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Abstract: Calcified nodules (CNs) are increasingly recognized as critical contributors to the
pathophysiology of acute coronary syndrome (ACS). This review provides a comprehensive
synthesis of the recent literature, focusing on the prevalence of CNs, their underlying
mechanisms, and their implications for the clinical management of coronary artery disease
(CAD). CNs are characterized by unique pathophysiological processes, and the diagnosis
and treatment of CNs during percutaneous coronary interventions (PCls) underscore
the importance of advanced intravascular imaging techniques, such as optical coherence
tomography (OCT) and intravascular ultrasound (IVUS), for precise identification and
prognostic evaluation. Current therapeutic strategies aim to modulate CN characteristics,
enhance arterial wall stability, and reduce the risk of ACS and sudden cardiac death. This
review highlights the impact of CNs in ACS, the role of intravascular imaging in diagnosis,
and the importance of targeted interventions to improve clinical outcomes, as by bridging
diagnostic insights with emerging atherectomy modalities, this review also seeks to advance
the understanding and management of CNs in PCI, fostering improved patient outcomes.

Keywords: coronary calcification; calcified nodules; acute coronary syndrome; percuta-
neous coronary intervention; vascular imaging; optical coherence tomography; intravascu-
lar ultrasound; atherectomy

1. Introduction

Coronary artery disease (CAD) is a leading cause of death globally, whereas in the
United States, it is responsible for one-third of all fatalities in individuals aged over
35 years [1]. Acute coronary syndrome (ACS) is an umbrella term used to cover a spectrum
of coronary artery diseases, including unstable angina pectoris (uAP), ST-elevation my-
ocardial infarction (STEMI), and non-ST-elevation myocardial infarction (NSTEMI). More
recently, it has been suggested that ACS should be considered a progressive atherothrom-
botic disease rather than an abrupt event. ACSs are a major contributor to sudden cardiac
death (SCD). ACS presents with diverse clinical manifestations, all of which result from
reduced blood flow to the myocardium to varying degrees [2].
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Acute luminal thrombosis within the coronary artery is a key factor in ACS. Among
the primary causes, plaque rupture (PR) accounts for 65% of cases, particularly in men
under 50, followed by plaque erosion (PE), which is responsible for 30% of cases and more
common in women under 50. Calcified nodules (CNs), although the least frequent cause,
account for 5% of cases [3,4]. However, in recent years, the role of calcified nodules in ACS
has garnered increasing attention. CNs are distinct calcified structures within the coronary
arteries that can lead to luminal narrowing and subsequent ischemic events. They can
take on various forms, ranging from small discrete spots to large protruding lesions. Their
formation involves a complex interplay of biological processes, including inflammation,
osteogenic transformation, and matrix remodeling [5]. Identifying these lesions on invasive
coronary angiography can be challenging; however, intracoronary imaging, such as optical
coherence tomography (OCT) and intravascular ultrasound (IVUS) are highly sensitive and
specific imaging techniques that offer detailed qualitative and quantitative information
about underlying plaque morphology, including the detection of coronary calcium, and
have detected CNs in approximately 8% of ACS cases [6,7].

This narrative review was based on a literature search in PubMed from 2010 to 2024
using the keywords ‘calcified nodules’, ‘acute coronary syndrome’, and ‘intravascular
imaging’ and seeks to offer a comprehensive synthesis of the latest literature regarding
the role of calcified nodules (CNs) in acute coronary syndrome (ACS). Specifically, it
examines the prevalence of CNs, their underlying pathophysiological mechanisms, and the
challenges they present in the clinical management and treatment of coronary artery disease
(CAD). Furthermore, it highlights the pivotal role of intravascular imaging in the accurate
diagnosis and prognostic assessment of CNs, while also discussing current strategies aimed
at modifying CNs to enhance arterial wall stability and mitigate the incidence of ACS and
sudden cardiac death.

