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Abstract: In this study, we utilized machine learning techniques to identify potential in-
hibitors of the MERS-CoV 3CL protease. Among the models evaluated, the Random Forest
(RF) algorithm exhibited the highest predictive performance, achieving an accuracy of
0.97, an ROC-AUC score of 0.98, and an F1-score of 0.98. Following model validation, we
applied it to a dataset of 14,194 naturally occurring compounds from PubChem. The top-
ranked compounds were subsequently subjected to molecular docking, which identified
Perenniporide B, Phellifuropyranone A, and Terrestrol G as the most promising candidates,
with binding energies of —9.17, —9.08, and —8.71 kcal /mol, respectively. These compounds
formed strong interactions with key catalytic residues, suggesting significant inhibitory po-
tential against the viral protease. Furthermore, molecular dynamics simulations confirmed
their stability within the active site, reinforcing their viability as antiviral agents. This study
demonstrates the effectiveness of integrating machine learning with molecular modeling to
accelerate the discovery of therapeutic candidates against emerging viral threats.

Keywords: machine learning; MERS-CoV; random forest; molecular docking; molecular
dynamics simulations

1. Introduction

Middle East respiratory syndrome coronavirus (MERS-CoV) is a major zoonotic
pathogen with a high mortality rate, estimated at approximately 35% [1]. Primarily trans-
mitted from camels to humans, the virus has caused significant epidemics across the Middle
East, Asia, and North America. Human-to-human transmission, particularly in healthcare
settings, has also been documented [2]. One of MERS-CoV’s key immune evasion strategies
involves its non-structural proteins, notably nsp5, which inhibits type I interferon (IFN)
production by preventing the nuclear translocation of IRF3, a critical regulator of antiviral
signaling [3-5]. Despite extensive research efforts, including in silico approaches targeting
viral proteins such as the M protein, controlling MERS-CoV remains a challenge due to the
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absence of effective antiviral treatments [6]. Addressing this gap is crucial for improving
public health strategies and mitigating the global impact of MERS-CoV.

The MERS-CoV 3-chymotrypsin-like protease (3CLpro) is a key therapeutic target due
to its essential role in viral replication and maturation [7]. This protease is responsible for
cleaving viral polyproteins, a process that depends on its dimerization and the unique
architecture of its active site [8]. The development of 3CLpro inhibitors is therefore a
priority, particularly in the absence of approved antiviral therapies against MERS-CoV.

Traditional drug discovery approaches, such as high-throughput screening (HTS)
and experimental enzymatic assays, often require significant financial and time invest-
ments, limiting their applicability in pandemic preparedness [9]. Computational drug
discovery has revolutionized this field by enabling in silico screening of large compound
libraries through molecular docking, molecular dynamics (MD) simulations, and quantita-
tive structure-activity relationship (QSAR) modeling [10]. These methods provide valuable
insights into ligand—protein interactions, binding affinities, and conformational stability,
facilitating the identification of promising lead compounds.

Recent advancements in machine learning (ML) have further enhanced computational
drug discovery by addressing the limitations of conventional screening methods. ML algo-
rithms can analyze vast chemical and biological datasets, predict compound bioactivity, and
refine docking and QSAR models for improved accuracy [11,12]. Studies have demonstrated
that ML-assisted virtual screening can significantly reduce false positives, enhance hit iden-
tification, and optimize lead selection compared to traditional docking-based approaches
alone [13,14]. Therefore, integrating ML with molecular simulations presents a promising
strategy for identifying novel MERS-CoV 3CLpro inhibitors more efficiently and reliably.

Several computational studies have explored potential inhibitors against MERS-CoV
3CLpro, primarily relying on molecular docking and virtual screening approaches [15,16].
However, few studies have combined ML-driven predictive models with molecular simula-
tions to improve screening accuracy and prioritize lead compounds based on both binding
affinity and pharmacokinetic properties. This study aims to bridge this gap by employing
a hybrid ML-assisted virtual screening approach, followed by molecular docking, MD
simulations, and ADMET (absorption, distribution, metabolism, excretion, and toxicity)
analysis to identify potent natural inhibitors of MERS-CoV 3CLpro. Natural compounds
have demonstrated antiviral potential against various coronaviruses, offering structural
diversity and bioactive properties that enhance drug discovery pipelines [17].

In this study, we aim to identify potential inhibitors of MERS-CoV 3CLpro using
machine learning techniques to develop a predictive model based on compounds with
demonstrated antiviral activity, despite the limited availability of relevant datasets. Fol-
lowing ML-based screening, we have employed molecular docking, ADMET (absorption,
distribution, metabolism, excretion, and toxicity) analysis, and molecular dynamics simula-
tions to further evaluate promising candidates. This integrative approach seeks to propose
naturally occurring compounds as potential leads for novel antiviral therapies against
MERS-CoV.

2. Results
2.1. Model Performance

To identify potential inhibitors of the MERS-CoV 3CL protease, we developed mul-
tiple machine learning models using various techniques, as detailed in Section 2.1. The
performance and outcomes of these models are summarized in Table 1.
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Table 1. Comparison of performance across multiple models.
Rz;gel :;fm Support Vector Gradient ﬁ:ﬁ:ﬁig Random Forest
Model Machine Model Boosting Model Model Model
Accuracy 0.81 0.78 0.84 0.59 0.97
ROC-AUC Score 0.90 0.90 0.93 0.82 0.98
F1-Score 0.8 0.77 0.82 0.68 0.98
Macro Avg 0.82 0.79 0.85 0.64 0.98
Weighted Avg 0.81 0.78 0.84 0.59 0.98

Among the tested approaches, the Random Forest (RF) model demonstrated the
highest predictive performance [18], achieving an accuracy of 0.97, an ROC-AUC score
of 0.98, and an Fl-score of 0.98. These results highlight its robustness and reliability for
this classification task. In contrast, alternative models such as Logistic Regression (LR)
and Support Vector Machine (SVM), while performing adequately (accuracy between 0.78
and 0.81, F1-scores ranging from 0.77 to 0.82), did not reach the level of precision and
generalizability achieved by RF.

The K-Nearest Neighbors (KNN) model, although useful in similar classification tasks,
exhibited notable limitations in this study. It recorded a lower F1-score (0.68) and a macro-
average score of 0.64, indicating potential difficulties in handling class imbalances and
generalizing effectively.

Given its superior performance in capturing complex relationships within the data,
the Random Forest model was selected as the optimal predictive tool for this study. Its high
accuracy, robustness, and ability to effectively differentiate active and inactive compounds
make it the most reliable choice for screening potential MERS-CoV 3CL protease inhibitors.

