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Abstract: Increasing the proportion of concentrate in diets can effectively improve ruminant
production, and is therefore widely used. However, high-concentrate diets (HCD) enriched
with rapidly fermentable carbohydrates can accelerate the production of lactate and short-
chain fatty acids (SCFAs). The accumulation of lactate and SCFAs in the rumen leads to
a reduction in rumen fluid pH, potentially resulting in subacute rumen acidosis (SARA),
which can decrease dry matter intake (DMI), induce local and systemic inflammation, and
cause other negative impacts on the host. The substantial prevalence of SARA attributable
to long-term HCD causes considerable economic losses, as it can decrease DMI by up to
20%. Understanding its mechanisms and pathogenesis is essential. The rumen epithelium
(RE), which is in direct contact with rumen fluid, is an important tissue in the rumen due
to its roles in absorption, transport, and barrier functions. The changes that occur in RE
under HCD and the subsequent impacts of these changes are worth exploring. In the short
term, HCD feeding promotes RE cell proliferation and upregulates the activity of various
transporter proteins, enhancing RE absorption and metabolism. However, with prolonged
feeding, these functions of RE are negatively affected, accompanied by the development
of inflammation. This review elucidates the structure, the functions, and the responses of
RE under HCD, providing a detailed analysis of SARA pathogenesis at the cellular and
molecular levels.
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1. Introduction
The rumen provides a suitable environment for microorganisms to break down plant

fiber carbohydrates to produce short-chain fatty acids (SCFAs), which are the main source
of energy for ruminants [1]. Most of the SCFAs produced in the rumen can be absorbed
and metabolized efficiently by the rumen epithelium (RE), which is therefore an important
tissue for ensuring energy intake and preventing ruminal acidification from SCFAs accu-
mulation [2]. In pursuit of high production, rapidly fermentable grains are often added to
ruminant diets. High-concentrate diets (HCD) generate a considerable volume of SCFAs,
which cause acidity in the rumen. Meanwhile, grains with rapidly degradable starch can
also increase the production of lactate [3], which has a lower pKa than SCFAs (3.9 and 4.8,
respectively), thus further lowering the ruminal pH. Therefore, HCD feeding may increase
the risk of the host suffering from subacute rumen acidosis (SARA) [4].

SARA is diagnosed when ruminal pH persistently decreases to 5.8 or below for
3 h [5–7]. In an acidic environment, the survival of rumen microorganisms, especially
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Gram-negative bacteria, is compromised, leading to an elevated concentration of microbe-
associated molecule patterns (MAMPs) in the ruminal fluid. Although RE as a barrier
can prevent MAMPs from entering the organism, the disruption of the RE under HCD
facilitates MAMPs and bacterial translocation. This predisposes ruminants to local and
systemic inflammation [8]. Furthermore, the absorption and metabolism of the RE are also
compromised under these conditions.

The barrier, immune, absorption, and metabolism functions of RE are intricate and
vital, and HCD is thought to be the underlying cause of altered RE functions. However,
the specific changes and consequences of RE under HCD, as well as the associated un-
derlying mechanisms, remain incompletely elucidated. This review outlines the current
research on RE in response to HCD to elucidate the changes in RE and the potential
mechanisms involved.