2. Prevalence and Risk Factors

In their analysis of CN lesions from an autopsy registry, Torii et al. reported that the
average age of patients was 70 years, with a significant prevalence of diabetes and chronic
kidney disease. CNs were evenly distributed between genders, with 61.5% of nodules
located in the right coronary artery (RCA), primarily within its mid-section (56%) [8].
Sugane and colleagues, using intravascular ultrasound (IVUS) to identify CNs, identified
them in 5.3% of ACS patients and 5.2% of culprit lesions. Patients with CNs were more
likely to exhibit CAD risk factors such as hypertension (p = 0.005), chronic kidney disease
(p < 0.001), maintenance hemodialysis (p < 0.001), and a history of prior PCI (p < 0.001). They
were less likely to be smokers (p = 0.04) and more frequently presented with unstable angina
pectoris (UAP) (p = 0.04). Concerning medication use at discharge, CN subjects were less
likely to receive a statin (83% vs. 95%, p = 0.01), while there were no significant differences
in the use of other medications. Baseline low-density lipoprotein cholesterol (LDL-C)
levels were lower in CN patients (2.6 = 0.9 vs. 3.1 = 0.9 mmol/L, p = 0.003), but their
one-year levels were comparable between the two groups (2.1 & 0.7 vs. 2.0 = 0.5 mmol/L,
p = 0.37). Throughout the follow-up period (median = 1304 days), the presence of CNs was
linked with an increased risk of major adverse cardiovascular events (MACEs) (HR =7.68,
95% CI = 4.61-12.80, p < 0.001), the recurrence of ACS (HR = 12.32, 95% CI = 6.05-25.11,
p <0.001), and target lesion revascularization (TLR) (HR = 10.48, 95% CI = 5.80-18.94,
p <0.001). These cardiac risks associated with CNs remained consistent across both Cox
proportional hazards model analyses (MACE: p < 0.001, ACS recurrence: p < 0.001, TLR:
p < 0.001) and propensity score-matched cohort analyses (MACE: p = 0.002, ACS recurrence:
p=0.01, TLR: p = 0.005). Notably, over 80% of TLR instances at the CN lesion were attributed
to its re-appearance within the implanted drug-eluting stent (DES) [9].
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Nishiguchi et al. identified CNs using pre-PCI OCT, reporting a 4.5% prevalence of
CNs. Patients with CNs were generally older (p < 0.01) and more often female (p < 0.01).
Hypertension (p < 0.01) and hemodialysis (p < 0.01) were also more common in CN patients
compared to those without CNs. During the mean follow-up of 25.4 months, 19 cardiac
deaths occurred (1 in the CN group, 18 in the non-CN group), alongside 15 non-cardiac
deaths (3 in CN and 12 in non-CN patients). Kaplan-Meier survival analysis indicated
significantly lower overall survival in patients with CNs (p < 0.05), although MACE rates
were similar between the groups (p = 0.42) [10]. Similarly, Lee and colleagues examined new
culprit lesions in patients (48% of whom had ACS) who underwent OCT prior to PCI. CNs
were observed in 4.2% of all lesions, predominantly located in the ostial or mid-RCA. In
a multivariable model, hemodialysis (p = 0.04), in-lesion angiographic A angle (p < 0.001),
and maximum calcium arc by OCT (p < 0.001) were significantly associated with the
presence of CNs. Comparing CNs in patients with ACS versus stable angina presentation
revealed a smaller minimum lumen area (1.04 mm? [first quartile, third quartile: 0.69, 1.26]
vs. 1.61 [first quartile, third quartile: 1.03, 2.06] mm?; p = 0.02) alongside a higher incidence
of thrombus (82.4% vs. 20.0%; p < 0.001) in CN lesions associated with ACS presentation.
In lesions with severe calcification (maximum calcium arc > 180), 30% of ACS culprit
lesions contained a CN, and the presence of CNs was independently associated with ACS
presentation regardless of other vulnerable plaque morphologies [11].

Kobayashi et al. later sought to elucidate the clinical characteristics and outcomes of
CNs, PR, and PE in ACS patients, as identified by OCT. They found that the prevalence
of CNs, PR, and PE was 6%, 45%, and 41%, respectively. Patients with CNs were older
(median 71 vs. 65 years; p = 0.03) and had a higher incidence of diabetes (71 vs. 35%;
p = 0.002) compared to those without CNs. In OCT findings, lesions with CNs exhibited
a smaller distal reference lumen cross-sectional area (median 4.2 vs. 5.2 mm?; p =0.048) and
post-intervention minimum lumen cross-sectional area (median 4.5 vs. 5.3 mm?; p =0.04)
than those without CNs. Kaplan—-Meier survival curves indicated that the 500-day survival
without TLR was lower (p = 0.011) for patients with CNs (72.9%) compared to those with PR
(89.3%) or PE (94.8%) [6]. Prati et al. also observed that the presence of calcified nodules in
non-culprit coronary plaques was also associated with worse clinical outcomes, including
cardiac mortality and ACS in the target vessel [12].