2.2. Validation and Visualization of Model Performance

After selecting Random Forest as the top-performing model, we conducted thor-
ough validation to assess its reliability. The receiver operating characteristic (ROC) curve
(Figure 1A) showed an impressive area under the curve (AUC) of 0.94, demonstrating the
model’s strong ability to differentiate between active and inactive compounds. The dotted
diagonal line represents the performance of a random classifier (AUC = 0.5), indicating no
discrimination ability. Any classifier with an AUC greater than 0.5 performs better than ran-
dom guessing. The closer the AUC is to 1.0, the better the model’s predictive performance.
This balance between sensitivity and specificity is crucial for making accurate classification
decisions. Additionally, the confusion matrix (Figure 1B) reinforced the model’s robustness,
with 23 correct predictions and only one false positive for class 0, alongside 21 correct
predictions and no false negatives for class 1. Notably, the model accurately identified
all active compounds without any misclassification, making it a highly effective tool for
screening potential drug candidates with pharmaceutical significance.

The training accuracy graph (Figure 2a) illustrates a positive trend in model perfor-
mance, where the training accuracy remains stable at 1.0, while the validation accuracy
progressively increases to approximately 0.85 as the training dataset expands. This trend
reflects the model’s ability to improve generalization, ensuring robust performance on
unseen data.
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Figure 1. Evaluation of the Random Forest model: (A) ROC curve and (B) confusion matrix analysis.
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Figure 2. Evaluation of the Random Forest model: (a) training curve and (b) prediction distribution
histogram.

Additionally, the distribution analysis of prediction probabilities (Figure 2b) reveals
a bimodal pattern, with frequency peaks in the intervals [0.3-0.4] and [0.8-0.9]. This
suggests that the model assigns higher confidence to predictions within these ranges.
The superimposed curve further indicates a balanced management of uncertainty levels,
reinforcing the flexibility and reliability of the model in its decision-making process.

These combined analyses confirm that Random Forest is a powerful and robust tool, ide-
ally suited for prioritizing promising compounds as candidates for therapeutic development.

After validating the model to ensure its accuracy, we applied it on a large scale to screen
a broader set of naturally occurring compounds for potential MERS-CoV 3CL protease
inhibitors. This approach aims to accelerate the discovery of active compounds that could
serve as a foundation for the development of new antiviral treatments.

The dataset for this study was sourced from PubChem, comprising a total of
14,194 naturally occurring compounds. Using the Random Forest model, we analyzed these
compounds to predict their potential inhibitory activity against the MERS-CoV 3CL pro-
tease. Among them, 1232 compounds were identified as active, representing approximately
8.67% of the dataset. This substantial proportion of promising compounds underscores the
potential of our screening approach in identifying biologically relevant candidates.
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To further evaluate the reliability of our predictions, we conducted a principal com-
ponent analysis (PCA), as illustrated in Figure 3 (PCA of training data vs. new predic-
tions). This visualization reduces the high-dimensional molecular fingerprint data to a
two-dimensional space, facilitating a direct comparison between the training data (blue
dots) and the new predictions (red dots). The high proximity and overlap between these
two datasets indicate that the majority of new predictions fall within the chemical space
defined by the training data, confirming the model’s reliability and applicability. This
visualization highlights the robustness of the model, reinforcing confidence in its ability to
generate accurate predictions within its domain of applicability.

PCA of Training Data vs New Predictions

3 Training Data
® New Predictions

Principal Component 2

Principal Component 1
Figure 3. PCA of training data vs. new predictions: Random Forest model.

2.3. Docking Study and Binding Interaction Analysis of Compounds with MERS-CoV 3CLpro

After using the Random Forest model to predict compounds with potential efficacy,
we will conduct molecular docking on the 1232 selected compounds (File S1). Molecular
docking is a key technique in in silico drug design, allowing the assessment of binding
affinity and molecular interactions between potential compounds and the MERS-CoV
3CL protease. This step allows for the prioritization of the most promising inhibitors by
identifying compounds with strong binding affinities and favorable interaction profiles.
The results of this analysis will serve as the foundation for further computational validation
studies, advancing the identification of potential antiviral candidates against MERS-CoV.

We initiated a molecular docking study to evaluate the binding potential of selected
compounds from the Random Forest model within the active site of the MERS-CoV pro-
tease. Initially, docking was performed using the standard precision (SP) mode, yielding
520 compounds with docking scores lower than —6 kcal/mol. A more rigorous extra preci-
sion (XP) docking was then conducted on these compounds, identifying 94 molecules with
superior binding affinities compared to the reference inhibitor (<= —7.34 kcal/mol) (Table
52). To refine the selection, we applied additional filtering criteria based on toxicity and
absorption properties, ultimately identifying the three most promising compounds with
known sources: Perenniporide B, Phellifuropyranone A, and Terrestrol G.

The compounds Perenniporide B, Phellifuropyranone A, and Terrestrol G exhibited
strong binding affinities for the MERS-CoV 3CL protease, with binding energies of —9.17,
—9.08, and —8.71 kcal /mol, respectively (Tables 2 and 3). These values indicate a significant
inhibitory potential, suggesting that these compounds may effectively disrupt the catalytic
activity of the viral enzyme, thereby hindering viral replication in host cells.
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Table 2. Top-scoring compounds in docking studies.
Compounds CID PubChem Source XP Score (kcal/mol)
Perenniporide B 60199564 Tropicoporus linteus -9.17
Phellifuropyranone A 24770409 Tropicoporus linteus —9.081
Terrestrol G 24761035 Penicillium terrestre —-8.71
AW4 137348956 /17 —7.34
Table 3. Key interactions of selected compounds with MERS-CoV 3CLpro.
Compounds H-Bond Distance Number Hydrophobic Distance Number Sulfur Distance
Asp190
g}ﬂ}gg 2,488 1,944
o Glu169 17692697 Cysli8 51304560
Perenniporide B 2,915 1,983 9 His41 3
Glyl46 4,488
. 2,5791,709 Leu49
Gly146 His41 2790
Leul44 !
Leu49
Cys148
3,351 3,1879 Cys148
Gly146 His41 2,7442 His194 g’égg ;’(1)(1)?7) Cvsl45
Phellifuropyranone A  His194 Tht29  1,7356 6 Leu49 2937 4391 7 1\% St25 4,583 3,007
Thr29 Val193 2,0224 Leu49 ! 5 49'1 ¢
1,9672 Met25 !
Met168
1,7358
GIn167 Leud9 2,1533 Leu49 Cys145
Terrestrol G Lys191 Thr26 37507 4 Met25 4,876 5,001 2 Cys148 5,780 4,357
1,7978
Cys148
o 24282080
2,405 3,394 His41
AW4 ginizg 1,884 9 His194 4'1;86§5549 3
| 2,723 2,472 Leu49 '
Glul69 2,635 2,674
Leu49 Tyr54 / ’
Val193

Perenniporide B (CID60199564) established strong interactions within the enzyme’s
active site (Figure 4). It formed short hydrogen bonds (1.7-2.9 A) with critical catalytic
residues, including His41, which is directly involved in the proteolytic cleavage mechanism,
and Asp190, which plays a key role in stabilizing the enzyme’s tertiary structure [19].
Additionally, Perenniporide B exhibited hydrophobic interactions with Leu144 and Leu49,
along with a moderate sulfur interaction with Cys148 (5.1 A), suggesting strong anchoring
within the active pocket that may prevent substrate binding and enzymatic function.