2. Structure and Functions of the RE
Located in the outermost layer of the rumen, the RE is in direct contact with the

rumen fluid and plays roles in protection, absorption, transport, and metabolism [9]. RE is
composed of the stratum corneum (SC), stratum granulosum (SG), stratum spinosum (SS),
and stratum basale (SB) (Figure 1). The surface of the RE is covered with numerous papillae,
which help to mix and grind chyme, thereby increasing the interface between chyme and
the rumen. The structural attributes of the papillae augment the absorptive surface area,
contributing to enhanced absorption and metabolism. Additionally, the papillae serve as
sites for the colonization of the microbial community within the rumen.
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Tightly attached to the basal lamina, cells in the SB can continuously proliferate,
thus becoming a major source of RE renewal and repair. In addition, both the SB and
the adjacent SS have functional mitochondria, which help the RE metabolize SCFAs to
produce ketones [10]. With cell migration, the number of functional mitochondria in
the SG is reduced, and the cell morphology becomes more irregular. Proteins such as
claudins, occludin, and zonula occludins are expressed in the granule cells constituting
the granule layer, and the density of these proteins decreases towards the SB, indicating
the localization of tight junctions (TJ) within the SG [11]. A continuous arrangement of
TJ divides the RE into apical and basolateral compartments, providing the basis for the
SG barrier function. Furthermore, junctional complexes called desmosomes, located in
the SG, help the RE function as a permeability barrier. The uppermost layer of the SG
contains various transport proteins that facilitate absorption processes. The SC, with highly
keratinized cells, is in direct contact with the rumen fluid and has a large intercellular space,
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serving as a physical protective barrier for the RE. Therefore, the RE serves as a crucial
tissue in maintaining the health and productivity of ruminants. However, the prolonged
feeding of HCD exposes the RE not only to essential nutrients, but also to detrimental
substances such as bacterial toxins and excessive SCFAs. To ensure the RE retains its
beneficial functions, it is imperative that it is not overwhelmed by excessive quantities
of highly fermentable carbohydrates, as its physiological capacity is limited, despite its
adaptability to dietary challenges [12].

3. Responses of the RE Under HCD
3.1. RE Proliferation

It has been reported that the short-term feeding of HCD to ruminants does not cause
severe damage to the RE [13]. On the contrary, it can promote the proliferation and
differentiation of the RE [14]. The reason for this may be that increasing the level of dietary
concentrate alters the production and composition of SCFAs, which are gastrointestinal
growth factors that effectively stimulate the proliferation of epithelial cells, thus maximizing
the nutrient-absorbing surface area of the RE. This finding was confirmed by Bannink
et al. [14], whose study showed that epithelial cell proliferation was greater in cows fed
on a diet with rapidly increased concentrate percentage after parturition. Appropriately
increasing dietary energy levels can elevate rumen SCFAs concentrations. To prevent
SCFAs accumulation, SCFAs may regulate the expression of proteins related to the cell
cycle, reducing the percentage of cells in the G0/G1 phase and shortening the cell cycle. As
a result, this promotes cell proliferation and improves rumen papillae growth [15]. These
findings suggest that the RE has a self-regulatory mechanism that can increase or decrease
the rate of cell differentiation in response to SCFAs levels. For adapting to an increase in
SCFAs, the growth factors bind to receptors on the cell membrane, thereby promoting RE
growth and increasing the absorption area. In vitro studies have shown that epidermal
growth factor (EGF) produced in the parotid gland may exert a growth-promoting effect by
enhancing the transcription of extracellular protein kinases involved in cell proliferation,
such as serine/threonine protein kinase (AKT) [16]. EGF is transported to the rumen via
swallowed saliva [17], but the expression of EGF in rumen tissue is low due to the lack of
physically effective fiber in HCD, which depresses salivation, so EGF may play a small role
in the adaptive response of the RE during HCD challenges. Moreover, tissue growth can
be promoted by the insulin-like growth factor (IGF) axis-triggered production of protein
kinases. Studies have shown that IGF-1 plasma concentration is correlated with rumen
papillae growth [18,19]. This may involve two modes of action. One, IGF-1 can upregulate
cyclin D1 expression by binding to the IGF-1 receptor, thereby promoting the entry of
G0/G1-phase-arrested cells into the S phase [20]. The upregulation of IGF-1 is associated
with increased glucose uptake [21], and studies have also shown a correlation between
disaccharide level and IGF-1 expression [22]. Thus, increased concentrations of glucose and
disaccharides in the rumen derived from HCD degradation appear to be directly related
to epithelial cell growth. Two, IGF-binding protein expression is regulated by SCFAs
concentration [23]; among them, IGF-binding protein 3 enhances apoptosis by reducing the
bioavailability of ligands for the IGF-I receptor [24], while IGF-binding protein 5 acts as
a promoter [25]. When ruminants are fed high levels of concentrate, SCFAs downregulate
the expression of IGF-binding protein 3 and upregulate the expression of IGF-binding
protein 5, thus promoting the proliferation of epithelial cells [26].

RE proliferation under HCD may involve the action of other pathways. For example,
HCD have been shown to promote G protein-coupled receptor 41 (GPR41) expression in
the rumen, which acts as a receptor for SCFAs [27]; however, by knocking down GPR41
expression in bovine rumen epithelial cells, Meng et al. found that it decreased proliferation
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by mediating the PIK3-AKT-mTOR signaling pathway [28]. Also, HCD are found to
promote RE proliferation through the Hippo pathway [29].