3. Pathophysiologic Mechanisms and Plaque Characteristics

Previous studies have demonstrated that CNs are distinct calcified structures within
the coronary arteries that can lead to luminal narrowing and subsequent ischemic events.
Their formation is driven by a complex interplay of biological processes, including inflam-
mation, osteogenic transformation, and matrix remodeling. Chronic inflammation within
atherosclerotic plaques triggers the release of pro-inflammatory cytokines and growth
factors, which stimulate the migration and differentiation of vascular smooth muscle cells
(VSMCs) into osteoblast-like cells. These cells promote the deposition of calcium phosphate
crystals, resulting in the development of calcified nodules. Pro-inflammatory cytokines
such as IL-6, TNF-&, and MCP-1 contribute to calcification and CN formation by promoting
vascular smooth muscle osteogenic differentiation and matrix remodeling. These cytokines
facilitate the calcification process by inducing osteogenic gene expression and altering
extracellular matrix composition. It is worth mentioning as well, that while obesity is recog-
nized as a pro-inflammatory state, current evidence does not establish a direct mechanistic
link between adipocytes and the formation of calcified nodules in ACS. However, future
research exploring this relationship may provide further insights. Additionally, matrix
remodeling, characterized by the altered expression of matrix metalloproteinases and their
inhibitors, further contributes to this process [7,13-17].
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A recent study provided new insights into CN morphology by utilizing light mi-
croscopy and microCT, exploring the progression of lesions that lead to CN development—
a plaque morphology which is less frequently associated with coronary thrombosis [8].
Torii et al. found that most CNs were observed in the proximal to mid-RCA and at the
left main trunk (LMT) bifurcation. These anatomical regions are known to experience
excessive torsion or hinge motion during the cardiac cycle, while LMT bifurcation segments
often harbor larger necrotic cores (NCs) [11,18-20]. In these areas, Torii’s team found that
eccentric calcification is flanked by proximal and distal plaques with heavy or concentric
calcification. The hypothesis that CN formation is associated with a lack of structural
components, such as collagen, parallels the phenomenon of strut fractures observed in
drug-eluting stents. These fractures occur more frequently in segments adjacent to “over-
lapping” regions, where the stiffest areas (overlapping stents) lie next to more pliable,
non-overlapped stented segments, often the fracture sites [21,22]. These findings suggest
that heavily calcified coronary segments directly adjacent to more flexible regions are
more susceptible to external mechanical forces due to greater movement of the coronary
artery during the cardiac cycle, leading to CN formation. This trial assumes that similar
mechanisms likely occur for both CNs and nodular calcification areas [8]. Supporting this,
Lee et al. demonstrated that lesions with nodular calcification exhibit a greater change
in the angiographic angle between systole and diastole [11]. Furthermore, in this study,
picrosirius red staining revealed an absence of collagen fibers within areas of nodular
calcification, similar to late-stage NC. Torri and colleagues hypothesize that calcified CNs
are an extension of fragmented NC calcification rather than the hard, sheet-like calcification
associated with collagen-rich fibrous tissue.

Also, calcium fragmentation leading to nodule formation likely causes intraplaque
hemorrhage by damaging surrounding capillaries and arterioles, resulting in clot formation
involving accumulated fibrin and red blood cells. Hemosiderin deposition and macrophage
infiltration may also be observed, depending on the duration of the CN. Intraplaque
hemorrhage is seen in 40% of culprit CN lesions, suggesting that capillary breaks occur
during calcium fragmentation. While this study cannot confirm a predisposition to thin
fibrous cap disruption, the mechanical force exerted by calcified fragments likely causes
the discontinuity of the overlying cap, along with a loss of surface endothelium and the
formation of an overlying platelet/fibrin thrombus [8]. In the subsequent analysis of three
patients who underwent microCT, longitudinal imaging provided further evidence of CN
formation mechanisms. Although thrombus presence is a key factor for detecting CNs
in OCT and IVUS, the clinical definition of CN recognized by imaging devices has been
inconsistent regarding whether thrombus attachment is essential. Consequently, most
studies report nodular calcification with an intact fibrous cap, commonly seen in heavily
diseased coronary, peripheral, and carotid arteries. In the study’s sudden coronary death
(SCoD) cases, surface thrombus attachment is a prerequisite for identifying CN, which is
recognized as a rare cause of acute coronary thrombus [13].

4. Intravascular Imaging in CNs

It has already been mentioned that intravascular imaging (OCT and IVUS) constitutes
the “fourth pillar” of CN detection, characterization, as well as intra-procedurally. IVUS
is a highly sensitive and specific imaging technique that delivers detailed qualitative
and quantitative insights into plaque morphology, including the detection of coronary
calcium [23]. Five types of CNs identified by IVUS have been defined:

Type 1: An eccentric calcified nodule without calcification on the opposite side.