Terrestrol G (CID24761035) exhibited a diverse interaction profile (Figure 5), forming
two sulfur interactions (4.3 A and 5.7 A) with the catalytic residue Cys145/Cys148, which
are essential for enzymatic activity [20,21]. Additionally, it established four hydrogen bonds,
including a short hydrogen bond (1.7 A) with Thr26, a key residue for substrate recognition,
and engaged in two hydrophobic interactions that further stabilized its binding. These
multiple interactions suggest that Terrestrol G may effectively anchor within the active site
and interfere with enzymatic function, making it a promising candidate for inhibition.
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Figure 4. Molecular interaction analysis of the MERS-CoV 3CLpro complex with Perenniporide B:
(B) surface view, (A) 3D structure, and (C) interaction map.
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Figure 5. Molecular interaction analysis of the MERS-CoV 3CLpro complex with Terrestrol G:
(B) surface view, (A) 3D structure, and (C) interaction map.

On the other hand, Phellifuropyranone A (CID24770409) showed interaction with
His41 but had limitations in its inhibitory potential (Figure 6). Its sulfur bonds with Cys148
(4.5 A) and Met25 (3 A) were relatively long, reducing their effectiveness in stabilizing the
compound within the active site. Additionally, the rigid structural framework of Phelli-
furopyranone A might limit its adaptability, further compromising its binding efficiency.
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Figure 6. Molecular interaction analysis of the MERS-CoV 3CLpro complex with Phellifuropyranone
A: (B) surface view, (A) 3D structure, and (C) interaction map.

To evaluate their inhibitory potential, the newly identified compounds were com-
pared with the reference inhibitor AW4 (CID137348956) (Figure S1). Docking analysis
revealed that AW4 formed hydrogen bonds with Glu169 (1.88 A) and Tyr54 but lacked
direct interactions with Cys145, a key residue for competitive inhibition. Its hydrophobic
interactions with Leu49 and Val193 were also less specific than those observed for Peren-
niporide B and Terrestrol G, potentially explaining its lower binding affinity. In contrast,
Phellifuropyranone A and Terrestrol G exhibited superior interaction profiles, engaging
His41 through hydrogen bonding and Cys145/Cys148 via sulfur interactions, suggesting
their strong potential as synergistic enzyme inhibitors. Perenniporide B demonstrated even
more extensive hydrogen bonding, further reinforcing its inhibitory potential. The minimal
engagement of AW4 with key catalytic residues highlights the stronger and more stable
binding achieved by our identified compounds.

2.4. Evaluation of Pharmacological Profiles and ADMET Characteristics

Following the docking studies and the analysis of binding interactions at the active
site, we conducted a comprehensive evaluation of the physicochemical properties, pharma-
cokinetics, and toxicity profiles of the selected compounds. These assessments are essential
for determining their drug-likeness, bioavailability, and safety, which are critical factors in
the early stages of drug development.

To ensure a thorough comparison, the selected compounds were systematically eval-
uated alongside the reference inhibitor AW4. This comparison allowed us to assess how
the newly identified inhibitors perform relative to a known active compound in terms of
absorption, distribution, metabolism, excretion (ADME), and toxicity risks. By integrating
these analyses, we aim to identify the most promising candidates for further preclinical
development while minimizing potential toxicity concerns or pharmacokinetic limitations.

2.4.1. Prediction of Compound Physicochemical Properties

The analysis of the physicochemical properties (Table 4) of the compounds highlights
characteristics that favor their potential to inhibit MERS-CoV 3CLpro. Perenniporide
B and Terrestrol G are distinguished by their moderate molecular weight (366.13 and
296.05 Da, respectively) and low flexibility, factors that may favor good oral bioavailability.
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Phellifuropyranone A, with a more marked hydrophobicity (Log P = 3.562), could effectively
interact with the enzymatic target, although its solubility profile (Log S = —4.103) may
require optimization. In comparison, the reference compound AW4 (533.16 Da) has a higher
flexibility (nRot = 15) and a larger accessible polar surface area (TPSA = 171.13 A2), which
may favor specific interactions with some polar residues of the enzyme, but could also limit
its membrane permeability. Conversely, Perenniporide B and Terrestrol G, with respective
TPSAs of 122.52 and 101.15 A?, offer a good balance between solubility and membrane
diffusion, thus optimizing their pharmacokinetic potential.

Table 4. Physicochemical properties of top docking compounds and inhibitor AW4.

Compounds

MW TPSA

(g/mol) nRot nHet Flexibility (A2) nRing Log S Log P

Perenniporide B

366.13 7 8 0.538 122.52 —-3.061 1.554

Phellifuropyranone A

378.07 3 7 0.125 124.27 —4.103  3.562

Terrestrol G

N DN

296.05 3 6 0.250 101.15 —-1.399 2191

AW4

533.16 15 13 0.938 171.13 2 —-1.945 1.025

MW (g/mol)—molecular weight; should be <500 g/mol (Lipinski’s Rule). nRot—number of rotatable bonds;
higher values indicate more flexibility. nHet—number of heteroatoms; affects hydrogen bonding potential.
Flexibility—molecular flexibility; influences binding and permeability. TPSA (A2)—topological polar surface
area; should be <140 A2 for good oral bioavailability. nRing—number of rings in the structure; important for
drug-like properties. Log S—aqueous solubility (log scale); lower values indicate poor solubility. Log P—partition
coefficient (lipophilicity); should be < 5 (Lipinski’s Rule).

These results show that Perenniporide B and Terrestrol G have a favorable profile in
terms of stability and molecular interactions, while Phellifuropyranone A could benefit
from adjustments to improve its solubility. Comparison with AW4 highlights the strengths
and areas for optimization of the novel compounds, underlining their potential as MERS-
CoV 3CLpro inhibitors.

2.4.2. Evaluation of Medicinal Chemistry and Drug-Likeness Properties

The analysis of medicinal chemistry and drug-likeness properties (Table 5) highlights
the distinct characteristics of the selected compounds, which influence their potential as
MERS-CoV 3CL protease inhibitors.

