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Abstract: Chronic myeloid leukemia is a clonal hematologic disease characterized by the
presence of the Philadelphia chromosome and the BCR::ABL1 fusion protein. Integrating
different molecular, genetic, clinical, and laboratory data would improve the diagnostic,
prognostic, and predictive sensitivity of chronic myeloid leukemia. However, without
artificial intelligence support, managing such a vast volume of data would be impossible.
Considering the advancements and growth in machine learning throughout the years,
several models and algorithms have been proposed for the management of chronic myeloid
leukemia. Here, we provide an overview of recent research that used specific algorithms on
patients with chronic myeloid leukemia, highlighting the potential benefits of adopting ma-
chine learning in therapeutic contexts as well as its drawbacks. Our analysis demonstrated
the great potential for advancing precision treatment in CML through the combination
of clinical and genetic data, laboratory testing, and machine learning. We can use these
powerful research instruments to unravel the molecular and spatial puzzles of CML by
overcoming the current obstacles. A new age of patient-centered hematology care will be
ushered in by this, opening the door for improved diagnosis accuracy, sophisticated risk
assessment, and customized treatment plans.

Keywords: machine learning; chronic myeloid leukemia; algorithms; diagnosis; prognosis

1. Introduction
General Consideration on Chronic Myeloid Leukemia and Artificial Intelligence

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm with an annual
incidence of 1–2 cases per 100,000 people [1]. The 5-year survival rate for CML is 70%,
and an expected 1310 Americans lost their lives to the disease in 2023, according to data
collected through 2018 [1]. CML typically comprises three stages. The majority of patients
(85–90%) have chronic-phase (CP) disease, which is defined by a high white blood cell
count that includes both mature and myeloid precursor cells. This condition typically lasts
three to five years prior to the administration of tyrosine kinase inhibitors (TKIs) [2,3].
Approximately 4–5% of patients have accelerated-phase (AP) CML, which is characterized
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by cytopenias, a rise in blasts, and additional genetic abnormalities. Blast-phase (BP) CML
affects 1% to 2% of individuals at presentation [4,5].

The reciprocal translocation t(9;22) (q34.1;q11.2) produces a fusion protein encoding
a 210 (kinase domain) kD oncoprotein that increases cellular proliferation and it is the
cause of CML [6]. About 95% of CML patients show the resulting BCR::ABL1 oncogene as
a diagnostic characteristic. Until the end of the previous century, drug therapy for CML
was limited to nonspecific drugs such as interferon-alpha, hydroxyurea, and busulfan [7].
The development of tyrosine kinase inhibitors (TKIs), which effectively disrupted the
interaction between the BCR::ABL1 oncoprotein and adenosine triphosphate, significantly
altered the therapeutic landscape of CML. Through 20 years of follow-up, the 10-year
survival rate increased from 20% to 80–90% thanks to this “targeted” approach, which
changed the natural CML course [8].

To confirm the diagnosis and to obtain information for staging systems, peripheral
blood smear examination and bone marrow aspiration are recommended for all patients
with suspected CML. Moreover, conventional cytogenetics or fluorescence in situ hybridiza-
tion (FISH) and molecular tests are used to verify the presence of the Philadelphia (Ph)
chromosome—the t(9;22)(q34;q11)—or the Ph-related molecular BCR::ABL1 abnormality, to
diagnose typical CML [9]. Additional chromosomal alterations (ACAs) can be found using
baseline cytogenetic screening [10]. On the molecular side, the classical BCR::ABL1 fusion
proteins are as follows: the p210 (generating e13a2 or e14a2 transcripts), p190 oncoprotein
(e1a2/a3 transcripts), p230 (e19a2 transcripts) (p230). The prognosis for p190 CML affected
patients can be poorer [11,12].