Type 2: An eccentric calcified nodule with broad (>180° arc) superficial calcification
on the opposite side.
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Type 3: An eccentric calcified nodule with narrow (<180° arc) superficial calcification
on the opposite side.

Type 4: Multiple calcified nodules within the lumen.

Type 5: A calcified nodule with visible luminal thrombus [24].

OCT is another effective method for identifying calcified nodules, characterized by
fibrous cap disruption over a calcified plaque with protruding calcification, superficial
calcium, and significant calcium proximal and/or distal to the lesion [7]. According to the
criteria outlined in the OCT consensus document, CNs were identified by the presence of
single or multiple regions of calcium protruding into the lumen, often forming sharp, jutting
angles [25]. OCT can further—unlike standard resolution IVUS (we look forward to the
new studies using high-definition IVUS)—differentiate an eruptive CN from a non-eruptive
NC [12,26]. However, despite those recent advancements [7,11,27-31], challenges remain
in achieving higher resolution for more the detailed characterization of CNs. The primary
challenge in intravascular imaging lies in developing a reliable tool that can accurately
differentiate between various pathological features with high sensitivity and specificity.
Such a tool must enable the precise detection of plaque structure and composition, as well
as predict future cardiovascular events. OCT has an advantage over IVUS and computed
tomography angiography in identifying thrombus and the overlying PE, as PE typically
involves less remodeling or thin-cap fibrous atheroma. However, OCT has limitations
such as shallow image acquisition depth, the need for thrombus aspiration before imaging,
and the requirement for contrast injection. Additionally, operator expertise is essential
for both the functional interpretation of OCT and distinguishing pathological findings.
The routine use of OCT is challenging, and the expertise required is currently limited to
a few specialists.

The NIRS-IVUS imaging system was introduced as a dual-functionality device com-
bining IVUS and near-infrared spectroscopy (NIRS) to detect lipid content within the
arterial wall and plaques [32]. The Lipid Core Burden Index (LCBI) quantifies the lipid
content within a given artery. Preliminary studies have shown higher LCBI content in the
culprit lesions of STEMI [33]. Other studies have linked high LCBI in non-culprit lesions to
future cardiovascular events. The Lipid-Rich Plaque (LRP) study was the first and largest
prospective study to demonstrate that a maximum 4 mm LCBI (maxLCBI4 mm) of over
400 in a non-culprit lesion is associated with a higher risk of future cardiovascular events
at both the patient and lesion level [34]. In an effort to assess whether NIRS-IVUS can
distinguish between PE, PR, and CN, Terada et al. conducted a cross-sectional study of
STEMI patients, using OCT as a reference standard. Their analysis revealed significant
differences in NIRS-measured maxLCBI4 mm across OCT-derived PR, PE, and CN, with
the highest maxLCBI4 mm observed in PR, followed by CN and PE. By evaluating plaque
cavity, convex calcium, and maxLCBI4 mm, the authors concluded that NIRS-IVUS can
accurately distinguish PR, PE, and CN. The remarkable accuracy between NIRS-IVUS and
OCT in identifying these key morphological features is noteworthy [35].

In the era of artificial intelligence (Al), it is worth mentioning that emerging Al-driven
imaging techniques and hybrid modalities, such as OCT-NIRS, may improve CN detection
and risk stratification. Al algorithms are being developed to enhance the interpretation of
intravascular imaging by automating plaque classification, detecting microcalcifications,
and predicting lesion instability with greater accuracy than traditional methods. Deep
learning models trained on large-scale imaging datasets have shown promise in differenti-
ating between various plaque morphologies, potentially improving early CN identification
and guiding intervention strategies. Thus, hybrid imaging techniques integrating Al-
based OCT and IVUS analyses may further optimize decision-making in percutaneous
coronary interventions.
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5. Revascularization Difficulties