Table 5. Drug-likeness and medicinal chemistry properties of top docking compounds and in-
hibitor AW4.

Compounds

QED SAscore Pfizer Rule Lipinski Rule Golden Triangle

Perenniporide B

0.632 3.953 Accepted Accepted Accepted

Phellifuropyranone A

0.397 2.808 Accepted Accepted Accepted

Terrestrol G

0.559 2.716 Accepted Accepted Accepted

AW4

0.25 3.988 Accepted Rejected Rejected

QED—quantitative estimate of drug-likeness; higher values indicate better drug-like properties. SAscore—
synthetic accessibility score; lower values indicate easier synthesis. Pfizer Rule—compliance with Pfizer’s
drug-likeness criteria; accept/reject. Lipinski Rule—compliance with Lipinski’s Rule of Five; accept/reject.
Golden Triangle—drug-likeness based on lipophilicity and MW; accept/reject.

From a medicinal chemistry perspective, all compounds comply with Lipinski’s Rule
of Five and Pfizer’s guidelines, suggesting potential oral bioavailability. Perenniporide
B and Terrestrol G demonstrate high quantitative estimate of drug-likeness (QED) scores
(0.632 and 0.559, respectively), reflecting balanced pharmacological profiles. The reference
compound AW4 has a QED (quantitative estimate of drug-likeness) of 0.25, indicating a
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more limited development potential compared to the other compounds studied. Its SAscore
(synthetic accessibility score) of 3.988 is relatively high, suggesting a potentially more
complex synthesis. Although AW4 meets the Pfizer rule, it does not meet the Lipinski rule
or the Golden Triangle criteria, which may indicate challenges in terms of bioavailability
and pharmaceutical development. In comparison, Perenniporide B, Phellifuropyranone A,
and Terrestrol G meet all the evaluation rules, highlighting their better balance between
potential efficacy and favorable pharmacokinetic properties.

The absorption and distribution profiles (Table 6) of the selected compounds reveal key
pharmacokinetic characteristics that influence their potential as MERS-CoV 3CL protease
inhibitors. The human intestinal absorption (HIA%) values indicate satisfactory absorption
for all three compounds: Perenniporide B (65.62%), Phellifuropyranone A (63.39%), and
Terrestrol G (67.33%). However, their low Caco-2 permeability values (ranging from —4.922
to —5.168) suggest limited passive diffusion, which may necessitate the use of advanced
drug delivery strategies, such as nanoparticles or prodrug formulations, to enhance their
bioavailability.

Table 6. Predicted absorption and distribution profiles of top docking compounds and inhibitor AW4.

Compounds Caco-2 Permeability HIA% P-gp Inhibitor PPB Vd (L/kg)
Perenniporide B —4.922 65.62 Excellent 80.876 1.259
Phellifuropyranone A —4.985 63.39 Excellent 96.695 0.355
Terrestrol G —5.168 67.33 Excellent 95.148 0.511
AW4 —5.607 36.24 Excellent 76.47 0.341

Caco-2 permeability estimates intestinal absorption, with more negative values indicating lower permeability.
HIA% predicts human intestinal absorption, where values above 70% are high. P-gp inhibitor classification
reflects interaction with P-glycoprotein. PPB indicates plasma protein binding, with values above 90% signifying
strong binding and lower free drug levels. Vd (L/kg) represents drug distribution, where values above 1 L/kg
suggest extensive tissue distribution.

The plasma protein binding (PPB%) values indicate a strong binding affinity to serum
proteins, particularly for Phellifuropyranone A (96.695%) and Terrestrol G (95.148%). This
high protein-binding tendency could reduce their active free fraction, potentially impacting
their therapeutic efficacy by limiting the bioavailable drug concentration in plasma.

The volume of distribution (Vd) provides further insights into tissue distribution
patterns. Perenniporide B (1.259 L/kg) demonstrates a higher volume of distribution,
indicating extensive tissue penetration and potential intracellular accumulation. In contrast,
Phellifuropyranone A (0.355 L/kg) appears to be primarily confined to plasma, suggesting
limited distribution beyond the bloodstream. These differences in distribution behavior
may have implications for drug action duration and target tissue accessibility, influencing
their suitability for further therapeutic development.

The metabolism and excretion profiles (Table 7) of the compounds reveal important
considerations for their pharmacokinetic behavior and safety. Phellifuropyranone A stands
out due to its strong inhibition of CYP1A2 (0.934) and CYP3A4 (0.498) enzymes, which
could significantly increase the risk of drug—drug interactions. This inhibition could alter
the metabolism of other drugs, leading to altered drug levels and potential side effects.

In contrast, Perenniporide B and Terrestrol G exhibit moderate cytochrome P450 inhibi-
tion, suggesting a more predictable metabolism and potentially fewer drug interaction risks.

Regarding elimination, Terrestrol G shows a high clearance rate (13.677 mL/min/kg)
and a short half-life (0.966 h), indicating rapid drug elimination. While this suggests
efficient clearance from the body, it may also necessitate frequent dosing to maintain
therapeutic levels. On the other hand, AW4 has a very low clearance (2.121 mL/min/kg),
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suggesting that it could accumulate in the body, which may require increased monitoring
to prevent potential toxicity and ensure safe use.

Table 7. Predicted metabolism and excretion profiles of top docking compounds and inhibitor AW4.

Compounds CY?1A 2 CYl?Z.C19 CY}’Z.C9 CY!)Z.D 6 CY??’.A 4 CIT T1/2 (H)
Inhibitor  Inhibitor  Inhibitor = Inhibitor  Inhibitor (ml/min/Kg)
Perenniporide B 0.493 0.04 0.067 0.012 0.059 6.159 0.545
Phellifuropyranone A 0.934 0.152 0.447 0.156 0.498 7.691 0.814
Terrestrol G 0.418 0.05 0.181 0.444 0.074 13.677 0.966
AW4 0.014 0.061 0.166 0.006 0.16 2121 0.626
CYP inhibition values indicate the compounds’ potential to inhibit key cytochrome P450 enzymes, affecting drug
metabolism. CL (clearance) represents the rate of drug elimination, with higher values indicating faster clearance.
T1/2 (half-life) reflects the duration a drug remains in the body, where longer half-lives suggest prolonged effects.
These insights into metabolism and excretion provide a comprehensive understanding
of the pharmacokinetic profiles of the compounds, helping to guide dosing strategies and
identify potential safety concerns during further development.
2.4.3. Toxicity Profile and Pharmacological Implications
The toxicity profiles of the compounds studied are generally favorable, showing no
significant signs of mutagenicity, cytotoxicity, or hepatotoxicity (Tables 8 and 9). However,
certain toxicological characteristics warrant particular attention during further development.
Table 8. Toxicity prediction using ADMELAB.3.
Compounds hERG Blockers = AMES Toxicity S S'k.in . Carcinogenicity Respi.rqtory
ensitization Toxicity
Perenniporide B 0.039 0.347 0.173 0.157 0.669
Phellifuropyranone A 0.081 0.036 0.951 0.358 0.106
Terrestrol G 0.165 0.524 0.952 0.128 0.134
AW4 0.069 0.014 0.062 0.016 0.025
hERG blockade risk (potential for cardiotoxicity), AMES toxicity (mutagenic potential), skin sensitization
(allergic reactions upon skin exposure), carcinogenicity (cancer-causing potential), and respiratory toxicity (risk
of adverse effects on the respiratory system). Lower values generally indicate lower toxicity risks.
Table 9. Toxicity prediction using PROTOXIIL.
Compounds Hepatotoxicity Mutagenicity Cytotoxicity Ecotoxicity Ld50
Perenniporide B Inactive Inactive Inactive Inactive 220
Phellifuropyranone A Inactive Inactive Inactive Inactive 800
Terrestrol G Inactive Inactive Inactive Inactive 2500
AW4 Inactive Inactive Inactive Inactive 3000