A differential diagnosis with other hematologic malignancies may be required because
the diagnosis of CML is not always straightforward. In actuality, the Ph chromosome is
present in roughly 25% of adult patients with acute lymphoid leukemia (ALL) and certain
people with essential thrombocythemia. Furthermore, the BCR/ABL fusion protein size in
approximately 50% of Ph-positive ALL patients is identical to that in Ph-positive CML. The
unique morphological, cytogenetic, and immunological traits of various illnesses must be
used to differentiate them [13,14].

Clinical hematology is able to benefit from technology transformation [15], as recent
developments in artificial intelligence (AI) and machine learning are having a significant
impact on medicine [8]. AI technology can be used to prioritize cases, streamline workflow,
and diagnose hematological diseases more quickly by using preliminary stratification [16].

In this review, we attempted to identify the potential applications of AI and, above
all, machine learning in CML, highlighting both its merits and drawbacks as well as the
potential advantages of applying AI in therapeutic scenarios.

Even though our review is narrative rather than systematic, we made an effort to
minimize the likelihood of bias in the literature selection process. Research on artificial
intelligence, particularly machine learning, in the English language from 2003 to 2024 was
examined. We used the terms “chronic myeloid leukemia” or “Ph positive chronic myelo-
proliferative neoplasm” and “artificial intelligence” or “machine learning”. “Diagnosis”,
“prognosis”, and “treatment” were also utilized.

2. Use of AI in CML
2.1. Diagnosis Through a Morphological Analysis of Peripheral and Bone Marrow Smears

The morphological evaluation of malignant cells in bone marrow (BM) aspirate and
peripheral blood smears has been the primary application of AI methods in the context
of CML.

In a previous study, the Swedish team introduced the DiffMasterTM Octavia system.
It was based on software for image processing and autonomous cell localization. Artificial
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neural networks were used in the software’s development for blood cell pre-classification.
Regardless of whether the material was aberrant or normal, there was a 91% agreement
between the test and manual microscopy. Additionally, the DiffMaster had a little higher
sensitivity to detect blast cells than manual optical microscopy. Hence, the authors initially
showed that a decision support system and a trained morphologist could produce high-
quality leukocyte differential count reports and enhance the diagnosis of hematologic
malignancies, such as CML [17].

Recently 10,082 patients with probable hematologic neoplasms participated in a trial
conducted by Haferlach et al. All peripheral blood smear samples were independently
labeled by knowledgeable technicians, and hematologists subsequently examined them.
They then used an ImageNet-pretrained Xception model and a convolutional neural net-
work (CNN) model to identify 21 preset classifications of neoplasms, including CML.
The model attained 95% concordance with the pathogenic cases and 96% accuracy on the
hold-out-set [18].

Another study reported similar findings [19]. The CNN architecture of deep learning
for the detection of CML and other leukemia subtypes was evaluated by the authors using
data from two public repository databases, the American Society of Hematology (ASH)
Image Bank and ALL-IDB. The study showed that the CNN model had an accuracy of
81.74% in multi-class classification of all leukemia subtypes and 88.25% in leukemia versus
healthy analysis. Furthermore, as compared to other machine learning techniques, the CNN
model performed better [19]. Additionally, another study made use of the same dataset
(ALLIDB and ASH), and the authors wanted to explore a framework based on the Internet
of Medical Things (IoMT) to better identify the four primary subtypes of leukemia—acute
and chronic myeloid leukemias, acute and chronic lymphoid leukemias. The accuracy
of Dense CNN (DenseNet-121) and Residual CNN (ResNet-34) was 99.56% and 99.91%,
respectively. The suggested IoMT system connected clinical devices to network resources
via cloud computing, enabling a rapid and secure leukemia diagnosis [19].

In 2020, a different CNN application for CML diagnosis was also reported. Of the
104 BM smears included in the study, 18 were the outcome of the CML patients. The authors
used three distinct CNN frameworks and used transfer learning to increase the model’s
prediction accuracy. In the CML subset, the CNN application’s prediction accuracy was 95%,
demonstrating the viability of using CNN in conjunction with transfer learning to classify
and diagnose leukemic cell morphology. Furthermore, compared to traditional manual
optical microscopy, this approach resulted fast, more precise, and more objective [20].

