes that occur on the DNA at precise positions such as methylation of the
strand itself in particular regions that are thus age-related. Although MassARRAY can be
used as a standalone method to examine methylation at specific regions, as performed
by Giuliani et al. [87], Yi et al. [88], and Freire-Aradas et al. [89], it could be flanked with
microarray techniques. For instance, Freire-Aradas et al. [90,91] and Zubakov et al. [59]
used both these techniques. In this context, microarray has been used to identify the
most relevant CpG sites associated with age, while MassARRAY has been applied in the
subsequent validation analysis. However, microarray can also be used independently, as
performed by Aanes et al. [92] and Bocklandt et al. [93], allowing analysis of DNA methy-
lation using specific probes for genomic sequences. It measures the level of methylation
of CpGs in different areas of the genome, providing information on epigenetic changes in
various biological samples.

The research group of Giuliani et al. [87] used a MassARRAY technique to analyze
DNA methylation levels in teeth. In particular, they analyzed DNA samples extracted from
22 human teeth from individuals aged between 17 and 77 years. The results obtained a
MAD value of 1.20 for the combined pattern of DNA extracted from the pulp and cementum
of the starting teeth by analyzing eight CpG sites in the ELOVL2 and FHL2 genes. The
authors underlined the great potential of the technique in the forensic field with samples of
dental origin considering the great precision obtained.

Similarly, Yi et al. [88] used a MassARRAY technique to study age-methylation corre-
lation analysis and age prediction with blood samples obtained from 65 volunteers aged
between 11 and 72 years. The eight isolated fragments associated with human genes were:
TBOX3, GPR137, ZIC4, ZDHHC22, MEIS1, UBE2E1, PTDSS2, and UBQLN1. The CpGs
showed significant variations in methylation levels between the different age groups. The
multivariate regression model obtained very high Pearson correlation indices, underlining
a strong accuracy with regard to the ultimate aim of age prediction, with values of r around
of 0.91. Additional checks were also performed on separate male and female models with
correlation index accuracy of R? = 0.889 and R? = 0.971, respectively.

The research group of Freire-Aradas et al. conducted three different studies using
MassARRAY alone or preceded by microarray application [89-91]. The first study [90]
used the EpiTYPER® system to analyze a total of 725 blood samples from individuals aged
between 18 and 104 years. They also studied samples from 52 monozygotic twin pairs
aged between 42 and 69 years. They selected 18 CpG sites correlated with age and, using
microarray analysis, the model developed obtained a correlation level of R? = 0.9395 in
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the training set. The median absolute deviation value was 3.07 years, while for the model
built with samples from monozygotic twin pairs, the obtained MAD value was 4.23 years.
Similarly, in a second study [91] they applied MassARRAY preceded by the microarray
technique to identify CpG sites and analyze a total of 209 samples from European donors
aged between 2 and 18 years with approximately 10 samples per age. Some genes, such as
KCNAB3, PRKG2, EDARADD, ELOVL2, FHL2, and MIR29B2CHG, were analyzed to assess
the correlation between DNA methylation and age in children and adolescents. Thanks to
the predictive models obtained, the MAE value was 0.94 years in the training set and 1.25
years in the validation set, conducted on a total of 29 independent samples. The KCNAB3
gene proved to be a highly informative biomarker for these particular age groups. The third
study [89], instead, was focused only on MassARRAY. A pool of 895 blood samples for
the training set from Spanish donors aged between 2 and 104 years, followed by a further
pool of 152 samples to validate the previously created model, were considered. The ages of
the test set are between 3 and 69 years. A total of 1047 samples were therefore analyzed
for the seven reported genes: ELOVL2, ASPA, PDE4C, FHL2, CCDC102B, MIR29B2CHG,
and chr16:85395429. The study conducted analyzed three different statistical models in
parallel: quantile regression (QR), quantile regression neural network (QRNN), and quantile
regression support vector machine (QRSVM). They obtained different mean error values,
the best results being obtained with the QRNN and QRSVM of 3.36 and 3.41 years for the
training test and 3.32 and 3.45 years for the validation test, respectively.

The study conducted by Zubakov et al. [59] analyzed a total of 216 blood samples
from individuals aged between 4 and 82 years. The results of their study obtained a highly
significant correlation of R? = 0.931 by analyzing 43 methylation markers validated with
EpiTYPER technology. The MAD for this studied model was found to be 4.23 years.

Aanes and colleagues [92] analyzed a pool of 973 samples aged 12 to 25 years for a
narrow age span and a group of 2316 samples for a broad age span (10 to 60 years) using
the microarray technique. The training set for the narrow dataset resulted in better test
performance with a MAD value of 0.73, but predictions were mostly around 1 year and
just a few samples showed an error of more than 3 years. The Pediatric Age from Young
Adults (PAYA) model utilized showed the highest precision and accuracy compared to
other models.

Finally, similarly to the previous study, Bocklandt and co-workers [93] used the mi-
croarray technique alone. They analyzed salivary samples of 34 male identical twin pairs
aged between 21 and 55 years. Then, they analyzed, to validate the model, another group
of 60 samples (31 males and 29 females, aged between 18 and 70) and the promoters of
three genes, EDARADD, TOM1L1, and NPTX2, using Illumina HumanMethylation27 mi-
croarrays, combined with statistical analysis leave-one-out methods to generate a multivari-
ate regression model. They obtained different average accuracies to predict an individual’s
age of 5.3 years for the male-only model, 6.2 years for the female-only model, and a value
of 5.2 years for the combined sample.

3.7.5. Next-Generation Sequencing (NGS)

Next-generation sequencing (NGS) techniques, including Illumina BeadChip, mas-
sively parallel sequencing (MPS), and whole genome sequencing (WGS), have been applied
to study methylation levels for chronological age prediction due to their ability to process a
great number of genes and data compared to other techniques.

The working group of Zhang et al. [94] analyzed 1545 blood samples from healthy
individuals and rheumatoid arthritis patients. They obtained a MAD value of 3.90 years
in healthy subjects and 3.11 years for AR-affected individuals, analyzing 24 CpG sites.
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They observed specific variations in disease conditions, but not impacting on the overall
regression model, still ensuring reliable results.

The longitudinal study by Refn et al. [95] similarly analyzed blood samples with the
difference that they were collected at two different times 15 years apart. A total of 128 blood
samples from 64 voluntary donors were used. This study evaluated the stability of the
markers over time, showing that ELOVL2 is particularly suitable and efficient from this
point of view.

Vidaki et al. [9] also analyzed 1156 blood samples from living individuals aged
2-90 years. They also analyzed: 265 salivary samples, 46 blood samples for model valida-
tion, 53 pairs of single-zygote twins, and 1011 samples from diseased individuals. In this
study they used the artificial natural network (ANN) model, obtaining an MAE of 3.3 years
for the training test and 4.4 years for the blind control test on a set of 16 analyzed CpG sites.

The study by Amiri Roudbar et al. [96] analyzed over 485,000 CpG sites with data
from four public datasets considering 4409 individuals. The results have led to significant
and robust correlation indices and have shown differences in gender, highlighting that the
epigenetic aging rate in men presents methylomic changes faster than that of women.

When considering saliva samples, the study by Hong et al. [97] highlighted highly
predictive markers for age, identifying 62 CpG sites that can be used through a linear
univariate regression model. They also used additional models such as stepwise regressions
that led to the identification of a MAD value of about 3.83 years on a lower CpG site pool.

The study by Lau and Fung [98] processed data from 991 blood samples using multiple
linear regression models and machine learning models, analyzing a pool of 16 selected
markers and obtaining a MAD of about 3.74 years.

Alsaleh and Haddrill [99] processed data from the study of 754 samples aged
0-88 years. After a series of experiments, they tried to study a simplified model that
includes six marker genes and which obtained a MAD value of 4.5 years for the training
test and 4.6 years for the validation set. Instead, using methylation profiles to develop a
simplified model on six CpG markers, they achieved a MAD of 4.6 years in validation tests.

Lee et al. [100,101] have conducted two studies to refine the technique with a pool of
different samples. In the first study, they analyzed 157 semen samples from individuals
of Korean origin aged between 18 and 70 years. They also added additional samples
of different biological origin, such as three blood samples from female individuals and
three vaginal fluid samples, in order to be able to carry out comparisons between genders.
The study used MPS and several regression models such as stepwise, linear multivariate
regression, elastic net regression, lasso regression. As for the results of model validation
in the various regression systems, they obtained MAE values ranging from 4 to 7 years.
In the second study, different bone samples were analyzed [100]. Data from samples of
66 identified bone remains with an age at death ranging from 31 to 96 years were processed.
The samples were halved in the following groups. Preliminary tests were carried out
on four samples. Of the remaining 62, 30 were analyzed with the Illumina BeadChip
technique while the last 30 were used for model validation. The validation samples showed
a moderate age correlation in only four genes (TMEMb51, TRIM59, ELOVL2, EPHAS®),
underlining how complicated and challenging it is to choose appropriate markers for age
prediction [101].