Hepatotoxicity, mutagenicity, cytotoxicity, and ecotoxicity, where “inactive” indicates no detected toxicity in
these categories. LD50 values (lethal dose for 50% of test subjects, measured in mg/kg) suggest acute toxicity
levels, with higher values indicating lower toxicity.

Respiratory toxicity assessments for the investigated compounds, including Peren-
niporide B, were conducted using ADMELab, a QSAR-based predictive tool that models
cytotoxic interactions with respiratory cell targets. Perenniporide B exhibited a score of
0.669, which, while higher than the other studied compounds, remains within an interme-
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diate range compared to clinically approved antivirals assessed using the same ADMELab
protocol (see Methods and Table S3 for comparative data).

Phellifuropyranone A and Terrestrol G display high skin sensitization scores (0.951
and 0.952, respectively), indicating a potential risk of T-cell-mediated allergic reactions. This
is particularly important for both topical and systemic administrations, as their metabolites
could trigger dermatitis in sensitive individuals.

Both Terrestrol G and AW4 exhibit high LD50 values (2500 and 3000 mg/kg), sug-
gesting low acute toxicity and indicating a wide therapeutic index. On the other hand,
Perenniporide B has a relatively low LD50 (220 mg/kg), implying a higher toxic risk at high
doses, thus requiring rigorous dose monitoring in preclinical studies to ensure safe usage.

These findings underscore the need for careful route of administration and dose
adjustments to mitigate the specific risks of each compound. Nevertheless, the compounds
generally demonstrate no major organ toxicity, emphasizing their therapeutic potential
when handled properly.

2.5. Molecular Dynamics Simulation Analysis

Molecular dynamics (MD) simulations offer valuable insights into the stability and dy-
namic behavior of ligand—protein complexes over time. In this study, MD simulations were
employed to evaluate the interactions of natural compounds and the reference compound
with the MERS-CoV protease. The analysis focused on key parameters, such as RMSD
(Root Mean Square Deviation), RMSF (Root Mean Square Fluctuation), hydrogen bonding,
and interaction stability, to assess both the binding affinity and the structural integrity of
the complexes.

RMSD analysis is critical for evaluating the stability of protein—small molecule interac-
tions during molecular simulations. Low RMSD values and limited fluctuations indicate
a stable interaction, while high variations or abrupt jumps suggest significant structural
changes or low binding affinity [22].

In this study, RMSD analysis (Figure 7) reveals that Phellifuropyranone A and Terre-
strol G exhibit remarkable stability in their interaction with the main protease of MERS-CoV.
The protein RMSDs for these compounds range from 1.4 to 2.2 A and 1.6 to 2.4 A, while
the ligand RMSDs range from 1.0 to 5.6 A and 1.2 to 4.8 A, respectively. These values
demonstrate their exceptional ability to maintain stable interactions with the target enzyme,
suggesting a high binding affinity and potential for long-lasting inhibition.

Similarly, Perenniporide B also shows significant stability, with protein RMSD ranging
from 1.8 to 2.6 A and ligand RMSD from 1.2 to 4.2 A. This suggests that Perenniporide B
exhibits good retention within the protease’s active site, indicating a favorable dynamic
profile for effective inhibition.

These results underscore the ability of Phellifuropyranone A, Terrestrol G, and Peren-
niporide B to act as effective inhibitors of MERS-CoV’s main protease, demonstrating
favorable dynamic stability that could support prolonged antiviral action.

In comparison, the reference compound AW4 exhibits higher variability, with protein
RMSD ranging from 2.5 to 3.2 A and ligand RMSD fluctuating between 6 and 14 A. A
notable increase in these values after 40 nanoseconds suggests that AW4 undergoes more
complex structural adjustments, possibly indicating a lower affinity for the active site or less
stable binding interactions. This contrast highlights the superior stability of Phellifuropy-
ranone A, Terrestrol G, and Perenniporide B, which show more consistent and favorable
RMSD profiles, suggesting their potential for more effective and stable interactions with
the MERS-CoV protease than the reference compound.
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Figure 7. RMSD curves of natural compounds and the reference compound AW4 with the MERS-CoV
Protease.

Furthermore, Root Mean Square Fluctuation (RMSF) analysis provides insights into
the flexibility and stability of the complexes formed between the protease and various
ligands [23]. For AW4, moderate stability is observed, with fluctuations ranging from 0.5
to 3.5 A. A prominent peak in RMSF (Figure 8) is seen around the C-terminus (280-300),
indicating some regional flexibility in that area. This increased flexibility at specific regions
may contribute to the compound’s reduced binding stability, especially in comparison to
the more stable interactions observed with the natural compounds.
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Figure 8. RMSF curves of natural compounds and the reference compound AW4 with the MERS-CoV
Protease.
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The enhanced stability and lower fluctuations observed for Phellifuropyranone A, Terre-
strol G, and Perenniporide B further emphasize their promising profiles for development into
potent therapeutics targeting the MERS-CoV protease. Their more stable interactions suggest
a potentially greater efficacy for long-term inhibition of viral activity compared to AW4.

The proposed inhibitors exhibit competitive or even improved fluctuation profiles
compared to AW4, further supporting their potential as strong candidates for therapeutic
development. Phellifuropyranone A, with fluctuations ranging from 0.5 to 4.0 A, demon-
strates excellent stability, making it a viable competitor to the reference compound in terms
of interaction with the MERS-CoV protease. On the other hand, Perenniporide B and
Terrestrol G display slightly more pronounced fluctuations, ranging from 0.5 to 4.5 A and
0.5 to 5.4 A, respectively. These variations, while greater than those of Phellifuropyranone
A, can be interpreted as evidence of the compounds’ adaptability and dynamic adjustment
at the protein active site, which might be beneficial for efficient inhibition.