3.2. RE Absorption and Metabolism Changes

As previously discussed, the RE can adapt to HCD feeding with an enhanced ab-
sorption of SCFAs by promoting the proliferation of the epithelium. Additionally, the
activity of transport proteins is also upregulated to further promote SCFAs absorption.
At physiological pH, SCFAs in the gastrointestinal tract of ruminants predominately exist
in their anionic form, which restricts their passive diffusion across cellular membranes.
Consequently, SCFAs are primarily absorbed through facilitated transmembrane trans-
port, and the apical uptake capacity of SCFAs by epithelial cells is a key determinant of
ruminal pH and susceptibility to SARA [30,31]. An appropriate increase in the level of
dietary concentrate, with elevated SCFAs concentration and appropriately reduced pH
(pH = 6.8), significantly increases the mRNA expression of SCFAs transporters, including
monocarboxylate transporter 1/4 (MCT1/4), solute carrier family 26 member 3 (DRA), putative
anion transporter 1 (PAT1), and anion exchanger 2 (AE2) [32]. According to multi-omics
results, the daily infusion of butyrate into the rumen of mature goats promotes MCT4
mRNA expression and enhances SCFAs uptake on the luminal side of the rumen tube [33].
Nakamura et al. [34] reported that butyrate may increase the uptake efficiency of SCFAs
by activating the expression of hypoxia-inducible factor 1α and Sp1 through epigenetic
modifications, which in turn stimulate the mRNA expression of MCT4 and its auxiliary
protein CD147. Sehested et al. [35] reported that the administration of an additional daily
concentrate to dairy cows resulted in a short-term elevation in rumen SCFAs concentration,
which increased butyrate translocation rates, as measured in an Ussing chamber, without
leading to a corresponding increase in the surface area of the rumen papillae. These find-
ings suggest that the upregulation of transporter protein expression is more sensitive than
epithelial cell proliferation in enhancing the absorption of SCFAs.

The upregulation of SCFAs transporters is also accompanied by the upregulation
of genes related to the maintenance of intracellular pH, such as the Na+/H+ exchanger
(NHE) [36]. Yan et al. [32] reported that increased HCD intake resulted in increased mRNA
levels of NHE1 and NHE3 in goat rumen. This is because when intracellular HSCFAs
dissociate, HCO3

− is exported from the cell in exchange for SCFAs, which decreases the
intracellular pH, leading to the upregulation of relevant H+ transporters to balance the
intracellular pH [37,38]. In addition, a large amount of CO2 is produced during rumen
fermentation [39,40], which can be dissolved in rumen fluid, absorbed by the RE, and
converted to HCO3

− through highly active intracellular carbonic anhydrase, increasing the
intracellular HCO3

− concentration and thus buffering the decrease in intracellular pH and
protecting the RE [41]. However, whether CO2/HCO3

− can act as a signaling molecule in
the regulation of the pathway, leading to protein activation and expression, remains to be
investigated.

In addition, an upregulation of urea transporter B (UT-B) mRNA expression has been
observed in the RE of steers fed HCD [42]. When urea is transported into the rumen
by UT-B, it can be broken down to produce ammonia, which can combine with H+ to
generate NH4

+, thereby acting as a buffer against the pH decrease in the rumen. Lu
et al. [27] showed that SCFAs and acidic pH cooperatively stimulate mRNA and the
protein expression of UT-B in rumen epithelial cells (RECs), and demonstrated by in vivo
experiments that the concentrations of SCFAs and pH in the rumen are the main factors
driving the upregulation of UT-B expression. Furthermore, researchers have suggested that
the upregulated expression of UT-B may be related to the increased expression of GPR4
and GPR41, although the specific mechanisms involved need to be further verified.
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However, the increase in absorption does not appear to be sustained for a long period.
When energy levels are further increased or the duration of HCD feeding is extended, the
combined effects of excessive SCFAs accumulation and the dramatically decreased pH of
the rumen eliminate the positive effect of the HCD. Etschmann et al. collected and isolated
RE from sheep fed HCD for 0, 1, 2, 4, 6, and 12 weeks, and reported that the HCD increased
their net Na+ uptake in an Ussing chamber and that 73% of the increase in Na+ translocation
occurred during the first week of HCD feeding [43]. In ruminants experiencing SARA,
an elevated concentration of SCFAs, especially propionate and butyrate, together with
a decrease in pH, can downregulate the gene expression of transporters such as solute carrier
family 5 member 8 and MCT1 [32,44,45], thereby inhibit the uptake of SCFAs, possibly due
to the saturation of the metabolic capacity of the RE and the necessity to downregulate
transport functions to prevent intracellular SCFAs accumulation.