Similarly, the study by Jung et al. [102] focused on the analysis of samples of cartilage
origin taken from 85 individuals, mostly men, aged between 26 and 89 years. The work
analyzed MPS data from nine genes considered: TMEMS51, MIR29B2CHG, EDARADD,
FHL2, TRIM59, ELOVL2, KLF14, ASPA, and PDE4C. The multivariate stepwise linear
regression model obtained an MAE value of 4.17 years while for the validation set the MAE
value increased slightly to a value of 4.97 years. The study also showed a high sensitivity
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even from small amounts of DNA (optimum value around 10 nanograms, with reliable
results up to 5.5 nanograms).

The research group of Hong et al. has conducted two different studies using the
MPS technique [103,104]. In the first study, they analyzed as a test set saliva samples
from 96 donors aged between 18 and 65 years, half male and half female. The results
revealed strong correlations between DNA methylation at specific CpG sites and age and,
for the ¢g00481951, cg07547549, and cg14361627 sites, the values of Pearson’s correlation
coefficients were found to be between 0.756 and 0.814. They obtained a very high MAD
value of around 23.42 years, significantly higher than reported in the literature by other
studies [103]. The second study analyzed samples from blood samples belonging to
250 donors of Korean origin, perfectly divided between males and females, aged between
20 and 74 years considering the methylation level in ELOVL2, FHL2, KLF14, MIR29B2CHG,
and TRIMS59. The obtained results showed strong correlation indices for all CpG sites
analyzed [104].

Guan and coll. [105] analyzed postmortem blood samples of 90 Japanese individuals
aged from 2 weeks to 91 years. Samples were divided into a training dataset (60 samples)
and an independent validation dataset (30 samples). From a pool of 11 genes the four
CpG sites ASPA, ELOVL2, ITGA2B, and PDE4C showed the strongest correlation with
chronological age. ELOVL2 was identified as the most informative marker. The linear
regression model gave a MAD of 5.23 years (training dataset) and 6.49 years (validation set).

Becker et al. [106] sampled a piece of the left parietal bone obtained from skull bone of
190 cadavers (aged 0-96 years, 55 females and 135 males) by multiplex PCR amplification
targeting genomic regions of six age-associated genes: ELOVL2, KLF14, PDE4C, RPA2,
TRIM59, and ZYG11A. The DNA methylation markers exhibited significant age-related
changes with high Spearman’s correlation coefficients ranging from 0.79 to 0.93 across the
markers. Regarding the cross-validation performance, DNA methylation markers yielded
the best results with an MAE of 4.95 years.

Wozniak et al. [107] analyzed 160 blood samples (1-75 years) sourced from healthy
volunteers, 160 samples of buccal cells (2-80 years) from forensic genetic archives, and
161 bone samples (19-93 years) collected during routine autopsies. The study used a
multiplex PCR assay for eight markers (ELOVL2, PDE4C, MIR29B2CHG, KLF14, FHL?2,
TRIM59, EDARADD, and ASPA) showing high accuracy with minimum DNA input (20 ng)
for reliable methylation quantification. Strong age correlation was observed in CpG sites
across all tissues, with variations noted in older age groups.

Regarding accuracy, the reported MAEs were 3.2 years for blood, 3.7 years for buccal
cells, and 3.4 years for bone tissues. Aliferi et al. [108] analyzed 110 samples of whole blood
(donor ages ranged from 11 to 93 years), used for initial model development, validation,
and blind testing, 34 samples of saliva analyzed for model applicability, and 11 semen
samples specifically focusing on the sperm fraction. The genes investigated were VGF,
TRIP10, KLF14, CSNK1D, FZD9, C21orf63, SSRP1, NHLRC1, ERG, FXN, P2RXL1, and SCGN.
Sensitivity testing for all samples demonstrated reliable predictions down to 10 ng of input
DNA, but accuracy decreased significantly at 1 ng of input DNA. In particular, for saliva,
successful age prediction was achieved with a mean error of 7.3 years despite the model
being trained on blood, indicating potential for cross-tissue applicability. Notably, no
methylation was detected in the sperm fraction. The best performance was obtained with
the statistical model support vector machine with an MAE of 4.1 years in the blind test set.

Naue and co-workers [109] analyzed blood samples of 324 individuals (208 for the
training set, 104 for the test set), with the age range of 18-69 years and an equal gender
distribution. The study developed a DNA-methylation-based model for age prediction
using 13 specific CpG markers. An RFR model was used for age prediction and achieved
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a MAD of 3.16 years and, among the 13 genes analyzed, the four markers ELOVL2, F5,
TRIM59, and KLF14 contributed most to the performance of the model.

In another study, Naue et al. [110] included 29 individuals selected based on age
and gender, with an equal distribution of males and females of different ages. A total of
144 samples were collected from various tissues, including blood, skeletal muscle, brain,
bone, and buccal swab, and analyzed using the MPS technique on the following genes:
RPA2, F5, TRIM59, KLF14, HOXC4, NKIRAS2, ZYG11A, MEIS1, ELOVL2, GRM2, LDB2,
SAMD?2, and DDO. In this pilot study, the authors concluded that a larger sample set is
required to create and validate tissue-specific models for DNA methylation age prediction.
They also suggested that the most informative CpG sites for each tissue should be identified.
Tissue-specific age prediction models will be valuable, and when the tissue origin of a
sample is known, not all markers need to be measured.

Ochana et al. [111] analyzed DNA from blood samples obtained from 300 healthy
donors across three independent cohorts. They studied a pool of CpG sites and demon-
strated that Clorf132, CCDC102B, ELOVL2, and FHL?2 present the best MAEs of approxi-
mately 2.36,2.98, 1.65, and 3.21 years, respectively. In particular, for individuals under 35
or 50 years of age the model reached a higher accuracy. Their results showed that, in order
to achieve an optimally performing model it is important to involve both a locus that can
change methylation with time, such as ELOVL2, and a locus that can reflect the age-related
characteristic alterations in cell composition, such as Clorf132.

Recently Refn and collaborators [112] published a study on an 11-CpG panel for age
estimation in 148 blood samples obtained from donors aged between 18 and 68 years,
equally divided into males and females. The panel was composed with two multiplexes
constructed with the following genes: FHL2, ARHGAP22, TRIM59, CCDC102B, CNTNAP2,
LDB2, ELOVL2, RASSF5, MIR29B2CHG, and EDARADD. Results showed that the DNA
methylation at the 11 CpG loci was significantly correlated with age in the sample set,
confirming the potential of the 11 CpGs in age prediction. The applied support vector
machine with polynomial function model (SVMp) was retrained using data from 108 of the
148 individuals, while data from the other 40 individuals were used for validation. The
MAE was 2.58 for the training dataset, while the MAE was 3.35 for the test dataset.

An important interlaboratory project was subsequently carried out within the VIS-
AGE project by various studies such as Heidegger et al. [113], Pisarek et al. [114],
Freire-Aradas et al. [115], Piniewska-Rég et al. [116], and Pospiech et al. [117]. The VISAGE
project has developed advanced tools for age prediction based on DNA methylation, using
different analytical techniques and models applied to different biological matrices [118].

If we analyze these results in detail, we find the study of Heidegger et al. [113] in
which they processed data obtained from two samples of seminal DNA and the technique
of MPS. The 13 candidate CpG sites were studied in different models including ET-13 and
ET-5, which obtained MADs ranging between 4.1 and 5.5 years.

Another study on semen was that of Pisarek et al. [114]. They validated different
genes starting from 381 sperm samples. The final model based on six CpGs (SH2B2,
FOLH1B, EXOC3, IFITM2, and GALR? in cytosine 1 and cytosine 3) obtained an MAE
value of 4.3 years in the training set and 5.1 years in the test set. The specificity of methy-
lation in sperm compared to somatic cells demonstrated the potential of this array for
forensic applications.

The research group of Freire-Aradas et al. [115] developed a model from 181 samples
of costal cartilage, studying a pool of 44 CpGs in the KLF14, TRIM59, and FHL?2 genes. The
model after data processing obtained an MAE value of 4.26 years.

Piniewska-Rég et al. [116] conducted a study on 212 blood samples, differentiated for
chronic alcohol abusers (106 samples) and controls (106 samples), using the VISAGE Age
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Tool. Methylation in the MIR29B2CHG and FHL2 genes highlighted significant alterations in
abusers, resulting in an MAE of 3.1 years compared to an MAE of 3.3 years in non-abusers.