In comparison to AW4, the three studied inhibitors demonstrate a robust interaction
with the MERS-CoV protease, with fluctuations that suggest strategic flexibility in their
binding. These variations are not necessarily instabilities but could reflect an ability to
adjust and optimize their interactions at the active site, potentially leading to more efficient
inhibition of the viral enzyme. The dynamic nature of these compounds may enhance their
occupancy of the active site, allowing them to compete effectively with AW4.

Based on these findings, Phellifuropyranone A, Perenniporide B, and Terrestrol G
emerge as promising candidates. Their favorable fluctuation profiles highlight their poten-
tial for developing potent and flexible inhibitors of the MERS-CoV protease, warranting
further investigation into their inhibitory efficacy and potential structural optimization to
enhance their drug-like properties.

The analysis of interactions between the compounds and the MERS-CoV main protease
reveals notable differences in how each compound engages with the critical residues of the
active site, which could impact their inhibitory potential (Figure 9).
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Figure 9. Histogram of interaction frequencies of natural compounds and the reference compound
with the MERS-CoV protease.
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Phellipuropyranone A and Terrestrol G establish persistent and stable contacts with
several key residues in the active site, including Met 25, Thr 26, Ile 27, His 41, and Glu 166.
Their interaction fractions range from 1.0 to 1.4, indicating continuous and stable inter-
actions. These compounds show a strong presence of hydrogen bonds (green) and hy-
drophobic interactions (blue), reflecting a robust binding to the active site. This pattern of
interactions suggests that Phellifuropyranone A and Terrestrol G are likely to exert strong
inhibitory effects by stabilizing their positions within the protease, potentially preventing
the enzyme from performing its catalytic functions.

In contrast, Perenniporide B demonstrates a dominant interaction with Cys 145 and
His 164, two essential residues for the catalytic activity of the protease [24]. The interaction
fractions for these residues reach 1.5, indicating a particularly strong binding to these
critical sites. This suggests that Perenniporide B may selectively target and inhibit the
enzyme by directly interfering with its catalytic machinery. The preferential binding to
Cys 145 and His 164 could lead to more efficient inhibition of the protease, as these residues
play central roles in the enzyme’s activity.

These findings underline the importance of residue specificity in determining the strength
and effectiveness of the compounds as inhibitors of the MERS-CoV protease. Phellifuropyra-
none A and Terrestrol G benefit from broader interactions with key residues, while Perenni-
poride B takes advantage of more targeted interactions with residues critical to the protease’s
function, further emphasizing the potential of these compounds for inhibitory efficacy.

The reference compound AW4 establishes relatively diversified interactions, but these
interactions are more variable in intensity. While Glu 166 and Asp 187 are involved in the
binding, the overall strength and specificity of these interactions are weaker compared to the
other compounds. In contrast, Phellifuropyranone A, Terrestrol G, and Perenniporide B form
more intense and specific interactions with the protease, particularly with critical residues
involved in the enzyme’s catalytic function. Their long-lasting bonds with key residues like
His 41, Cys 145, His 164, Met 25, and Glu 166 suggest a much stronger affinity for the protease,
making them promising candidates for further development as effective antiviral agents.

Further supporting these findings, the heatmap analysis of the interactions during a
100 ns simulation provides a dynamic view of the stability and persistence of these interactions
over time (Figure 10). The blue graph represents the variations in total cost over the simulation
time. The reference compound AW4 exhibits larger fluctuations compared to the other
compounds (Phellifuropyranone A, Terrestrol G, and Perenniporide B), which may indicate a
different dynamic stability. In contrast, the three other compounds appear more stable with
fewer fluctuations, possibly reflecting a more stable interaction with the biological target.

The reference compound AW4 shows dispersed and intermittent interactions, which
suggests a lower stability and reduced binding affinity for the active site. This variability
could indicate that AW4’s binding may be less consistent, and it might experience continu-
ous reorganization within the binding site, thus diminishing its ability to effectively inhibit
the protease.

On the other hand, Perenniporide B demonstrates more pronounced and prolonged
interactions with critical residues such as His 41, Cys 145, His 164, and Glu 166. These
residues are known to play crucial roles in the enzyme’s catalytic mechanism, and their sus-
tained interaction with Perenniporide B suggests effective competitive inhibition, thereby
preventing the natural substrate from binding and inhibiting the enzyme’s function.

Similarly, Phellifuropyranone A and Terrestrol G exhibit persistent interactions with
key residues like Met 25, Thr 26, His 41, Glu 166, and Asp 187, enhancing the compounds’
ability to disrupt the protease’s enzymatic function.



Int. J. Mol. Sci. 2025, 26, 3047 16 of 22

AW4 Perenniporide B

LRSS 0 20 a0 60 a0 108
o 20 a0 60 a0 104

IR 1] S 15166
]

I8 T N DR s

Serow

~
s

a0 60 a0 10

20 a0 60 80 100 Time (nsec)

Time (nsec)

Phellifuropyranone A Terrestrol G

O

20 40 60 80 1 20 a0 60 80 10
Time (nsec) Time (nsec)

Figure 10. Heatmap of binding interaction profiles of natural compounds and the reference compound
with the MERS-CoV protease.

When comparing the interaction fraction histograms of the compounds, a clear consis-
tency emerges: AW4 exhibits unstable and less specific binding, while Phellifuropyranone
A, Terrestrol G, and Perenniporide B demonstrate strong, stable, and continuous interac-
tions with critical residues. This consistent and stable binding positions the latter three
compounds as superior inhibitors, making them ideal candidates for further development.
The findings emphasize the importance of interaction stability and affinity in selecting the
most effective candidates for therapeutic applications targeting the MERS-CoV protease.