Despite being the first living cell layer to be exposed to SCFAs, it seems that SCFAs
are seldom taken up in the SG, but are mainly taken up in the SS and SB [46]. Although
the mechanism remains to be clarified, it seems to be related to the fact that SCFAs are
metabolized mainly in the SS. SCFAs metabolism within the RE mainly consists of ketogenic
and cholesterol synthesis pathways. Cholesterol is an essential component of mammalian
cell membranes; however, an excessive accumulation of cholesterol and its metabolites can
trigger inflammatory responses, cell proliferation, and oxidative stress, as well as affect cell
membrane permeability [47–50]. Gao et al. [51] reported that the mRNA level of hydroxy-3-
methylglutaryl-CoA synthase 1, which catalyzes the metabolism of butyrate in the cytosol to
synthesize cholesterol, was significantly greater in cows with a low risk of SARA than in
cows with a high risk of SARA. Under short-term HCD feeding, the expressions of genes
related to cholesterol synthesis in the RE of lactating dairy cows were increased, and multi-
omics analysis showed a strong correlation with rumen fermentation [52]. However, genes
related to lipid metabolism and biosynthesis were significantly downregulated in calves
under long-term SARA conditions [53]. Steele et al. [54] also reported that genes involved
in cholesterol biosynthesis were upregulated in RECs during the first week of HCD feeding
but downregulated during the third week. It has been proposed that genes related to SCFAs
metabolism are upregulated during the first week due to an increase in the amount of SCFAs
substrates used for cholesterol biosynthesis. High intracellular cholesterol concentration
is associated with a negative impact; the expression of relevant genes is subsequently
downregulated to compensate for the increase in intracellular cholesterol concentration
and to maintain intracellular cholesterol homeostasis. Nevertheless, the precise regulatory
mechanisms of cholesterol metabolism under HCD feeding need to be further investigated.

To further elucidate the effects of SARA on RE metabolism, the researchers fed
one group of cows with a conventional diet and another with HCD, which caused SARA
in the latter. Subsequently, they removed the rumen contents of the cows and divided
the SARA-affected cows into two groups to facilitate the transplantation of conventional
and SARA rumen contents. Transcriptomic and metabolomic analyses revealed that al-
though the recovery of the RE structure was expedited post-transplantation, the functional
aspects of absorption and metabolism were not restored [55]. Yang et al. also demonstrated
that improved ruminant feeding did not promote the metabolism of SCFAs, although RE
proliferation could be accelerated by the activation of Yes1-associated protein 1 and WW
domain-containing transcription regulator protein 1 [56]. These studies suggest that the
damage to RE metabolism caused by SARA is difficult to reverse.

Interestingly, the transport of SCFAs accumulated under HCD is affected by biological
rhythms. Gao et al. [57] reported that RECs under butyrate treatment upregulated the
circadian clock gene period circadian regulator 2 (PER2), which caused a decrease in MCT1/4
expression. Moreover, a reduced expression of cycles kaput, which inversely regulates
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the circadian clock with PER2 [58], and an elevated expression of peroxisome proliferator-
activated receptors (PPARs) were both shown to be associated with the downregulation of
transporter proteins. However, it is unfortunate that the regulatory mechanisms have not
been investigated yet.

Finally, RE inflammation caused by HCD-induced SARA can also affect metabolism.
Xue et al. [46] indicated that after exposure to lipopolysaccharide (LPS), the consumption
of butyrate and propionate is not affected, whereas glucose consumption is increased, and
the expression of both the steroidogenic enzyme acetyl-CoA acetyltransferase 1 and the
ketogenic enzyme 3-hydroxybutyrate dehydrogenase 1 is downregulated, suggesting that
RE metabolism may be shifted towards glycolysis or glucose oxidation.