Finally, the study by Pospiech et al. [117] analyzed five blood samples from individuals
of Polish origin aged between 7 and 78 years. The main results showed high sensitivity
and adequate reproducibility of the technique with a significant correlation between DNA
methylation levels and chronological age. In the comparison of three sequencing technolo-
gies, out of a total of 161 CpGs in association with four different epigenetic models, they
showed that the best accuracy with an MAE value of 2.7 years was associated with the
VISAGE model considering Ion AmpliSeq.

Another study performed on blood samples was that of Vidaki et al. [119]. They stud-
ied 1057 blood samples from males aged 15-87 years, sourced from six publicly available
Gene Expression Omnibus (GEO) datasets: 758 samples for model training and 172 samples
for validation, while the sixth dataset, comprising 127 samples, was used for independent
testing, with the purpose of validating the applicability of Y-CpGs for male-specific age
prediction. Using supervised machine learning, SVM, and RFR, the study developed a
Y-CpG-based age prediction model. The SVM radial model, which accounted for non-linear
age-methylation patterns, achieved the best performance with a MAD of 7.54 years in the
validation dataset and 7.61 years in the testing dataset.

Llobet and collaborators [120] analyzed 811 blood samples, 377 males and 434 females,
divided into three groups by age: 257 “younger” samples with an age below 40 years,
211 “middle-aged” samples aged 40-55 years, and 343 “older” samples aged above 55 years,
constructing a linear regression and a stepwise model using the NGS technique. The
combined model showed significant correlations between chronological and predicted ages.
In the training set they obtained a value of R = 0.99 for both women and men and, for the
test sets, a value between 0.95 and 0.99. They also displayed a standard deviation error
between 3.3 and 6.5 years.

Finally, in the study conducted by Mawlood et al. [121], mitochondrial DNA (mtDNA)
samples obtained from 82 female donors aged between 18 and 91 years were studied. The
study focused on 10 regions of interest in mtDNA, which include both functional gene
sequences and promoter regions. The analysis was performed using the NGS Illumina
MiSeq technique. Hypomethylation levels were detected at two different CpG sites in the
MT-RNRI1 gene and there was a significant correlation with age. The linear regression
model conducted obtained a MAD value of 9.3 years. The accuracy of this predictive model
was highest in the 40-59 age group. The study showed that there are intrinsic and external
factors that are able to influence mtDNA methylation as a biomarker for aging.

3.7.6. Single-Base Extension (SBE)—SNaPshot

The SNapShot technique is based on single-nucleotide extension, called single-base
extension (SBE). This technique uses the final aid of methods for reading, such as capillary
electrophoresis, by means of different models of sequencers available on the market and
currently used in forensic genetics laboratories, and for this it is used for the study of
methylation level with the ultimate purpose of predicting chronological age in forensically
relevant biological samples.

Regarding publications that consider blood samples, the study by Onofri et al. [122]
analyzed 84 blood samples from Italian volunteers aged between 18 and 65, the level of
methylation of five genes in a multivariate linear regression model, specifically ELOVL2,
FHL2, KLF14, Clorf132, and TRIMb59, and an additional four-gene model, excluding the
TRIMS59 gene. For both models the value of the absolute median deviation is about 3 years.

The same cluster of genes was considered by Grignani et al. [123] who analyzed
72 blood samples from living individuals aged 18-85 years and 29 samples from charred
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human remains. The data produced a MAD value of about 6.92 years for samples taken
postmortem from carbonized individuals.

Similarly, the study conducted by Dias et al. [124] analyzed 59 blood samples from
living Portuguese individuals and 62 samples from cadavers, evaluating the methylation
value of the same five genes, reporting that the model of only three genes (ELOVL2, FHL2,
and Clorf132) obtained the best results, identifying a value of MAD of about 4.25 years for
living individuals and about 5.36 years for samples from the deceased.

A further study of blood samples was conducted by the research group of Han et al. [125]
on a pool of 529 samples, of Chinese origin, aged between 2 and 82 years, analyzing eight
different CpG sites and comparing several models such as multivariate linear regression
and support regression vector, obtaining an MAE value of 3.52 years and 2.88 years, respec-
tively. The results demonstrated a greater accuracy with the use of the second technique in
the training test set.

Ye et al. [126] tested blood, fresh bloodstain, and aged bloodstain samples derived
from 115 training samples of healthy individuals aged 11-71 years and 30 testing samples
of healthy individuals aged 22-51 years for ELOVL2, Clorf132, and DNAHY, obtaining
the following MAD values: blood: 4.73 years, fresh bloodstains: 4.49 years and aged
bloodstains: 5.43 years. The prediction model was consistent across blood and bloodstains,
with a slightly higher deviation for aged bloodstains.

Filoglu et al. [127] analyzed whole blood samples obtained from 100 healthy Turk-
ish volunteers in the age range of 20-83 years, consisting of 40 females and 60 males:
40 individuals were selected for the test group, while the remaining 60 constituted the train-
ing group. A panel of eight genes were tested: ELOVL2, FHL2, ASPA, Clorf132, CCDC102B,
TOM1L1, RASSF5, and cg07082267. Methylation profiles were consistent down to 1 ng of
DNA, but errors increased at 0.5 ng due to dropout events at some loci. The MAE was
3.75 years, while the six-CpG model achieved an MAE of 4.07 years.

Jiang et al. [128] considered 186 male blood samples (ages 15-87 years) from a Han
Sichuan population. A total of 13 Y-CpGs markers were investigated, obtaining with the
multivariate linear regression a MAD of 12.36 years for the training test. Removing three
non-significant loci, the MAD was reduced to a value of 10.34 years. The RF model resulted
in a MAD of 4.65 years. In particular, the RF model was validated through sensitivity and
mixed-sample tests showing successful performance with DNA inputs as low as 0.5 ng.

Pan and co-workers [129] analyzed 310 blood samples collected from Han Chinese
volunteers aged 2-86 years, randomly divided into a training set of 230 samples (male
142, female 88) and a validation set of 80 samples (male 47, female 33), with CCDC102B,
ITGA2B, EDARADD, ZNF423, KLF14, and ASPA. CCDC102B had the highest correlation
with age, while ZNF423 had the lowest. Significant differences in DNA methylation and age
correlation were observed between the Han Chinese population and European populations
(e.g., French, Belgian, Spanish, Polish). Moreover, they obtain a MAD of 4.22 years using a
stepwise regression model and of 4.01 using a support vector model.

When considering saliva samples, Marcante et al. [130] developed an age-specific
predictive model for salivary samples; when inserting data into a previously validated
predictive model, calibrated on blood samples, the value of MAD was found to be about
10.28 years. In the new model, which studies the level of methylation of the five genes
ELOVL2, FHL2, KLF14, Clorfl32, and TRIMS59, the value of MAD, by inserting the data
obtained from the analysis of 60 salivary samples, was considerably lowered to about
3.49 years.

The study conducted by Carlsen et al. [131] also explored samples of oral origin, and
230 samples from volunteers aged between 1 and 88 years were analyzed, evaluating
the differences between groups of adults and children by studying the following eight
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genes: PDE4C, EDARADD, SST, KLF14, ELOVL2, FHL2, Clorf132, and TRIM59. The study
was conducted using the AB3130 sequencer to perform capillary electrophoresis. The
data collected led to a MAD of 4.68 years for the training set and an almost equal result
of 4.70 years for the validation set of the seven-gene model (PDE4C, EDARADD, KLF14,
ELOVL2,FHL2, Clorfl132, TRIM59). Overall, the highest accuracy was found for the younger
age group.

Takahashi et al. [132] analyzed buccal swabs, studying 51 healthy Japanese individuals
aged from 21 to 68, for EDARADD, SST, and KLF14 genes, targeting specific CpG sites,
using thermostable locked nucleic acid (LNA) primers to improve stability and amplifi-
cation efficiency. For EDARADD and SST genes, LNA primers enhanced signal intensity,
especially with small DNA quantities, achieving up to 3.3-fold improvement for EDARADD
and 1.4-fold for SST. Age prediction was more accurate with LNA primers, yielding a
MAD of 3.88 years, and when using 10 ng of DNA. Methylation levels of EDARADD were
inversely correlated with age, while SST and KLF14 showed positive correlations.

Another study performed on buccal swabs was that of Ambroa-Conde et al. [133]
which analyzed a total of 368 saliva and buccal cell samples obtained from 184 volunteers of
Spanish origin aged between 21 and 86 years. The study showed that, although saliva and
buccal cells show similar patterns, the combination of tissue-specific markers significantly
improves prediction.

The working group of Jung et al. [134] analyzed 448 samples from blood samples and
saliva samples, studying in a Korean population the differences between different biological
matrices in the same pool of five genes using blood from previous studies (ELOVL2, FHL2,
KLF14, Clorf132, and TRIM59). The results of the combined model of the different biological
matrices analyzed have obtained a MAD value of about 3.84 years.