3. Discussion

This study integrates machine learning, molecular modeling, and pharmacokinetic
analysis to identify potential inhibitors of the MERS-CoV 3CL protease. The Random Forest
model, selected for its superior performance, demonstrated robust discriminative power
with an AUC-ROC of 0.94, confirming its reliability in distinguishing active from inac-
tive compounds. The confusion matrix further validated the model’s precision, showing
23 correct predictions for class 0 (one false positive) and 21 correct predictions for class 1
(no false negatives), highlighting its high specificity and sensitivity for large-scale screening.
Applied to a dataset of 14,194 naturally occurring compounds from PubChem, the model
identified 1232 active candidates (35.2%). Among these, Perenniporide B, Terrestrol G, and
Phellifuropyranone A exhibited interaction profiles surpassing the reference inhibitor AW4
(CID137348956). The results obtained highlight the strong inhibitory potential of Perenni-
poride B, Phellifuropyranone A, and Terrestrol G against the MERS-CoV 3CL protease. The
molecular interaction analysis revealed that these compounds exploit diverse anchoring
mechanisms, combining hydrogen bonds, hydrophobic interactions, and sulfur bonds,
which play a key role in stabilization within the enzyme’s active site. Perenniporide B is
distinguished by the formation of short and stable hydrogen bonds (1.7-2.9 A) with critical
catalytic residues such as His41 and Asp190, which are directly involved in the prote-
olytic cleavage mechanism and stabilization of the enzyme’s architecture. Its hydrophobic
interaction with Leul44 and Leu49, as well as the moderate sulfur bond with Cys148,
suggest the strong affinity and efficient stabilization of the enzyme-inhibitor complex. This
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combination of interactions gives Perenniporide B optimal structural adaptability to occupy
the catalytic pocket and disrupt MERS-CoV enzymatic activity. Terrestrol G, on the other
hand, exhibits a diverse interaction profile, involving sulfur bonds with Cys145/Cys148
and several stabilizing hydrogen bonds, notably with Thr26, a key residue in substrate
recognition. The ability of Terrestrol G to establish these structural interactions suggests
that it can efficiently insert itself into the active site, thus limiting the flexibility required
for enzymatic function. In comparison, Phellifuropyranone A also exhibits notable affinity
for the 3CL protease, interacting with His41 and Cys148 via sulfur and hydrogen bonds.
However, structural analysis suggests that the relative length of these bonds (greater than
those observed for Perenniporide B and Terrestrol G) could affect anchor stability. However,
the presence of an interaction with Met25 could strengthen its engagement within the active
site, contributing to its inhibitory potential. Comparing these compounds to the reference
inhibitor AW4, it appears that Perenniporide B and Terrestrol G adopt more specific and
stabilizing binding modes, notably due to their ability to target key catalytic residues
such as Cys145, His41, and Asp190, which are essential for enzymatic activity. Unlike
AW4, which does not interact directly with Cys145 and exhibits lower binding affinity,
these new compounds could offer more competitive and effective inhibition. These results
highlight the importance of steric and electrostatic complementarity between ligands and
the active site to maximize enzymatic inhibition. The presence of polar and aromatic
functional groups in the structures of these compounds allows them to interact effectively
with the enzymatic cavity, thus reinforcing their stability and inhibitory potential [25,26].
Pharmacokinetically, Terrestrol G and Perenniporide B displayed favorable profiles: ac-
ceptable absorption, low drug interaction risks, and promising safety (e.g., Terrestrol G’s
high LDs( of 2500 mg/kg). However, Perenniporide B exhibited a respiratory toxicity score
of 0.669, which, although higher than the other studied compounds, remains within a
moderate risk range. Comparatively, Paxlovid (0.991) and Remdesivir (0.963) have been
associated with transient respiratory side effects (e.g., dyspnea in 5-10% of Remdesivir
recipients) [27], while Molnupiravir (~0.75) has not shown significant clinical respiratory
toxicity [28]. Notably, the respiratory toxicity score of Perenniporide B (0.669) is similar
to that of Amiodarone (0.658), a drug known to carry a low but notable risk (1-5%) of
granulomatous pneumonia [29,30]. These findings indicate that, although Perenniporide
B presents a moderate respiratory risk, its toxicity profile remains within an acceptable
range for further consideration. However, in vivo validation remains essential to confirm
its clinical applicability, as regulatory guidelines (e.g., EMA) recommend further preclini-
cal investigations for compounds with predicted toxicity scores exceeding 0.6. Since the
computational predictions for Perenniporide B fall within this threshold, experimental
validation is necessary to accurately assess its potential respiratory effects [31]. Molecular
dynamics simulations enabled the evaluation of the stability of the complexes formed.
Phellifuropyranone A showed the lowest fluctuations (0.5-4.0 A), indicating excellent sta-
bility, while Perenniporide B and Terrestrol G showed slightly higher variations (0.5-4.5 A
and 0.5-5.4 A, respectively). In contrast to structural instability, these fluctuations suggest
adaptive flexibility, which may promote a better fit to the protease active site and improve
enzyme inhibition [32]. Furthermore, the analysis of interaction fraction histograms re-
vealed that AW4 binding was weaker and less stable, while the new inhibitors exhibit
more continuous and specific interactions, thus enhancing their antiviral potential. These
promising results must, however, be interpreted with caution, as certain methodological
limitations remain. In particular, the lack of experimental data on the biological activity
of the compounds limits the possibility of establishing a detailed structure—activity rela-
tionship (SAR). In our model, the classification of compounds into active and inactive is
based on a predictive threshold of 0.1, which is an in silico approach requiring experimental
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validation to confirm these results. In conclusion, this multidisciplinary strategy accelerates
antiviral drug discovery by bridging computational prediction, structural validation, and
toxicity assessment. Terrestrol G and Perenniporide B, with balanced efficacy and safety
profiles, emerge as prime candidates for MERS-CoV 3CL protease inhibition. Future work
should prioritize in vitro and in vivo studies to confirm their therapeutic potential and
refine their drug-like properties.

4. Materials and Methods
4.1. Construction of Predictive Models

To classify compounds based on their antiviral activity against MERS-CoV, five ma-
chine learning models were developed: Gradient Boosting (GB) [33], Support Vector
Machine (SVM) [34], K-Nearest Neighbors (KNN) [35], Logistic Regression (LR) [36], and
Random Forest (RF) [37].

The dataset used for training these models consisted of 78 active compounds (Table S1)
retrieved from the ChEMBL database (the relatively small dataset reflects the scarcity of
research specifically targeting this protease) and 78 inactive compounds obtained from
the PubChem database. The compounds were labeled in a binary manner (1 for active
compounds and O for inactive ones), with an additional column, “Label”, included to
distinguish between the two groups.

Molecular fingerprints, specifically Morgan fingerprints [38], were generated for each
compound using RDKit (Version 2022.09.1. https:/ /www.rdkit.org/, accessed 2 January
2025), a widely used cheminformatics toolkit. Morgan fingerprints provide a detailed
representation of molecular structures by capturing key chemical features and patterns.
These fingerprints served as independent variables in model training, allowing the models
to establish relationships between molecular structure and antiviral activity.