3.3. RE Barrier Disruption

As a part of the animal immune system, the epithelial barrier plays an important role in
preventing endotoxin translocation, preventing bacteria from entering the portal circulation
and creating osmotic concentration gradients. Although the RE can buffer the increased
acid production under HCD via self-regulation, the prolonged consumption of HCD
predisposes ruminants to SARA. SARA can compromise the integrity and permeability
of the RE [59], which leads to long-term RE defects, such as ruminal parakeratosis [60].
When butyrate accumulates in the rumen, it inhibits epithelial proliferation [61]. Using
organoid cultures, Zhang et al. demonstrated that butyrate accumulation promoted RECs
hyperkeratosis [62]. Butyrate appears to regulate cellular keratinization via the PI3K-
Akt signaling pathway and the Wnt signaling pathway, which regulate the expression of
oxidative stress-related enzymes. Zhen et al. [33] showed a correlation between antioxidant
protein levels and the expression of barrier-associated proteins by multi-omics analysis.
However, further verification of these mechanisms is necessary. Studies have shown that
prolonged HCD intake can lead to a reduction in the total depth of the SG, SS, and SB
layers of the epithelium, in addition to a decrease in the total depth of the RE [15,63]. HCD
intake may increase RE permeability by impairing SG cell adhesion and structure. Studies
have demonstrated that HCD intake induces the downregulation of desmosomal cadherin
expression in the SG [26], leading to impaired epithelial structure and barrier function, and
induces the redistribution of TJ proteins, including Claudin-1, Claudin-4, and Occludin
in the RE [64]. Once RE barrier disruption is triggered by SARA, its function is difficult
to recover. Hu et al. [63] showed that after switching from HCDs to low-concentrate diets
(LCDs) for one month and restoring the RE morphological structure, the barrier function
was difficult to recover. However, there is a lack of research on the lag of function recovery
to morphology recovery.

RE apoptosis is also involved in barrier function impairment. Under HCD, the abun-
dance of RE proapoptotic response-related proteins (cytochrome C, bcl2 associated x) is
greater than that under LCDs [65], whereas the abundance of antiapoptotic factor protein
(B-cell lymphoma-2) is lower than that under LCDs [15]. Moreover, even though the surface
area of RE papillae increases, the upregulation of apoptosis-related protein expression is
found under moderate-concentrate diet (MCD) feeding [15]. Since the upregulation of
apoptotic proteins under MCDs is accompanied by cell-cycle shortening, it is hypothesized
that apoptosis-producing substances could stimulate cell proliferation to compensate for
cell loss to reach equilibrium. However, this equilibrium is disrupted by HCD feeding,
resulting in RE injury. This hypothesis was supported by the study of Ma et al. [66]. When
Ma et al. added thiamine to HCD feed, ribose metabolites, which are required for RNA
and DNA synthesis, were increased by promoting the synthesis and activity of TK en-
zymes, thereby reducing cell apoptosis and promoting cell proliferation, thus mitigating
the damaging effects of the HCD on the RE barrier.



Int. J. Mol. Sci. 2025, 26, 2573 7 of 16

At physiological pH, propionate and butyrate promote epithelial barrier protein
expression, whereas TJ protein expression decreases at low pH, increasing epithelial per-
meability [67]. The rumen contains both organic and inorganic acids, and researchers have
investigated the effects of an acidic environment caused by the accumulation of different
acids on the RE barrier. The effect of an acidic environment caused by inorganic acids
on the RE barrier was demonstrated to be mild in the study by Penner et al. [13]. Subse-
quent studies have also shown that an impairment of barrier function can only be caused
by the co-existence of acidic pH and organic acid accumulation [68]. RE integrity and
active electrolytic ion transfer efficiency decrease under SARA conditions. However, the
negative effect of acidic pH (pH = 5.0) on epithelial integrity is attenuated when SCFAs
are absent, suggesting that increasing the proton concentration alone does not lead to RE
barrier disruption. This finding may be attributed to the role of SCFAs as proton carriers;
they facilitate the transfer of H+ ions to the cell membrane, which leads to intracellular
acidification, thus burdening the pH regulatory system, inducing osmotic effects (cellular
swelling), and causing inflammation [69].