In a study examining megakaryocyte shape, the authors discovered a statistically
significant correlation between early molecular response and molecularly undetectable
leukemia and loose megakaryocyte cluster forms [21].

A conditional generative adversarial network (cGAN)-based model for the morpho-
logical analysis of bone marrow biopsy was reported by another team of researchers.
Specifically, the AI model was created to separate myeloid cells from megakaryocytes, and
the statistical features of these cells were taken out and contrasted between CML patients
and controls. When compared to seven other deep learning-based models, the cGAN
performed better in segmentation. Images from 31 healthy participants and 58 CML cases
during the clinical validation phase attested to the cGAN-based model’s high accuracy [22].
The number of MKs, the number of myeloid cells, the density of MKs, and the parameters
of the MK size (maximum, minimum, mean) were the dimensional statistical features of the
multiclass of bone marrow cells that were produced based on the data. The MKs typically
seem smaller than their normal counterparts in CML and have a variety of distinctive
morphologic features in MPNs. According to the study, the suggested CMLcGAN demon-
strated a high diagnostic accuracy in identifying the atypical MKs in CML bone marrow
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samples, suggesting a potential means of supporting hematopathologists. Another study
revealed similar findings [23] (Table 1).

Table 1. Algorithms for diagnosis through blood smear images.

Authors—Year AI Algorithm Ref.

Ahmed et al.—2019

CNN model was trained with
25 epochs and 32 batch size since
this setup was more suitable with
the sample amount of dataset we
used. Various numbers of epochs
were experimented with to obtain
the best performance results. They
tried to increase the number of
epochs to 100; however, it took
more running time without
significant progress in accuracy.

Convolution layers, pooling layers,
flattening, and multilayer
perceptrons made up the majority
of the CNN design. CNNs used
fully connected neural networks to
classify the input photos after
automatically extracting features
from them. The convolution and
pooling layers were used to extract
features. Following the application
of filters to these layers, the image’s
features were acquired, and the
classification phase began.

[19]

Huang et al.—2020

Deep Learning (CNN)
They employed transfer learning
technology. With this method
knowledge from other tasks is
transferred to the current task,
requiring less data for learning and
adaptation to the target task.

GoogLeNet
ResNet
DenseNet

[20]

Zhang et al.—2022

Deep Learning
The UNet22 design offered a
precise location for picture
semantic segmentation in medical
image segmentation. High
segmentation and classification
accuracy were achieved by the
deformable convolution layer,
which implemented the free-form
deformation of the feature learning
process. UNet introduced skip
connections between the encoder
feature maps and the decoder
feature maps at the same scale in
contrast to the standard
encoder–decoder segmentation
models.

The multiclass bone marrow cell
segmentation performance of
CMLcGAN was satisfactory.
Following segmentation, five
statistical features were chosen, and
a conventional threefold
cross-validation with 100
repetitions was carried out.

[22]

Dese et al.—2021

k-means clustering
Marker-controlled watershed
segmentation
Morphological operations

SVM classifies the provided inputs
using optimum hyperplanes.
Together with the class descriptors,
the hyper plane—also known as
support vectors—is constructed
from the training instances. Like a
line dividing a 2D plane into two
sections, these hyper planes
separate the positive samples from
the negative samples.

[23]
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2.2. AI’s Application in Immunophenotyping for CML Diagnosis