Similarly, So and Lee [135] analyzed the same five genes in 132 samples, comprising
66 blood samples and 66 saliva samples, collected from individuals aged 1869 years. The
DNA samples were obtained from both sexes, with blood samples including 32 females and
34 males and saliva samples evenly split at 33 males and 33 females. Significant differences
in methylation levels between the analyzers were statistically validated using the Friedman
and Wilcoxon signed-rank tests. Despite the differences in methylation values, all CpG sites
displayed a strong correlation with age, with correlation coefficients across all analyzers. In
particular, ELOVL2 showed the strongest correlation with age in blood samples.

Among the selected literature, only one study considered hair as a biological source
for age prediction. Hao and co-workers [136] analyzed a total of 166 hair samples, 130 scalp
hairs from donors aged 1 to 86 years, 6 pairs of black and white scalp hairs from six vol-
unteers, and 24 hairs from four body areas (scalp, calf, pubic area, and armpit) from six
volunteers. Donors were from a Han population in Shanxi Province, northern China. Ten
CpG sites from eight genes (LAG3, SCGN, ELOVL2, KLF14, Clorfl132, SLC12A5, GRIA2,
PDE4C) were identified as age predictors. No significant differences in methylation were
observed between male and female donors or among hair types (scalp, calf, pubic, armpit)
and colors (black, white). Methylation patterns were consistent across hair samples. Re-
garding sensitivity, DNA from a single scalp hair follicle was sufficient for age prediction
with an optimal input for reliable results of 4 ng of converted DNA. The resulting MAD
was 3.68 years, while the validation on 40 testing samples confirmed strong performance
with a MAD of 4.15 years.

Regarding semen fluid as source for age estimation, Lee HY and co-workers [137]
conducted a preliminary study on semen samples that were collected from 94 healthy
male volunteers aged 20-73 years, considering three CpG sites: cg06304190 in the TTC7B
gene, cg06979108 in the NOX4 gene, and cg12837463. These CpG sites displayed strong age
associations and showed significant differences in methylation levels with age progression.
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In the training set, for 31 semen samples, the model achieved a MAD of 4.2 years, whereas
in the test set of 37 samples the MAD value was 5.4 years. Larger deviations were noted
in individuals aged over 60 years, potentially reflecting differences in biological versus
chronological age. Compared to other tissue-specific models, such as blood, the semen-
based model performed comparably, despite using fewer CpG markers.

The study of Lee JW et al. [138] is the first report of an age-predictive model for
semen. They analyzed semen samples collected from 12 male voluntary participants, aged
24-57 years, and 19 DNA samples from forensic evidence. Reliable results were obtained
with >5 ng of bisulfite-converted DNA, even at lower amounts (as little as 5 ng), though
accuracy decreased at 1.25 ng or less due to allelic dropout. Performance was evaluated
across four age groups (20s, 30s, 40s, 50s) and prediction accuracy decreased with increasing
age from the 20s group (MAD = 2.9 years) to the 50s group (MAD = 7.2 years). Collectively,
the accuracy of the age-predictive model for semen was 4.8 years, whereas for forensic
evidence the MAD was 5.2 years.

Er et al. [139] present a study on a novel age estimation model based on semen-
specific CpG methylation patterns, applied to ejaculate samples from 115 male patients
diagnosed with infertility, age ranging from 20 to 71 years. The twelve targeted CpG sites
included PARP14, C5orf25, cg23488376, MXRA5, PFKFB3, DLL1, NOX4, cg12837463, TTC7B,
KCNA7, NKX2-1, and SYNE4. Most CpG sites exhibited a negative correlation between
methylation levels and age, except for NOX4, which showed a positive correlation. This
model incorporated all 12 CpG sites and achieved an MAE of 3.81 years.

Xiao et al. [140] reported DNA methylation data from 90 sperm and paired whole
blood samples for donors aged 22-51 years, with validation performed using a larger cohort
of 253 sperm samples (22-67 years) and an additional 40 blood samples, obtained from
the analysis of 31 novel sperm-specific AR-CpG markers with strong age correlations, also
distinguishing sperm/semen from blood samples with significant methylation differences.
Age estimation accuracy for sperm was improved using the identified markers, particularly
when combined into multimarker models, such as the 14-CpG model with an MAE of
about 2.9 years. Age estimation accuracy decreased with increasing chronological age, as
reported in previously reported articles.

The study of Lee JE and collaborators [10] evaluated age prediction models for three
body fluids. A total of 24 test samples (saliva, blood, and semen) were prepared for a
collaborative study of twelve laboratories. Body fluid typing from each laboratory provided
sufficient information to determine appropriate age prediction methods. The SNaPshot
multiplexes for age prediction used were: ELOVL2, FHL2, KLF14, Clorf132/MIR29B2C, and
TRIM59 genes in blood and saliva and tcg06304190 in the TTC7B gene and ¢g12837463 and
cg06979108 in the NOX4 gene in semen. They reported the following values of MAE: for
semen samples, MAE of 2.7 years; blood samples presented a higher error, with an MAE
of 5.0 years, and age prediction for saliva samples demonstrated an intermediate MAE of
3.8 years. The collaborative exercise revealed significant variability in DNA methylation
measurements among laboratories.

A similar study was conducted by So and collaborators [141] who evaluated the DNA
methylation level in 362 samples, composed of 150 blood samples, 150 saliva samples,
and 62 semen samples and an additional 96 samples derived by a previous study. They
studied the methylation using three different three types of genetic analyzers for capillary
electrophoresis in the following genes: ELOVL2, FHL2, KLF14, MIR29B2CHG/C10rf132, and
TRIMb59 for blood and saliva and TTC7B, LOC401324/cg12837463, and LOC729960/NOX4
specific for semen samples. The results showed a strong correlation, with a Pearson’s
correlation index of 0.9, between predicted age and actual chronological age for blood and
saliva samples. The index obtained from semen samples showed a moderate correlation. In
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the validation set the model gave an MAE value of 3.78 years for blood samples, 3.56 years
for saliva, and, lastly, 4.55 years for semen samples. They also tested a combined model
with both saliva and blood samples that obtained an MAE value of 3.94 years.

3.7.7. Pyrosequencing

Although pyrosequencing could be considered a subtype of the NGS technique, in the
field of human biological age prediction, it is often treated separately given its importance in
age-related methylation analysis. Indeed, some scholars underlined how pyrosequencing
represents a pivotal technique in this field due to its ability to precisely analyze DNA
methylation levels at specific CpG sites, quantitatively controlling nucleotide incorporation
through enzymatic conversion of pyrophosphate releasing a proportional light signal.
Several studies have demonstrated the effectiveness of this approach on a wide range of
biological sources, highlighting its versatility [9,71,142].

Numerous works have studied different genes from DNA extracted from blood samples.

Two hundred and forty-one bloodstain samples from Han Chinese people between
the ages of 10 and 79 were examined in Yang et al.’s study [143]. The researchers created
machine learning models, including an RFR model based on three CpG sites, using six
CpG markers from genes like ELOVL2, KLF14, TRIM59, Clorfl32, FHL2, and NPTX2. These
models produced a MAD of 2.80 years for males and 2.93 years for females. The most
reliable markers were found to be TRIM59 and Clorf132.

Fan et al. [144] examined 240 peripheral blood samples from Southern Han Chinese
individuals aged 1-81 years. They looked at 34 potential CpG sites, and because of their
findings about the correlation with age, they focused on studying the methylation level
of five genes. TRIMb9, FHL2, Clorf132, KLF14, and ELOVL2 were the five genes that were
chosen. Out of all the machine learning models that were tested, the RFR model performed
exceptionally well in younger people, with a MAD of 1.29 years for the whole dataset
(MAD as low as 0.45 years in the 1-20 age group).

Park et al. [145] used a total of 2173 samples from a public database to identify AR-CpG
sites, whereas 765 blood samples from healthy Korean volunteers were analyzed to predict
chronological age. Data on several ethnic groups, including European, Dutch, Italian,
Chinese, African American, and Caucasian populations, are included in these datasets. The
study obtained a MAD of 3.16 years in the training set and 3.35 years in the validation set by
combining three CpG sites, ELOVL2, ZNF423, and CCDC102B. These sites are beneficial in
forensic applications such as crime scene reconstruction for age prediction. Their findings
highlight how methylation profiles are consistent throughout many groups.

Ji et al. [146] concentrated on Y chromosomal markers unique to men. The strongest
predictors in their analysis of 87 blood samples from 84 males and 3 females between the
ages of 18 and 60 were found to be CpG3 (cg27443332) and CpG4. With a MAD of 5.50 years
in the training set and 6.74 years in the testing set, the SVM model outperformed the other
models examined. Subsequently, additional samples of different biological natures were
used to evaluate the potential of the model in male—female mixtures. These analyses
revealed that the age prediction model developed could be applied to the detection of
male—female mixtures, even in cases where the male—female DNA ratio was as high as 1:50.