A characteristic feature of SARA is the occurrence of inflammation, which may mani-
fest locally within the RE or systemically throughout the organism in ruminants. Zhang
et al. demonstrated that the activation of the MAPK pathway, especially the p38 and JNK
pathways, under HCD feeding directly downregulated Claudin-1 and Claudin-4 expres-
sion in the RE [70]. In addition, it has been shown that LPS can exacerbate TJ protein
degradation by increasing the expression of matrix metalloproteinase-9 [71], leading to
increased epithelial permeability [72,73]. Liu et al. suggested that the upregulation of
local inflammatory factors, specifically tumor necrosis factor-α (TNF-α) and interferon-γ
(IFN-γ), in goats fed HCD could act as an endogenous factor altering TJ protein expression
in the RE, thereby causing damage to the RE barrier [59]. Despite the lack of studies directly
exploring the effects of inflammatory cytokines on rumen epithelial barrier function, Craw-
ford et al. demonstrated that the inflammatory factors TNF-α and IFN-γ directly induce
epithelial barrier dysfunction in the small intestine of cows by altering epithelial cell TJ
morphology and the rate of cellular renewal, as measured by organoid culture [74]. As a
major trigger of rumen inflammation in SARA, the release of endotoxins (e.g., LPS) can
stimulate RECs to produce large amounts of reactive oxygen species (ROS), which cause
oxidative damage to mitochondrial proteins, DNA, and lipids, thus plays a role in inducing
cell apoptosis [75]. Yang et al. [76] showed that HCD feeding modulates mitochondrial
dysfunction via hexokinase 2 and activates the NLRP3 signaling pathway, which mediates
the inflammatory response and induces hepatic pyroptosis in dairy cows [77].

In addition, other metabolites in the rumen can also have an impact on RE barrier
function. Alterations in rumen microbial composition under HCD feeding lead to changes
in rumen metabolites, resulting in elevated levels of the endothelial permeability-increasing
factor prostaglandin E1 and the byproduct of polyamine synthesis, 59-methylthioadenosine,
the accumulation of which results in toxicity, leading to an increase in rumen epithelial
permeability [78,79]. Interestingly, studies have also reported that levels of amino acids
differ in different SARA-susceptible herds [80]. The rumen microorganisms can use the
accumulated SCFAs as carbon sources and nitrogen compounds (such as ammonia) as
nitrogen sources to resynthesize amino acids, resulting in an enrichment in the precursors of
biogenic amines (L-histidine, L-arginine, L-lysine, and L-tryptophan) in the rumen [80–82].
A high concentration of biogenic amines leads to an increased risk of SARA due to their
impairment of the TJ of the RE barrier and their proinflammatory effects [83,84].
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3.4. RE Inflammation

When SARA occurs, there is an upregulation in the production of MAMPs, such as
LPS and histamine (HIS) [85–87]. Numerous studies have shown that the concentration
of free LPS, a major component of the cell wall of Gram-negative bacteria, dramatically
increases in the rumen following the death of these bacteria when ruminants are fed
HCD [88]. The elevated levels of ruminal LPS can induce the swelling and rupture of
RE papillae, causing localized tissue damage and facilitating the translocation of LPS,
which may subsequently lead to systemic symptoms. The caspases expressed in the RE,
which act as LPS receptors [89], can be activated by direct binding to LPS, leading to the
oligomerization and inflammatory necrosis of RECs [65]. In addition, the recognition
of LPS and the triggering of molecular signaling pathways are primarily mediated by
Toll-like receptor 4 (TLR-4), ultimately leading to the production of proinflammatory
cytokines [90,91]. The expression of TLR-4 in RE has been demonstrated. Kent-Dennis
et al. [92] reported that LPS can elicit an inflammatory response by increasing the expression
of TLR-4 and TLR-2 in RECs. Many studies have shown that some nutritional regulation
strategies can reduce the expression of TLR-4 in RECs; for example, Jiang et al. [93] reported
that the addition of quercetin to LPS-treated RECs exerted an anti-inflammatory effect by
reducing TLR-4 expression, which fully proved the inflammatory pathway mechanism
of RECs caused by HCD. Upon the activation of TLR-4, the inflammatory process can
develop via a MyD88-dependent pathway. The expression of MyD88 is closely related to
the abundance of the Prevotella family, especially Prevotella 1, suggesting again that this
Gram-negative bacterial family plays a major role in the development of the inflammatory
response associated with HCD [22]. Furthermore, TLR-4 activation can also trigger type I
and type II interferon production via MyD88-independent pathways [94,95]. And notably,
the relative expression of IFN-γ is modulated by dietary factors, with a significant increase
in IFN-γ expression observed in response to elevated concentrations of Gram-positive
bacteria [96]. Interestingly, although HCD have been associated with an increase in other
families of Gram-positive bacteria, there is a decrease in Bacillaceae in the rumen fluid,
which is positively correlated with the levels of butyrate, isobutyrate, benzoic acid, and
isovaleric acid [22], and these organic acids could be used to exert an anti-inflammatory
effect [97,98].