CNs present significant challenges in revascularization. There is a higher incidence of
strut malposition, particularly at the nodule shoulders, due to the metal alloy’s limitations
in adapting to this extreme geometry, as well as stent eccentricity and underexpansion [36].
Optimal results may not be achievable despite aggressive post-dilation, which can increase
the risk of complications. In the era of drug-eluting stents (DESs), lesions with CNs are
expected to negatively impact PCI outcomes [37]. TLR is more often required following
PCI for lesions with severe calcification compared to those without, and previous studies
have reported TLR rates ranging from 20.0% to 38.0% after 2 years, especially in the group
with eruptive CNs [6,37-40]. Morofuji and colleagues found that CNs were present in
half of the severely calcified lesions requiring rotational atherectomy and were associated
with worse adverse outcomes after a 5-year follow-up, while Sugane et al.—as mentioned
above—reported that more than 80% of TLR at the CN lesion was due to the recurrence of
CNs within the implanted DES [9,37]. Their findings suggest that CNs continue to protrude
even after stent placement and in-stent restenosis at CN lesions has been described in
a pathohistological investigation as CNs protruding through the stent struts and thrombus
or neointima calcification within the implanted stent [41,42]. Sato et al., in a recent study,
found a 2-year cumulative rate of target lesion failure (TLF) primarily caused by clinically
indicated TLR and indicated that eruptive CN morphology has a different impact on
long-term clinical outcomes compared to non-eruptive CN morphology [43]. Another
OCT study demonstrated that patients with eruptive CNs had a significantly higher 2-year
incidence of cumulative major adverse cardiovascular events (MACEs) compared to the
calcified protrusion and superficial calcific sheet groups, suggesting that eruptive CNs in
culprit lesions in ACS patients more frequently impact clinical outcomes after PCI [44].

Until recently, no systematic studies utilizing intracoronary imaging modalities
had demonstrated the influence of CNs in non-culprit lesions. However, Xu et al. re-
ported that CNs in the non-culprit lesions of ACS patients resulted in better clinical
outcomes over a 3-year follow-up period [27]. Consistently with those results, Wu
and colleagues—investigating ACS patients performing IVUS to evaluate non-culprit
lesions—found that there were no deaths, cardiac arrests, or myocardial infarctions in
the CN group. Surprisingly, while one pathology group has described culprit CNs as a
rare cause of coronary thrombosis, non-culprit CNs are thought to represent precursor
lesions similar to thin-cap fibroatheromas (TCFs). It is important to note that CNs do not
always cause thrombosis, just as TCFs do not always cause plaque rupture (PR). In the same
study, they reported that the CN group had fewer non-culprit lesion MACEs compared
to the non-CN group. They hypothesized that CNs may develop from plaque rupture,
thrombosis, and subsequent healing, potentially stabilizing the non-culprit lesion rather
than contributing to adverse outcomes [45]. Additionally, operators must consider that
the combination of tortuosity, nodules, and hinge motion may hinder device delivery and
increase the risk of stent fracture and target lesion failure [26].

In the near future, advancements in bioresorbable scaffolds and targeted plaque
modification strategies may optimize treatment outcomes for patients with CN-related ACS.

6. Intra-Procedural Modification of Calcified Nodules

The procedural preparation and modification of vessels with CNs is crucial (Figure 1).
Balloon dilation primarily works by eccentrically expanding the healthy vessel wall op-
posite the nodule, but it carries a higher risk of dissection and perforation and has only a
marginal effect on the nodule itself.
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Calcified Nodules in Acute Coronary Syndrome: Diagnostic Advances and Therapeutic Strategies
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Figure 1. Algorithm for the management of calcified nodules during PCL

6.1. Non-Compliant Balloons (NC)

NC balloons are commonly used to treat mildly to moderately calcified coronary le-
sions by achieving more consistent stent expansion than semi-compliant balloons. However,
in cases of severe calcification, the balloon’s expansion can become irregular, increasing the
risk of complications such as coronary dissection, perforation, or balloon rupture due to
high pressure at the edges. Despite these risks, NC balloons are valuable when used after
atherectomy to ensure adequate plaque modification before stenting [46,47].

6.2. High-Pressure Balloons

The super high-pressure balloon (OPN NC, SIS Medical, Frauenfeld, Switzerland)
is designed to withstand extremely high pressures (up to 35 atm), which allows it to
successfully dilate calcified lesions that are resistant to conventional NC balloons. In
a retrospective study of 326 patients, this balloon achieved a high success rate (over 90%) in
treating non-dilatable calcified lesions, though coronary rupture occurred in a small number
of cases [48-52]. This balloon is also used for post-dilation to optimize stent expansion [53].

6.3. Cutting Balloons

Cutting balloons (FlexTome and Wolverine, Boston Scientific, Marlborough, MA,
USA) are NC balloons with small blades attached to their surface. These blades create
precise incisions in calcified plaques, aiding in stent expansion, particularly in challenging
lesions such as those in the ostium or with in-stent restenosis (ISR) [54,55]. Although
cutting balloons have demonstrated superior lumen gain compared to standard balloons,
they are associated with a slightly higher risk of coronary perforation [54,56-59]. Recent
advancements in cutting balloon design have improved their deliverability, although
complications like blade entrapment and coronary artery perforation remain concerns [60].
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6.4. Scoring Balloons