Huang et al. [147] created a regression model based on markers like ITGA2B and
NPTX2 after analyzing blood samples from 89 Chinese people, 42 of whom were female and
47 of whom were male and whose age ranged from 9 to 75 years. To validate the model, they
also used 40 blood samples from participants ranging in age from 11-70. The methylation
levels of the chosen CpG sites did not differ significantly by sex, and the combined dataset
model obtained a MAD of 7.87 years. With a MAD of 7.99 years, they were able to attain
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forecast accuracy in the validation. Additionally, when applied to six bloodstains, that had
been held for up to four months, the study showed consistent accuracy.

A total of 190 peripheral blood samples from patients with Graves’ disease and
Alzheimer’s disease (early-onset and late-onset) were examined by Spélnicka et al. [148].
Furthermore, DNA methylation analysis was performed on 425 samples from an earlier
study (305 training samples and 120 healthy controls). A multivariate regression model
based on five genes, ELOVL2, Clorf132, KLF14, TRIMb9, and FHL2, was created by their
investigation. In younger early-onset Alzheimer’s disease patients, rapid hypermethylation
on TRIMb59 resulted in a lower age prediction accuracy, with an MAE of 12.2 years, as
opposed to 5.7 years for healthy controls.

The first study by Zbie¢-Piekarska et al. [149] examined 427 blood samples from people
between the ages of 18 and 75 as well as another group of samples from children between
the ages of 2 and 17. The study concentrated on markers including ELOVL2, Clorf132,
TRIM59, KLF14, and FHL2. The Standard Error was 4.5 years and the model’s MAD values
were 3.4 and 3.9 in training and test sets, respectively. Moreover, a particularly effective
model was that of the younger individuals, which achieved a MAD of 2.7 years in the
training set and 2.8 years in the test set.

In another study, Zbie¢-Piekarska et al. [150] focused on CpG sites in ELOVL2. They
employed 303 samples in total to create a linear regression model that predicted age.
A MAD of 5.03 years was determined from the data analysis. With a MAD of 5.75 years,
this model showed strong performance in validation datasets of 124 samples that produced
reliable findings.

Thong et al. [151] applied ANN to analyze 333 samples from a Singaporean, Malaysian,
and Indian cohort aged from 0 to 88 years. The DNA methylation of four age-associated
genes, TRIM59, KLF14, FHL2, and ELOVL2, was examined in this work. With a MAD of
3.7 years, the ANN model demonstrated exceptional accuracy, while ELOVL2 showed the
strongest connection. The model’s performance was barely affected by ethnic heterogeneity
in this study.

Smeers et al. [152] analyzed 206 samples from individuals aged 0 to 91, focusing on
four genes (ELOVL2, EDARADD, PDE4C, and ASPA). Their quantile regression model
yielded consistent MAD values of about 3.26 years.

Feng et al. [153] examined a training set of 390 blood samples from Han Chinese males
aged from 15 to 75 years, and then a pool of three test sets of samples (192 in total). Their
multivariate regression model achieved MAD values between 2.71 and 2.91 years in the
training set and between 2.47 and 4.41 years in validation sets, always considering the
nine-CpG site model.

Fleckhaus and colleagues [154] analyzed 204 samples in order to compare populations
in the Middle East and Central Europe to study the correlation of the DNA methylation
level and chronological age in ELOVL2, MIR29B2CHG, FHL2, KLF14, and TRIM59 genes.
The need for population-specific modifications is shown by the fact that population-specific
models produced MADs of 2.72 years for Central Europe and 3.34 years for the Middle East.

Using five genes (ELOVL2, TRIM59, Clorf132, KLF14, and FHL?), Anaya et al. [155]
have examined 264 postmortem samples between ages 0 and 93, identifying TRIM59 and
ELOVL2 as key markers. In the test set of 72 samples, their model achieved an average age
of 7.42 years, with low accuracy for older people.

Cho et al. [50] used previously validated models on Korean individuals. Analy-
ses performed on 100 samples aged between 20 and 74 years achieved a MAD value of
4.18 years. Accuracy was improved combining methylation and sjTRECs, considering
model 4 obtaining a MAD value of 3.29 years.
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Xiao et al. [156] found 785 age-associated CpGs in 350 samples of Han Chinese par-
ticipants. Stressing the importance of customized predictive models, their gender-specific
models reached MAEs of 2.79 years for males, 2.53 years for females, and 3.3 years consid-
ering both sexes together.

Kampmann et al. [157] conducted a cross-validation on 49 blood samples of people
aged 18-64 years, evaluating the methylation levels of five genes: ELOVL2, FHL2, KLF14,
TRIMb59, and Clorf132. This study tested the validity of a multilocus regression model using
blood samples from five different laboratories. Compared to loci such as ELOVL2, KLF14,
and FHL2, which showed a strong correlation with age, C1orf132 showed less satisfactory
results. The model showed good performance in the 20-29 age group and had a MAD
value of 3.62 considering all 49 samples. Markers such as ELOVL2 and KLF14 showed good
reproducibility despite different laboratories.

Finally, Sukawutthiya et al. [158] analyzed 136 samples (100 fresh and 36 postmortem).
Using CpG sites in ELOVL2, their model achieved a MAD of 4.2 years for individuals aged
21-60 years, with high specificity and precision.

Other works have studied the methylation level of genes from DNA extracted from
buccal and saliva samples.

In the work of Guan et al. [159], 461 buccal swabs from the Han Chinese population
were analyzed. The authors found strong correlations between methylation levels and age
by looking for CpG sites in the ELOVL2, TRIM59, and HOXC4 genes. With a correlation
index of 0.71, HOXC4 showed the highest correlation. The random forest model obtained
more accurate predictions for the age group of 30 to 40 years with an MAE of 2.12 years in
the training set and 4.39 years in the test set.

Shiga et al. [160] examined 102 buccal cell samples from healthy Japanese volunteers
aged 21-77 years. They focused on twelve CpG sites in TRIM59, PDE4C, ELOVL2, and an
intergenic region. A regression model showed a strong correlation between methylation
levels and age, with a correlation index of 0.86 and a MAD value of 3.88. The value was
slightly lower for the 2040 age group and higher for the over 50s age group.

Koop et al. [161] examined the effect of decomposition on DNA methylation, working
on two independent validation sets of 71 living individuals and 52 postmortem samples. In
both sets of buccal swabs, a strong correlation was found between methylation at the CpG
sites of PDE4C. MAD was 7.8 years for the living samples and 9.1 years for the postmortem
samples. Decomposition had no effect on the methylation-dependent age estimate, as
methylation levels remained stable at all stages of decomposition.

Mayer et al. [162] analyzed 199 buccal mucosa samples from 104 children with growth
disorders and 95 healthy children (age 0.42-18 years). The authors studied 22 CpG sites
and discovered 11 CpGs that showed strong correlations with age. With an MAE of
2.21 years, the models based on healthy children overestimated age in the groups with
growth disorders. CpGs in RPA2, ELOVL2, and PDE4C showed the most notable differences.
Moreover, an MAE of 1.79 years was associated with healthy individuals.

Becker et al. [163] observed similar methylation patterns between populations by
comparing saliva samples from 368 German and 89 Japanese donors. With correlation
index values around 0.95, the ELOVL2 and PDE4C genes showed the strongest correlations
with age. In both groups, the prediction models obtained similar MAEs: the Germans
obtained an MAE value of 4.14 years, while in the Japanese population an MAE value of
4.38 years was obtained.

In the study by Siahaan et al. [164], samples from 90 patients who underwent oral
surgery were examined for DNA methylation in genes such as PDE4C, RPA2, and ELOVL2,
as well as for morphological markers such as dental mineralization. Analyzing the level of
methylation of 88 buccal swabs, the model achieved the highest accuracy, with an MAE
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value of 3.85 years, for the individuals under 28 years. For the overall dataset an MAE of
4.14 years was obtained considering only DNA methylation. A combined model achieved
the highest accuracy with an MAE of 2.81 years for individuals under 28 years, considering
dental mineralization in addition to DNA methylation markers.

Studies were also conducted on several biological matrices to assess the possibility of
conformation among them.

In the work of Pfeifer et al. [165], 151 blood samples and 149 buccal swabs from
deceased and living individuals, respectively, were used. Moreover, another 21 blood
samples from living individuals were collected. All these samples were analyzed to study
methylation in the EDARADD, ASPA, PDE4C, and ELOVL2 genes. Without significant
differences between fresh and stored samples or between living and deceased, the results
showed strong correlations between methylation levels and age. The MAD values were
9.84 in blood samples and 8.32 years in buccal swab samples.