HIS, a characteristic aberrant metabolite of HCD in the rumen, has been extensively
studied for its role in inflammation. The study conducted in bovine RECs revealed that HIS
could promote IκB phosphorylation by upregulating IKK β activity [84], thereby activating
the NF-κB pathway and subsequently inducing inflammation in RECs. However, most
HIS-related studies have focused on the organismal level, with a notable paucity of studies
specifically addressing inflammatory pathways in the RE.

Besides LPS and HIS, the role of ruminal metabolites related to HCD in the devel-
opment of RE inflammation is worth exploring [99]. Lu et al. reported that the immune
response was suppressed when animals were fed 35% concentrate, while it was promoted
at the 65% concentrate level, the reason for which may be related to altered amino acid
metabolism and lipid metabolism [100]. The analysis of the RNA-seq of sheep RE indicated
that amino acids play a role in inhibiting the development of inflammation. When a 1:1
ratio of lysine to methionine was added to the diet, this reduced the inflammatory response
by regulating intracellular glutathione and cysteine levels, promoting the expression of
anti-inflammatory cytokines, and inhibiting the release of pro-inflammatory cytokines [101].
Experiments in the goat caecum have shown that SCFAs can bind to cell-surface GPRs,
such as GPR41 and GPR43, which can activate downstream p38 and ERK1/2 via epigenetic
modifications, triggering epithelial inflammation [102]. HCD have been shown to promote
GPR41 expression in the rumen [27]. By knocking down GPR41 in RECs, chemokine ex-
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pression is reduced compared with the wild type under SCFAs treatment. Zhan et al. [103]
hypothesized that under SCFAs treatment, GPR41 could mediate protective immunity by
increasing chemokine expression to recruit polymorphonuclear leukocytes from lamina
propria to the RE. However, acidosis pH was not reached in the study, so it remains to be
verified whether further inflammation is triggered under SARA. Kent-Dennis’s research
also showed the importance of SCFAs in inflammation development. Under LPS treat-
ment in the absence of SCFAs, the expression of the purinergic receptor P2X 7, which is
associated with pro-inflammatory responses, is downregulated within the purinergic sig-
naling pathway. Conversely, the expression of CD73 and the adenosine A2b receptor, both
associated with anti-inflammatory responses, is upregulated. However, this modulation
is weakened after LPS co-treatment with SCFAs, suggesting that the acidic environment
plays a role in the further development of RE inflammation [104]. According to the re-
sults of the correlation analysis [22], elevated concentrations of d-glucose-6-phosphate and
d-fructose-6-phosphate, which are produced by glucose metabolism under HCD, were
positively correlated with the development of inflammation. Although these findings have
not yet been validated, the research suggested that glucose-6-phosphate dehydrogenase
may be involved in the activation of inflammasomes in response to bacterial infections [105].
Consequently, the impact of glucose metabolites under HCD on the inflammatory response
warrants further investigation.

Notably, excessive MAMPs concentrations or repeated exposure to inflammatory
stimuli can trigger negative feedback mechanisms that induce tolerance, thereby controlling
a high expression of proinflammatory chemokines. While a low concentration of HIS
significantly activates the NF-κB pathway, a high concentration of HIS has no significant
effect on the activation of this pathway [84]. In Kent-Dennis’s study [92], RECs showed
a decreased expression of proinflammatory factors following a subsequent treatment with
an identical dose of LPS in comparison to the initial treatment. This finding also seems to
explain the failure to observe an effect of LPS on TLR-4 expression in some studies [71],
since it is unknown whether the animals used in the studies (including those used to
extract primary RECs) experienced SARA. Consequently, it is plausible that these animals
may have developed a tolerance to pro-inflammatory inducers. However, this hypothesis
remains to be verified.