Scoring balloons (AngioSculpt, Philips, San Diego, CA, USA; Scoreflex, OrbusNeich,
Hong Kong, China; Chocolate XD, Teleflex, Wayne, PA, USA; NSE Alpha, B. Braun, Melsun-
gen, Germany; Lacrosse NSE, Asomedica, Minsk, Belarus) are semi-compliant and feature
scoring elements on their surface that focus force on the calcified plaque during inflation.
These balloons offer easier deliverability and a lower risk of vessel wall injury than cutting
balloons, while still providing effective luminal expansion. Despite the absence of direct
comparative trials, scoring balloons are generally considered an alternative to cutting
balloons, particularly in cases where vessel injury risk is a concern. Preliminary studies
have shown scoring balloons to be effective in modifying calcium in severely calcified
lesions [46,61-67].

Concerning 6.1-6.4: The above-mentioned methods refer to calcified lesions or
severely calcified lesions, which, as mentioned in this review, have unique particulari-
ties and difficulties that should be encompassed to the already challenging treatment of
calcified lesions. A balloon-only approach may be constrained by the eccentric expan-
sion of the balloon, which might not generate sufficient force to effectively modify CNs
surrounded by severe calcification. This limitation could lead to significant stent under-
expansion and asymmetry [46,53]. Specialty balloons, such as cutting or scoring balloons,
may offer theoretical advantages by enabling controlled and uniform lesion dilation while
minimizing balloon slippage in the presence of eccentrically protruding CNs. However,
their effectiveness in treating CNss has not been thoroughly investigated.

6.5. Rotational Atherectomy (RA)

Rotational atherectomy (RA), including devices like Rotablator and RotaPro from
Boston Scientific, employs a high-speed, diamond-tipped burr to mechanically ablate hard,
calcified atheroma while sparing more pliable, non-calcified tissue. This high-speed rotation
enlarges the lumen, creates a smoother luminal surface, and reduces plaque rigidity, which
facilitates balloon predilatation and enhances stent expansion [68]. Current guidelines
recommend RA to improve procedural success in fibrotic or heavily calcified lesions (class
2 a, level of evidence B) [69].

RA has been extensively studied and is regarded as the gold standard for modifying
severely calcified lesions before stenting, particularly in lesions that are resistant to balloon
crossing [70-80]. However, RA carries risks such as coronary dissection [70-80], perforation,
and transient slow or no-reflow events, often related to the complexity of the lesions
treated [81,82]. Despite these risks, RA is recommended for improving procedural success
in fibrotic or heavily calcified lesions [83-87]. Contemporary RA techniques and the use of
smaller burrs have reduced complication rates, particularly in high-volume centers with
experienced operators [81,88]. While the primary benefit of RA is facilitating successful
PCI in severely calcified lesions, current data do not conclusively demonstrate long-term
clinical benefits.

6.6. Orbital Atherectomy

Orbital atherectomy (OA), with the Diamondback 360 from Cardiovascular Systems
Inc., St. Paul, MN, USA, received FDA approval in 2013 for treating severely calcified
coronary lesions. This device uses an eccentrically mounted, diamond-coated crown that
ablates calcified plaque through elliptical motion [89]. This method allows for the selective
ablation of non-flexible, calcified tissue while sparing the more pliable vessel wall. OA
offers several advantages over RA, including the reduced risk of slow /no-reflow events
and thermal injury [82,84,90]. Clinical studies, such as the ORBIT series, have shown
OA to be effective in treating severely calcified lesions with low rates of major adverse
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cardiovascular events (MACEs) [89,91-96]. However, randomized controlled trials directly
comparing OA to RA are still needed.

Concerning 6.5-6.6: Patients with CNs consistently demonstrate poorer clinical out-
comes following RA-assisted PCI compared to those without CNs [24,37]. Additionally,
RA has not been proven to lower the risk of ischemia-driven target vessel revascularization
in these patients [24,97]. This may indicate that RA does not always adequately modify
eccentric CNs, potentially due to guidewire bias caused by the nodules and adjacent cal-
cium sheets, which can deflect the centrally mounted burr away from the calcium. While
larger burrs might improve the debulking of eccentric CNs, their use is associated with
a higher risk of complications. In contrast, OA may offer theoretical advantages over RA for
treating CNs, as its eccentrically mounted crown and circumferential shaving mechanism
allow for more consistent modification. However, evidence on the effectiveness of OA in
treating CNs remains limited. Furthermore, the degree of debulking achieved by either OA
or RA may be modest, given the typically thick nature of CNs and their occurrence in large
vessels. Despite limited debulking, atherectomy might still be valuable or necessary to
facilitate equipment delivery; in the absence of OA, larger RA burrs should be considered.