In another significant study, Alghanim et al. [166] examined methylation at the SCGN,
DLX5, and KLF14 loci with 72 blood samples from volunteers aged 5-72 years and 91 saliva
samples from individuals aged 673 years. The single locus model of saliva had a MAD
value of 5.8 years in the training set and of 8 years in the validation set. Differently,
considering blood samples, MAD values of 6.6 years and 10.3 years were obtained in
training and test sets, respectively. These results show that saliva has a higher specificity
for estimating age than blood, underlining how important the tissue matrix is for creating
predictive models.

Bekaert et al. [167] also conducted an in-depth analysis of blood samples. They
examined 206 blood samples in total and 29 dental samples, focusing on the ASPA, ITGA2B,
EDARADD, ELOVL2, and PDE4C genes. The most accurate marker among these was
CpG6 of ELOVL2, which resulted in a MAD of 3.75 in blood and of 4.86 in teeth. However,
accuracy decreased in subjects over 60 years of age, indicating that more age-appropriate
models are needed.

Studies have also been conducted analyzing sperm samples as a biological source,
which is an interesting matrix and certainly of interest in the forensic field. Finally, studies
were carried out on biological sources such as nails and teeth.

Li et al. [168] analyzed a total of 92 samples of different biological origins, focusing
on semen. In this context they found two age-related CpGs in sperm (cg06979108 and
cg12837463) and strong correlation indexes with MAD values of approximately 4 years.

An additional investigation was conducted by the team of Soares Bispo Santos
Silva et al. [169] who examined particular markers such as GRIA2 and NPTX2 in 23 blood
and 44 saliva samples. The results showed that GRIA2 provided greater accuracy in saliva
than in blood with a correlation index of 0.80 versus 0.55. The NPTX2 gene maintained a
similar correlation between the matrices but provided less accurate predictions. Over the
growth period, the GRIA2 gene obtained a MAD value of 6.9 years, while the NPTX2 gene
obtained a MAD value of 9.2 years. This work highlights how the predictive capabilities of
models can be influenced by tissue-specific differences.

Fokias et al. [170] examined the methylation of 15 CpG sites in the ASPA, EDARADD,
PDE4C, and ELOVL2 genes in 108 living volunteers aged 0-96 years in nail samples and
5 deceased individuals. The results showed a strong correlation between methylation
levels and age, with significant differences in methylation patterns between toenails and
fingernails. A predictive model that was developed obtained a MAD of 4.76 years in
the training set and 5.48 years in the test set. Postmortem samples also gave accurate
predictions in most cases, confirming that nails are a reliable forensic matrix.

In a follow-up study, Fokias et al. [171] analyzed 91 sampled collected from 86 living
individuals and 5 cadavers, focusing their attention on other markers, such as TRIM59,
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MIR29B2CHG, and KLF14, to improve the estimation models of fingernails and toenails.
With a correlation index of approximately 0.808, the methylation levels in TRIM59 showed
the most significant correlations with age. Compared to 8.42 years in the original model,
the MAD of the new models was reduced to 5.61 years in the test set. The predictions for
the postmortem samples showed a significant improvement, with the MAD reduced from
11.76 to 3.90 years, demonstrating the effectiveness of the updated models.

Weidner et al. [172] observed a most accurate age prediction using DNA methylation
rather than telomere length, obtaining a MAD of 5.4 years for the training set and 4.5 years
in the test set starting from 151 blood samples.

Another study focusing on both DNA methylation and telomere length analysis, but
using teeth, was that of Marquez-Ruiz et al. [173]. They examined the methylation of
21 CpG sites in the ELOVL2, PDE4C, and ASPA genes, together with the relative length of
telomeres in 65 samples of individuals aged between 15 and 85 years. The most significant
association between age and CpG sites in ELOVL2 was shown. Multivariate quantile
regression models were developed using data on telomere length and DNA methylation.
Two model sets were developed: one excluded the variable sex, the other included the
variable sex. Several models were developed and tested for their MAE. A major model
using nine CpG sites from ELOVL2 and PDE4C produced an MAE of 5.08. Accuracy was
highest in the younger age groups and gradually decreased with age.

Finally, Zapico et al. [174] examined the methylation of 46 CpG sites in five genes:
KLF14, NPTX2, ELOVL2, FHL2, and SCGN. They examined 20 dental pulp samples. The
most accurate model, based on selected CpGs, achieved an MAE of 1.55 years, demonstrat-
ing a very accurate age estimation. The developed models showed a strong correlation
between chronological and predicted age, even with a limited sample size. This underlines
the possibility that dental pulp can be used for forensic applications.

3.7.8. Other Techniques for DNA Methylation Analysis

Nanopore sequencing and adapting sampling techniques used for enrichment of
regions of interest are certainly among the most innovative approaches, as the study
conducted by Yuen et al. [175] including both genetic markers related to age estimation
and markers for biological fluid identification shows. This study considered a pool of
10 blood samples, with individuals aged between 25 and 76 years. Reference DNA samples
with methylation values were also analyzed. This study emphasized that the ELOVL2
gene (chr6:11044644) has a very strong correlation with the prediction of chronological age,
obtaining a Pearson correlation value of r = 0.948, confirming what has been reported in
the literature. In the same study, additional age-associated markers such as LINC02766
were also analyzed; this nanopore sequencing method showed similar efficacy compared
to traditional standard sequencing techniques, obtaining a Pearson’s correlation index of
r = 0.86. This result highlights that it is an optimal technique for age estimation and for
body fluid identification analysis simultaneously.

Another study conducted on nanopore sequencing was conducted by de Bruin and
colleagues [176]. In their study they compared the performance of Oxford Nanopore
Technologies, third-generation sequencing, to standard MPS data and Illumina EPIC DNA
methylation profiles. Samples of six males aged 19-53 years were used, analyzing a
total of 361 markers obtained from previous studies. The obtained results revealed a
positive correlation between age and FHL2, TRIM59, ELOVL2, and PDE4C and a negative
correlation with MIR29B2CHG. Differently from other studies, ELOVL2 showed a very low
Pearson’s correlation coefficient, suggesting that further research is needed to understand
the differing results observed.
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Noroozi et al. [177] analyzed a total of 962 samples from blood and buccal swabs using
epigenetic clock models such as Skin&Blood, GrimAge, and PhenoAge, in combination
with different normalization techniques and Illumina microarrays. The results showed
that the Skin&Blood clock was the most accurate for blood samples, with an MAE value
of 2.47 years, while for buccal swabs the data were less accurate with an MAE value of
3.86 years. The analysis also explored how the impact of genetic and lifestyle factors is
reflected in a slowing down of epigenetic aging by avoiding bad habits, such as excessive
consumption of coffee, meat, or alcohol, smoking, or little exercise.

Droplet digital PCR (ddPCR) is a further technique used that is able to obtain an
accurate quantification of DNA methylation. Manco and Dias [178] conducted a study
using ddPCR as the main technique and analyzed 56 peripheral blood samples from healthy
individuals aged between 1 and 94 years. The model developed is based on the study
of five CpG sites of the ELOVL2 gene. The methylation level and the chronological age
showed a significant correlation with a correlation index of R? = 0.792, while the MAD
underlined an age range of approximately 10 years, which was also confirmed by cross-
validation tests. The lowest accuracy was found in the older age category. In another study,
the same authors [179] explored the combination of three different genes (ELOVL2, FHL?2,
and PDE4C) to assess their improvement from a predictive point of view of the final age
range. The study analyzed 58 peripheral blood samples donated by healthy individuals
aged between 1 and 93 years of Portuguese origin. The combination of these three markers
resulted in a statistically significant correlation index of R? = 0.937. They then performed
tests on a combined model, validated by cross-validation, which resulted in a MAD of 4.66,
which is much better than the single gene tests. In their study, the most reliable gene was
FHL2 with a MAD of 6.03 years, followed by ELOVL2 (MAD = 7.30 years) and PDE4C
(MAD = 10.85 years).

Ho Lee et al. [180] also used ddPCR as a technique for methylation analysis, focusing
on four genes (SST, KLF14, TSSK6, and SLC12A5). The salivary samples used were taken
from 76 volunteers of different ages. The results obtained from this study showed that
there is a very strong correlation between methylation levels and the chronological age of
individuals in multiple regression models. The model of methylation levels performed
better in younger individuals, e.g., for the age group of around 20 years (MAD of approx-
imately 2.57 years) while for the group of 50-year-olds, the MAD increases to a value of
4.35 years. The predictive accuracy was further analyzed and validated by means of the
leave-one-out cross-validation (LOOCV) model, obtaining a MAD of 3.3 years despite the
limited sample size.