To evaluate model performance, cross-validation [39] was employed, using key metrics
such as precision, recall, F1-score, and the area under the receiver operating characteristic
(ROC) curve. Hyperparameter optimization was performed using grid search to enhance
predictive performance. After selecting the best-performing model based on validation
results, we applied it to a dataset of 14,194 naturally occurring compounds, downloaded
from the PubChem database using the search term “natural source”. This screening step
identified potential antiviral candidates for further computational analysis. All the steps
are summarized in the figure below (Figure 11).
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Figure 11. Construction of predictive models.


https://www.rdkit.org/

Int. J. Mol. Sci. 2025, 26, 3047

19 of 22

4.2. Molecular Docking Simulation

Compounds predicted by our model to be active were subjected to molecular docking
simulations to assess their affinity with the target protein. The docking process was
performed in several steps.

4.2.1. Ligand Preparation

Compound structures were extracted from the PubChem database (https://pubchem.
ncbinlm.nih.gov, accessed 10 January 2025). These molecules were prepared for docking
by generating 3D conformers and optimizing their geometry using Schrodinger’s LigPrep
program, which adjusts hydrogen atoms and determines partial charges.

4.2.2. Receptor Preparation

The structure of the target protein was downloaded from the Protein Data Bank (PDB)
under the code 5SKWW (https://www.rcsb.org/structure/5KWW. accessed 11 January
2025) [40]. After downloading, water molecules and irrelevant ions were removed using the
Protein Preparation Wizard tool in Maestro (Schrodinger LLC 2020-3, New York, NY, USA).
Then, hydrogen atoms were added to the structure, taking into account the appropriate
proton states for the different functional groups. The protein geometry was optimized
by energy minimization to reduce geometric tensions and ensure an optimal energetic
conformation. The protein was then prepared for virtual interactions with the target ligands
and molecular dynamics simulations.

4.2.3. Active Site Definition

In our study, we first identified the key amino acids of the active site of the MERS-CoV
3CL protease by analyzing the structure of the complex between this protease and the
inhibitor GC813 using the tool (https://bio.tools/plip, accessed 18 January 2025). These
amino acids were then used to define the dimensions of the docking grid (Glide box) using
the Schrodinger software (Schrodinger LLC 2020-3, New York, NY, USA). The dimensions
obtained for this active site are as follows: x = —18.83, y = +24.25, and z = +0.94. The grid
box size was set to 30 x 30 x 30 A to ensure sufficient coverage of the binding pocket
while maintaining computational efficiency. Finally, our results show that the active site
thus defined corresponds to the observations reported in the literature [41], confirming its
localization in the cleft between the two domains of the protease and its characterization by
the Cys-His catalytic dyad.

4.2.4. Docking Simulation

Molecular docking was performed using Schrédinger’s Glide software (Schrodinger
LLC 2020-3, New York, NY, USA), which evaluates the interactions between ligands and the
target protein. Glide is a molecular docking program integrated into the Maestro software
(Schrodinger LLC 2020-3, New York, NY, USA). designed to predict the optimal position
and orientation of ligands in the active site of the target protein. Ligands were docked to
the identified active site, and GlideScore (GScore) was used as the primary scoring function,
incorporating van der Waals interactions (Lennard—Jones potential), hydrogen bonding,
electrostatic interactions, desolvation penalties to account for ligand and receptor hydration
states, as well as -7 stacking and salt bridge formation. Compounds with the lowest scores
showed the best affinity for the receptor. This docking process allows for the accurate
simulation of ligand—protein interactions, and the Discovery Studio software (version 2024)
was used to analyze ligand—protein interactions, providing crucial information for the
development of new inhibitors.
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4.3. ADMET Analysis

The three compounds that showed the best affinities in the docking simulations were
subjected to an analysis of their ADMET (absorption, distribution, metabolism, excretion,
and toxicity) properties to evaluate their pharmacological potential and safety. This analysis
was performed using ADMET Lab (https://admetmesh.scbdd.com/, accessed 25 January
2025), which predicted oral bioavailability, cellular permeability, and metabolism and
excretion of the compounds. In parallel, the PROTOX program (https://tox.charite.de/
protox3/, accessed 25 January 2025) was used to predict the toxicity risks of the compounds,
particularly with regard to hepatic, renal, and cardiac toxicity.

4.4. Molecular Dynamics (MD) Simulations

Molecular dynamics simulations were carried out using the Desmond software
(Schrodinger LLC 2020-3, New York, NY, USA) under the NPT ensemble. The system
was maintained at a constant temperature of 300 K and a pressure of 1 bar, with tempera-
ture regulation achieved through the Nosé-Hoover thermostat and pressure control via the
Martyna-Tuckerman—Klein barostat (coupling constant: 2.0 ps).

The OPLS_2005 force field was employed to model atomic interactions, while long-
range electrostatic interactions were computed using the particle mesh Ewald (PME)
method with a 9.0 A cutoff for Coulomb interactions. Water molecules were described
using the Simple Point Charge (SPC) model. Short-range non-bonded interactions were
updated at every step, whereas long-range interactions were recalculated every three steps.
Each simulation spanned 100 ns, with an initial relaxation time of 1 ps.

Trajectory data were collected for subsequent analysis, focusing on four protein-ligand
complexes. The stability of these complexes was assessed by examining the Root Mean Square
Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and protein-ligand interactions
over time. These analyses were conducted using the Simulation Interaction Diagram (SID)
tool integrated within Desmond (Schrodinger LLC 2020-3, New York, NY, USA).

5. Conclusions

In this study, we used machine learning, specifically the Random Forest model, to
identify potential inhibitors of the MERS-CoV 3CL protease. The model demonstrated high
predictive accuracy, facilitating the selection of natural compounds with high inhibitory
potential. Among these, Perenniporide B, Phellifuropyranone A, and Terrestrol G exhibited
significant binding energies of —9.17, —9.08, and —8.71 kcal/mol, respectively, indicating
efficient interactions with key catalytic residues of the viral enzyme.

Molecular dynamics (MD) simulations over 100 ns confirmed the stability of these
compounds within the active site, with RMSD fluctuations less than 2.0 A for Perenniporide
B and Terrestrol G, suggesting stable binding. Furthermore, RMSF analysis revealed
reduced flexibility of key interacting residues, including Cys145 and His41, reinforcing the
reliability of the observed interactions.

Furthermore, ADMET predictions showed that these compounds possess good phar-
macokinetic properties, with high intestinal absorption, low overall toxicity, and acceptable
metabolic stability. However, Perenniporide B was identified as presenting a moderate
risk of respiratory toxicity, requiring structural optimization to reduce this toxicity while
maintaining its strong inhibitory potency.

In future work, we will seek to experimentally validate the efficacy of these compounds
through in vitro assays and improve the structure of Perenniporide B to optimize its safety
profile. In addition, in-depth studies will be conducted to examine their bioavailability and
potential for optimization as promising antiviral agents against MERS-CoV.
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