6.7. Intravascular Lithotripsy (IVL)

Adapted from lithotripsy technology for treating kidney stones, IVL (Shockwave C2
coronary IVL, Shockwave Medical, Santa Clara, CA, USA) utilizes shockwaves to frac-
ture calcified plaques, thereby improving vessel compliance and stent expansion. The
IVL balloon catheter generates high-pressure shockwaves that selectively fracture calci-
fied areas within the vessel wall while sparing elastic tissue [98]. Initial studies have
demonstrated IVL's safety and efficacy, with high procedural success rates and minimal
complications [99-102]. IVL has been shown to be particularly effective in managing
severely calcified coronary lesions, reducing stenosis significantly with minimal risks of
dissection or perforation [103,104].

In light of this, unlike atherectomy, IVL is not influenced by guidewire bias and
delivers energy circumferentially, allowing for uniform calcium disruption at both the level
of CNs and the adjacent segments of calcified plaques. Additionally, IVL can address deep
calcium surrounding CNs, which is a critical factor in limiting stent expansion [105-110].
Recent findings from the Disrupt CAD OCT substudies demonstrated that IVL effectively
treats CNs, showing no significant differences in residual stenosis, stent expansion, acute
gain, or target lesion failure at 2 years between CNs and non-CNs treated with IVL [111].

6.8. Laser Atherectomy

Laser atherectomy, specifically the Excimer Laser Coronary Atherectomy (ELCA) with
the CVX—300 from Philips, San Diego, CA, USA, has been utilized for over 20 years as an
alternative to BA. This technique employs photoablation to modify plaque. The device
emits pulses of short-wavelength, high-energy ultraviolet light, which vaporizes water,
dissociates carbon bonds, and causes molecular vibrations, resulting in plaque obliteration
and enhanced luminal expansion, facilitating the treatment of challenging lesions, including
balloon-uncrossable or undilatable lesions and chronic total occlusions [70,112-121]. ELCA
is particularly useful for modifying calcific non-dilatable in-stent restenosis (ISR) and has
demonstrated high technical and procedural success rates with low MACEs. The LAVA
registry, which assessed ELCA’s use in complex coronary lesions, confirmed its efficacy
and safety, particularly in de novo calcified lesions and ISR [122]. However, evidence on
the effectiveness of LA in treating CNs remains very limited (Table 1).

Summarizing, Table 2 offers a comprehensive synopsis of the aforementioned patho-
physiological mechanisms, diagnosis, as well as treatment strategies for calcified nodules.
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Table 1. Evidence-based interventions for calcified nodules.
. Mechanism of . . . . .
Technique Action Key Evidence Advantages Limitations/Complic Clinical Use
Effective for
. High-pressure mild/moderate Safe for mild Dissection and Predilation before
Non-Compliant . . e S L U
inflation reshapes calcifications but calcifications; perforation risks at stenting in mildly
Balloons o . . e .

calcified plaques. limited for severe low cost. high pressure. calcified lesions.

calcifications.

High-Pressure

Twin-layer
technology

A 90% success rate
in non-dilatable
lesions; rare

Effective where

Limited data;
potential coronary

Treating resistant
calcified lesions and

Balloons withstands pressures NC balloons fail. optimizing stent
coronary rupture rupture. 5
up to 35 atm. h expansion.
risk.
.. . . Focal calcifications,
Blades incise Larger lumen gain; . Increased risk of . .
. o o Precise, focused ) ostial lesions, and
Cutting Balloons calcified plaque to 0.8% risk of . . perforation and . .
0.5 e . luminal gain. . in-stent restenosis
aid dilation. perforation. device entrapment. (ISR)
Scoring elements Safer alternative to Moderate

concentrate force to

Lower dissection

cutting balloons;

Not effective for

calcifications or ISR;

Scoring Balloons ; risk than cutting dense . .
fracture proven efficacy I safer luminal gain in
e . balloons. calcifications. .
calcifications. in ISR. eccentric nodules.
Acoustic waves A 92.4% Unlform cehergy .. Severe.o.r egcentrlc
Intravascular . delivery; Limited calcifications;
. . fracture calcium procedural success .. . ey .
Lithotripsy . . . . minimal deliverability in adjunct to
without damaging rate with minimal . .
(IVL) . - embolization tortuous vessels. atherectomy for
soft tissue. complications. g .
risk. resistant CNs.
Gold standard for e
. . . Severe calcifications
Diamond-tipped severe . Risk of .