A different technique for studying methylation levels uses the EpiTect Methyl qPCR
Assay which does not require bisulfite conversion for the study of methylation patterns.
Using blood samples from 80 females between the ages of 18 and 91, Mawlood et al. [181]
investigated 13 genes (NPTX2, KCNQ1DN, GRIA2, TRIM58, EDARADD, FGF7, ZC3H12D,
TOM1L1, SOGA1, BCAS4, ASPA, PDE4C, and ITGA2B). The quadratic correlation (R2)
values for four genes (NPTX2, GRIA2, TRIM58, and KCNQ1DN) ranged from 0.452 to 0.808,
indicating a substantial association with age. The MAD value for the entire prediction
model is approximately 11 years, which is significantly higher than the MAD value of
7.2 years obtained from the model that evaluated the methylation level of the four best-
performing genes.

Recently, using double-enzyme reduced representation bisulfite sequencing (dRRBS),
Li and colleagues [182] published a study based on the genome-wide identification of
AR-CpG markers in semen. This was followed by a reliable two-stage validation technique
for age detection. They used a cohort of semen samples supplied by 21 people in three age
groups (young, middle-aged, and older) and 261 samples for validation. With an average
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MAE of 3.30 years, the final age estimation model, which was based on a random forest
algorithm and used a refined set of nine CpG sites, showed strong performance.

Qian et al. [183] screened for 811,876 CpGs from whole blood of 3312 Chinese individ-
uals ranging from 18 to 83 years of age based on a stepwise conditional epigenome-wide
association study (SCEWAS). Forensic applications could benefit greatly from their system-
atic genome-wide feature selection, which was limited to a narrow panel of 10 CpGs for
precise age prediction. With a MAD of 3.20 years, the model’s predictions were extremely
accurate in a test group of Chinese people (1 = 648). As may be predicted given varied ge-
netic backgrounds, the model was further tested in a publicly available dataset of multiple
ancestral origins (86 Europeans, 14 Asians, and 273 Africans). The data revealed a different
MAD of 6.21 years.

3.7.9. Combined Techniques

Different studies in the literature reported the use of more than one technique for age
determination in the forensic field, including at least one based on DNA methylation.

By analyzing the CpG sites of ELOVL2, FHL2, and MIR29B2 in 84 blood samples
from individuals aged 18 to 99, Freire-Aradas et al. [184] compared several age prediction
models, obtaining different MAE values, using data from four DNA methylation technolo-
gies: MassARRAY (EpiTYPER), pyrosequencing, NGS (miniSeq), and SNaPshot. They
discovered that the methylation patterns of the CpG sites for ELOVL2 and FHL2 were
similar across pyrosequencing, MiSeq, and EpiTYPER, which means that data from these
methods can be used for age prediction models that are independent of the platforms to be
used. MIR292B, on the other hand, consistently showed non-uniformity and went beyond
the bound of agreement. Furthermore, if the sample size differs from the training set of
the original model, utilizing platform-independent models may result in lower prediction
accuracy. This challenge might be resolved by expanding the sample sizes evaluated across
technologies or by reexamining training sets using the relevant technology.

In the study of Shi et al. [185], it was shown that using age-associated DNA methylation
markers in conjunction with conventional techniques for skeletal age and dental age (SA
and DA) greatly increased the precision of locating age-associated CpG sites found in
the genes DDO, PRPH2, DHXS8, and ITGA2B. The MAE dropped to 0.47 years for males
and 0.34 years for girls when age-associated DNA methylation markers were included for
SA and DA in the age estimation model. They used X-ray inspection to measure SA (GP,
TW3-RUS, and TW3-Carpal techniques) and DA (Demirjian and Willems methods) and
NGS in parallel with ddPCR in order to validate age-associated CpG sites in 124 Chinese
children (78 males and 46 females) between the ages of 6 and 15.

The study conducted by the research group of Xu et al. [186] used blood samples to
identify CpG age-associated sites to develop a predictive model to estimate chronological
age through the level of DNA methylation. They studied biological samples from 8 pairs
of female monozygotic twins, aged 21-32 years, and 50 healthy unrelated volunteers,
without acute or chronic diseases, aged 20-80 years, with Han Chinese origin. The NGS
approach was used to assess the DNA methylation, measuring approximately 485,000 CpG
sites, whereas a MassARRAY platform was used to validate particular sites. As a result,
2965 sites were found to be associated with age, and a positive regression was observed
at the level of 1476 sites and a negative regression was observed in a total of 1489 sites. A
more thorough examination revealed 11 locations that were strongly linked to age. The
study also found novel genes that may be implicated in aging, such as ADAR, AQP11,
ITGA2B, and PDE4C. Numerous statistical and machine learning algorithms have been
created to predict chronological age. The MAD of 2 years in the original dataset, using
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support vector regression model, was the most accurate; however, in the validation set, the
MAD value increased to about 6 years.

Montesanto et al. [187] conducted an extensive study of different genes using two
different techniques. Using the MassARRAY technique, they quantified the DNA methy-
lation level in the following genes: Clorf132, KLF14, TRIMb59, and FHL2. On the other
hand, with the pyrosequencing technique they focused on nine CpG sites in the ELOVL2
gene. Peripheral blood samples were analyzed from 330 unrelated individuals, divided
into 146 men and 184 women, aged between 20 and 100 years. Eight CpG markers were
selected and several sites associated with age were identified, with a greater presence in
the genes ELOVL2, Clorf132, TRIM59, and FHL2. With an MAE of 5.13, the predicted and
chronological ages showed a strong correlation. The model was then validated on a test set
consisting of samples donated by a total of 83 individuals, obtaining an improved MAE
with a value of 4.5 years. However, even during the validation phase, the data obtained
showed a decrease in precision with increasing age.

Lastly, Schwender et al. [188] analyzed 141 salivary samples from 94 females and
47 males aged between 21 and 69 years. The analysis conducted assessed the methylation
level of 54 CpG sites at the level of six genes, PDE4C, ELOVL2, EDARADD, SST, KLF14, and
SLC12A5, by means of two different techniques: pyrosequencing and minisequencing, with
the aim of assessing their differences. The results showed a negative correlation for the CpG
sites of EDARADD, while other genes showed positive correlations with age. Prediction
models were developed based on three CpG sites that showed a high accuracy for age
estimation. The data obtained by pyrosequencing showed a strong level of correlation
and obtained a MAD value of 5.11 years for the training set. The result was confirmed
by using an independent set that obtained a MAD value of 5.33 years. Similarly, the
model based on the minisequencing technique obtained a MAD value of 5.16 years for the
training set and 6.44 years for the validation set. Both models showed a better performance
in the female sample pool than in the male sample pool. Furthermore, methodological
observations showed greater manual variability in minisequencing than in pyrosequencing,
which partially explains the lower accuracy of the latter. Nevertheless, both methods
produced robust results, which support the applicability of the models for chronological
age estimation in forensics.

4. Discussion

Age estimation methods based on biochemical processes have gained prominence
in forensic science due to their ability to minimize variability introduced by individual
biological differences. The techniques analyzed, including radiocarbon dating, aspartic
acid racemization (AAR), and signal joint T-cell receptor excision circles (sjTRECs) quantifi-
cation, have demonstrated varied accuracy and applicability depending on the biological
matrix and context of application. The diversity of methods for age estimation highlights
distinct advantages and trade-offs among techniques. By analyzing these differences, we
can better understand their practical applications, limitations, and synergistic potential
when combined.

Radiocarbon dating, leveraging the “bomb pulse” effect, is arguably the most precise
method for estimating birth years, particularly for individuals born during or after the mid-
20th century. Its accuracy is unparalleled, with minimal errors demonstrated across various
studies. However, its applicability is limited by high costs, labor-intensive protocols, and
diminished precision for individuals born before 1955. Radiocarbon dating stands out for
its precision in estimating the year of birth based on the incorporation of atmospheric 14C
during tissue formation. Studies such as those by Alkass et al. [18] and Teglind et al. [17]
have illustrated that enamel’s fixed radiocarbon levels, aligned with atmospheric calibra-
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tion curves, provide birth year estimates with errors often below 1.5 years. However, the
method’s reliance on the bomb pulse period (1955-1963) limits its applicability to individu-
als born outside this timeframe. The requirement for accelerator mass spectrometry (AMS)
introduces significant costs and complexity, reducing its accessibility for routine forensic
use. Furthermore, while enamel proves resilient to environmental contamination, bone
turnover rates challenge its utility in postmortem contexts.

The integration of radiocarbon dating with methods like AAR offers a complementary
approach, addressing some limitations of each technique. For example, while radiocarbon
dating provides an estimated birth year, AAR can determine the individual’s chronological
age at death, yielding a comprehensive forensic profile.