4. Future Directions
With the continual pursuit of economic benefit and animal welfare, preventing and

treating nutritional metabolic diseases caused by HCD has become a common goal. The
rumen, an important organ responsible for digestive, metabolic, and barrier functions in
ruminants, plays an important role in the pathogenesis of HCD-induced SARA. In the
context of the development and widespread application of biotechnology, many studies
have focused on investigating the roles of and changes in the RE in the pathogenesis of
HCD-induced SARA from a molecular biology perspective. Nevertheless, many problems
remain to be explored.

(i) Studies on RE barrier disruption under SARA are mainly focused on the mechanism.
It remains unclear whether the recovery of RE barrier function may be delayed
compared to the morphological recovery after changing the HCD. Understanding this
mechanism can optimize the barrier function of the RE and mitigate the detrimental
effects of abnormal metabolites associated with HCD on the host.

(ii) As one of the important intermediate products of HCD in rumen fermentation, lactate
has pleiotropic properties in the pathogenesis of SARA. Owing to the conversion
of lactate into SCFAs in the rumen, its effects on SARA are easily overlooked. Lac-
tic acidosis, which has been proposed thus far, has focused mainly on the impact
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of lactate on the microbial community in the rumen under HCD. However, some
studies conducted on cattle and monogastric omnivores have shown that lactate
can cause inflammation in both the gastrointestinal tract and various parts of the
body [106,107]. Other studies have shown that lactate can control the differentiation
and function of immune cells under inflammatory conditions and inhibit the inflam-
matory response [108]. Interestingly, our study demonstrated that RECs cultured with
varying concentrations of lactate exhibited damage under the pH condition of acidosis,
suggesting that lactate contributes to RECs injury. Quiroga et al. also showed that D-
lactate induces the secretion of proinflammatory cytokines from bovine fibroblast-like
synoviocytes via the PI3K/Akt/HIF-1 and GSK-3β axes and triggers the release of
DNA extracellular traps in bovine polymorphonuclear neutrophils, which can lead to
inflammation [109,110]. Current research on the role of lactate in inducing damage to
the RE is limited.

(iii) An increasing number of studies are investigating the mechanisms of SARA using
cell culture techniques. However, significant structural differences between tissues
and monolayer cell cultures may obscure some research results. To circumvent the
limitations inherent in conventional cell culture methods, three-dimensional cell
cultures and organoid cultures should be promoted and applied. The first organoid
model of sheep RECs was successfully established by Xu [111]. The first study using
rumen organoids was conducted by Zhang et al. [62]. Rumen organoids with internal
lumen are expected to facilitate a more accurate simulation of rumen physiology.
However, organoid technology has not been widely used in rumen-related research
due to technical difficulties, including issues with the integrity of the simulated in vivo
environment, the repeatability of the technique, and the lack of a standardized culture
process [112–114]. Nevertheless, there is still potential for advances in rumen organoid
technology. Exploiting further biomaterials to build three-dimensional structures and
organoids may be one of our future endeavors.

(iv) In the investigation of gene expression related to rumen function, most studies have
predominantly focused on assessing RNA expression levels. Given that proteins
perform functional roles within the organism and that RNA must undergo a series of
biological processes to be translated into proteins, changes in RNA expression cannot
fully represent changes in protein expression levels. Therefore, despite challenges in
finding ruminant-specific antibodies, it is imperative that researchers endeavor to mea-
sure protein expression levels to enhance the reliability and validity of their results.

5. Conclusions
To sum up, as illustrated in Figure 2, the RE under HCD feeding can proliferate to

expand the absorption area and upregulate the activity of diverse transporter proteins
in response to the increase in ruminal organic acids. When the balance between acid
production and absorption is disrupted, the RE exhibits an impaired epithelial barrier,
suppressed absorption function, and metabolic changes. These changes are all involved in
the development of RE inflammation.
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Figure 2. The course of SARA in the RE. HCD: high-concentrate diets; SCFAs: short-chain faĴy ac-
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