. DR Effective for resistant to balloon
Rotational burr ablates calcifications; deep. dense slow /no-reflow aneioplasty: ma
Atherectomy calcifications, PREPARE-CALC o B events; operator glopasty; may

. . . . calcifications. facilitate device
reducing rigidity. trial confirms dependent. . .
delivery in CNs.
procedural success.
Elliptical crown Requires further Treatmg. deep,
] A Comparable safety =~ Lower thermal . . eccentric, or
Orbital ablates calcifications . . . . evidence; risk of .. .
. . and efficacy to RA; injury risk . superficial calcium;
Atherectomy while sparing distal ——
. . no large RCTs yet. than RA. .. better modification
pliable tissue. embolization. of CNs
UV laser . . L
photoablates plaque LAVA reglsotry Effective for ISR Niche ap Phcatlon, Balloon-uncrossable
Laser . shows 90% . requires .
by vaporizing water . . and chronic L. or undilatable
Atherectomy . technical success in . specialized .
and breaking . occlusions. . lesions and ISR.
undilatable ISR. equipment.
carbon bonds.
Table 2. Summary of pathophysiological mechanisms, diagnosis, and treatment strategies for calci-
fied nodules.
Category Key Features Clinical Implications = Diagnostic Approaches Therapeutic Strategies
- Chronic . ol - Optical coherence - Targeted medical
1nf.1ammaF1€)n . - in:?al;i}lit tomography (OCT) therapy (statins,
' = Mlcrocal?lflcatlon 1ty - Intravascular anti-inflammatory
Pathophysiology -  Endothelial - Ischemic events ultrasound (IVUS) agents)
disruption - Increased risk - Near-infrared - Lifestyle
- Mechanical stress of MACE spectroscopy modifications
- Matrix remodeling (NIRS)
) i\/[ay. Cail s¢ - Balloon angioplasty
- Discrete nodular uminal - IVUS for (non-compliant or
Isolated Calcified calcifications TR 6| morphology high-pressure
Nodules without plaque thrombus - OCT for detailed balloons)
rupture/erosion iormatlsnth lial cap structure = Intravascular
} ess endotheha lithotripsy (IVL)

damage
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Table 2. Cont.

Category Key Features Clinical Implications  Diagnostic Approaches Therapeutic Strategies
. - High risk of - OCT to assess Ather.ectomy .
Calcified - Nodular acute e — (rotational/orbital)
Nodules with CalCllflC'atIOIlliS WILh thrombosis disruption Drug-eluting stents
Plaque Rupture OUEEG IS o el B - IVUS/NIRS for (DESs)
OO oG and cap disruption challenges plaque composition IVL for deeper
calcium fractures
Aggressive lesion
- Stent malapposition . : [EPEIElE
] : ) Post-PCI imaging (atherectomy,
. Underexpansion Poor PCI (OCT/IVUS) to scoring/cutting
Therapeutic - Recurrent target Ll assess stent balloons)
Challenges lesion o - Higher . expansion and Stent optimization
revascularization restenosis rates apposition techni
TLR echniques
(TLR) (high-pressure

post-dilation, IVL)

7. Future Directions

Future research should focus on refining imaging modalities to improve the detection
and characterization of CNs, particularly integrating artificial intelligence for real-time
analysis. The development of high-resolution intravascular imaging and hybrid imaging
techniques, such as OCT-NIRS, could enhance diagnostic accuracy and guide targeted
interventions. Additionally, long-term studies assessing the natural progression of CNs
and their role in non-culprit lesions could provide valuable insights into their clinical
significance and optimal management strategies.

Further innovation in therapeutic approaches is necessary. Improvements in biore-
sorbable scaffolds and targeted plaque modification techniques hold promise for better
procedural success and long-term outcomes in patients with CN-related ACS. Pharmacolog-
ical advancements aimed at modulating the biological processes underlying CN formation,
such as inflammation and osteogenic transformation, may offer new avenues for disease
stabilization and prevention.

8. Conclusions

Calcified nodules represent a unique challenge in the management of acute coronary
syndrome, contributing to increased risks of procedural complications and adverse car-
diovascular outcomes. Intravascular imaging techniques have significantly improved the
ability to detect and characterize CNs, yet limitations remain in predicting their long-term
behavior. Current revascularization strategies require further optimization, particularly in
addressing stent malapposition and underexpansion caused by CN morphology.

Continued research and technological advancements are crucial for improving patient
outcomes. A multidisciplinary approach integrating advanced imaging, novel stent designs,
and innovative therapeutic strategies will be essential in overcoming the challenges posed
by CN-related ACS.
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