AAR has long been recognized for its ability to estimate age through the predictable
accumulation of D-aspartic acid in stable proteins. AAR offers a universal, protein-based
approach to age estimation by analyzing the predictable racemization of aspartic acid
in stable proteins. Studies have validated its use in dentin, cartilage, and sclera, high-
lighting a strong correlation with chronological age and its potential flexibility in forensic
contexts. Studies across populations consistently show strong correlations between D/L
ratios and chronological age, with precision enhanced by methods like HPLC. For instance,
Sakuma et al. [23] achieved a correlation coefficient of 0.98 in dentin, underscoring the
method’s reliability. However, variability arising from protein composition, environmental
conditions, and sample handling underscores the need for careful calibration and standard-
ization. Despite its destructive nature and sensitivity to external factors, AAR complements
radiocarbon dating when used in tandem, offering dual insights into chronological and bio-
logical age. However, AAR is not without limitations. Factors such as caries, environmental
conditions, and protein composition introduce variability. While alternative tissues like
sclera and cartilage expand its applicability, they exhibit lower correlations compared to
dentin. Heat-treatment techniques, as developed by Minegishi et al. [32], offer innovative
solutions to accelerate racemization and improve reproducibility, but further validation is
needed to establish these methods as forensic standards.

The application of mtDNA biomarkers is based on the accumulation of somatic mu-
tations and deletions over time, offering robust correlations with age. mtDNA's suscepti-
bility to oxidative damage makes it a promising marker for age estimation. Research by
Zapico et al. [38] and Lacan et al. [39] has confirmed age-related accumulation of mtDNA
deletions and mutations in high-energy tissues, offering a molecular clock for forensic ap-
plications. However, the heterogeneity of mtDNA damage across tissues and its influence
by oxidative stress limit its universality. Future work should address these variations and
explore its integration with other biomarkers. Their susceptibility to oxidative damage
makes them particularly relevant in high-energy tissues like skeletal muscle and heart.
While mtDNA’s stability and the feasibility of using degraded samples provide advantages,
variability in mutation accumulation across individuals poses a challenge. Population-
specific calibration and standardized protocols are essential to harness the full potential of
mtDNA in forensic applications.

sjTRECs quantification is another highly promising method for age estimation, with
strong correlations demonstrated across diverse populations. Its reliance on the predictable
decline of thymic output with age ensures biological universality. Quantitative PCR-based
studies, such as those by Ou et al. [42,47] and Cho et al. [50], demonstrated a strong negative
correlation between sjTREC levels and chronological age, with error margins ranging from
£7 to £10 years. The method’s adaptability to dried bloodstains extends its forensic
utility, though sample degradation and health-related immune senescence pose challenges.
Notably, integrating sjTRECs quantification with DNA methylation or telomere length has
yielded enhanced predictive models, emphasizing the value of multimodal approaches,
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as demonstrated by Elmadawy et al. [51]. However, factors such as health conditions
and immune system variability can weaken the correlation. This integrative approach
should be a key focus of future studies. The limitations of sjTRECs in older and degraded
blood samples, as well as their sensitivity to environmental factors, highlight the need for
robust storage and handling protocols. Additionally, the method’s applicability to forensic
scenarios involving dried bloodstains is a notable advancement, although challenges in
standardization still remain.

Advancements in transcriptomics have highlighted the forensic potential of RNA
markers, particularly non-coding RNAs (ncRNAs) such as miRNAs, circRNAs, and piR-
NAs, which have emerged as powerful tools for forensic age estimation. The dynamic
and tissue-specific nature of RNA makes it ideal for determining both sample origin and
chronological age, even in degraded samples. These markers exhibit tissue specificity and
stability, enabling their use in degraded samples. Wang et al.’s studies [63,64] on miRNAs
and circRNAs have shown MAEs as low as 3.68 years, particularly when combined in
machine learning models. However, variability introduced by environmental influences
and limited sample sizes necessitates further validation and standardization. Notably, stud-
ies employing mRNA demonstrated its potential as an independent and complementary
biomarker to DNA methylation markers. However, mRNA alone has lower predictive
accuracy compared to DNA methylation, which limits its standalone application. Instead,
its integration into multimarker models, as shown by Zubakov et al. [59], enhances pre-
cision. miRNA and piRNA offer advantages over other RNAs due to their stability and
tissue specificity. Their role in machine-learning-driven predictive models, as illustrated by
Fang et al. [61], is promising. However, challenges such as sex-specific prediction errors,
lower accuracy in females, and the absence of pediatric samples indicate the need for
more inclusive research to refine these methodologies. circRNAs, although less studied,
have shown potential in age estimation, particularly through machine learning models.
Their role in regulating gene expression through miRNA interactions is a novel avenue for
forensic research. However, the higher error margins and limited sample sizes indicate
that further exploration is needed to validate their utility across diverse populations and
age ranges.

DNA methylation profiling has revolutionized human chronological forensic age
estimation, with CpG sites like ELOVL2 consistently emerging as key predictors. Techniques
ranging from Sanger sequencing to next-generation sequencing (NGS) have enabled precise
modeling across various biological matrices. Freire-Aradas et al. [90] demonstrated MAEs
below 4 years using NGS, while Marcante et al. [130] achieved 3.49 years in saliva-specific
models. The VISAGE project further highlighted the robustness of methylation-based
methods across tissues and populations. However, variability in methylation rates due to
health, ethnicity, and environmental factors underscores the need for tailored calibration
models. The integration of multiple biomarkers—sjTRECs, DNA methylation, AAR, and
others—offers a promising avenue to overcome individual method limitations. Studies by
Elmadawy etal. [51] and Cho et al. [50] have shown that combining biomarkers significantly
improves accuracy and robustness. This multimodal approach aligns with the complex
nature of aging, which is influenced by genetic, epigenetic, and environmental factors.

While significant strides have been made, several challenges remain. The destruc-
tive nature of some analyses, high costs, and the need for sophisticated equipment limit
widespread application. Furthermore, population-specific calibration remains a critical
consideration, as demonstrated by differences in methylation patterns across ethnic groups.
Future research should focus on standardizing methodologies, expanding sample diversity,
and leveraging machine learning to optimize predictive models. Additionally, explor-
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ing novel biomarkers and enhancing multimodal integration will further refine forensic
age estimation.

5. Conclusions

When comparing the various age estimation techniques, each offers distinct advan-
tages and limitations. Radiocarbon dating, while highly precise for individuals born during
the bomb pulse era, is constrained by its reliance on specific historical atmospheric condi-
tions. Its application is also limited by high costs and the specialized equipment required,
such as AMS. In contrast, AAR provides a broader temporal applicability and can ana-
lyze multiple tissue types. However, its susceptibility to environmental factors and the
destructive nature of the method pose significant challenges.

mtDNA analysis offers the advantage of a molecular clock based on oxidative damage,
making it particularly useful in high-energy tissues like muscles and the brain. Neverthe-
less, the variability in mtDNA mutation rates and the influence of oxidative stress limit its
generalizability. Similarly, sjTRECs quantification benefits from its correlation with thymic
output, providing insights into immune aging. However, its precision diminishes with
advanced age, and health conditions can skew results.

RNA-based methods represent a newer frontier, leveraging the stability and tissue
specificity of ncRNAs. These markers, such as miRNAs and circRNAs, have shown great
promise in forensic applications due to their ability to remain stable even in degraded
samples. Despite this, the field is still developing, and further research is needed to address
the variability introduced by environmental factors and limited dataset sizes.

DNA methylation stands out as one of the most versatile and widely studied methods.
The analysis of CpG sites, particularly through advanced techniques like NGS, provides
highly accurate age predictions across a variety of biological matrices. The integration
of DNA methylation with other markers, such as sjTRECs or RNA profiles, has further
enhanced predictive accuracy. However, the technique’s sensitivity to external factors like
health and ethnicity underscores the need for robust calibration models.

This comparative analysis illustrates that no single method is universally superior;
instead, their strengths and limitations should guide their application based on the forensic
context. The greatest potential lies in integrating these techniques into multimarker models,
supported by advances in machine learning, to achieve unparalleled accuracy and reliability
in age estimation.

The methods reviewed demonstrate the growing sophistication of molecular age
estimation in forensic science. By leveraging biochemical processes, researchers have
achieved unprecedented precision and reliability. However, addressing methodological and
contextual limitations will be essential to maximize their potential. As the field advances,
the integration of complementary biomarkers and innovative technologies promises to
redefine forensic human chronological age estimation, enhancing its applicability across
diverse scenarios.

Future studies should also emphasize standardization, particularly in sample handling
and analysis protocols, to ensure reproducibility and reliability across forensic contexts.
By leveraging the complementary strengths of these methods, forensic scientists can build
robust, accurate models for age estimation, advancing the field toward greater precision
and applicability.
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