Since in CML patients, mature neutrophils may exhibit an antigen expression be-
havior comparable to that of normal neutrophils, immunophenotyping is challenging to
apply [24,25]. The potential of utilizing AI to improve the definition of flow cytometric
investigations has been discussed briefly in a few works. Cerrato et al. conducted a study
and created an image-processing algorithm to diagnose leukemia with different techniques.
The algorithm was trained on 1009 pictures of peripheral blood smears and bone marrow as-
pirates from patients who had been immunophenotypically diagnosed with leukemia [26].
This approach was used in a sample of 341 patients who presented leukemia symptoms,
and it was then assessed by a skilled hematologist for external validation. On average, it
took 24 h for 75% of people and 48 h for 24% of people to receive an initial leukemia diag-
nosis. Flow cytometric diagnosis and the ML diagnosis were found to be 95% compatible.
Nevertheless, neither the training and testing stages of the ML model nor the ML technique
utilized to create the image processing software were discussed in this study [26]. Ni et al.
analyzed several cell features and classified the neutrophils as either normal or mature
malignant (from CML patients) using support vector machine methods and flow cytometry
data [27]. The authors used a support vector machine and a four-color panel to identify
CD45, CD65s, CD15, and CD11b in order to distinguish between normal neutrophils and
mature neutrophils from patients with CML. They made use of LIBLINEAR, one of the most
well-liked SVM packages that can be utilized for linear classification of big sparse datasets
with a lot of features and cases. The svm-scale.exe command toolkit from the LIBSVM
package was used to rescale nine label-instance data files from mature neutrophils of CML
patients and nine files from normal neutrophils. The LIBLINEAR software’s train.exe was
used to train the data as the prediction model. The test group’s label-instance data files
were rescaled using the training data range that had previously been generated, and the
trained prediction model estimated the likelihood that the neutrophils were normal. In
order to determine the ideal cut-off probability for differentiating between normal and CML
with the best specificity and sensitivity, the data file was processed using receiver operating
characteristic analysis. Clinical diagnoses were verified by chromosomal morphology and
BCR::ABL1 molecular tests. Using a cut-off value of 51.79% as predicted probability, the
model’s overall accuracy was 95.5%, with sensitivity and specificity of 95.8% and 95.3%,
respectively. Furthermore, mature neutrophils from patients in the chronic phase and blast
crisis of CML did not differ statistically significantly in their predicted probability of being
normal mature neutrophils, suggesting that the prediction results are consistent across
CML phases [27].

2.3. Using AI for Karyotyping in the Diagnosis of CML

Clinicians frequently use the results of karyotyping, a crucial procedure for grouping
chromosomes into predefined classifications, to identify genetic disorders and malignancies.
However, the diagnostic accuracy and efficiency are decreased by the time-consuming
and laborious nature of visual karyotyping that employs microscopic pictures. Even
though a lot of work has gone into creating computational techniques for automated
karyotyping, none of them can be used without significant human involvement. A study
modelled an automatic technique to identify a certain class of chromosomes (class 22) and
prescreen for suspected CML to detect abnormal metaphase cells, rather than creating a
way to classify all chromosome classes [28]. Three phases made up the scheme: segment
individual chromosomes at random, analyze the segmented chromosomes, compute image
characteristics to find the candidates, and then use an adaptive matching template to find
class 22 chromosomes. To assess the effectiveness of this approach, metaphase cells taken
from BM specimens of both positive and negative patients for CML were chosen as the
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image dataset. In this experiment, 99.3% of cases were correctly classified, with 100%
sensitivity and 86.7% specificity [28].

3. AI for Improving Adult CML Treatment Response and Disease
Progression Prediction Using Biochemical, Biomolecular, and
Clinical Data

Enhancing diagnostic, prognostic, and predictive sensitivity for CML would undoubt-
edly be possible with the capability to incorporate various forms of clinical, genetic, and
laboratory data. However, without AI support, managing such a vast volume of data
would be impossible.

ML and deep learning (DL) techniques have been specifically examined in several
original studies for the classification and prediction of leukemia. A scoping review assessed
the body of research on the subject [29]. Only 12 out of the 176 articles that were first found
were selected. The main uses of AI in the management of CML were for diagnosis and
classification (75%), then for prognosis and prediction (17%), and therapy (8%).

AI may be divided into three categories for tumor diagnosis: gene profiling-based,
clinical parameter-based, and blood smear image-based methods. Support vector machine
(SVM), eXtreme gradient boosting (XGBoost), and several neural network techniques, like
Artificial Neural Network (ANN), are the most widely used AI models. For instance,
MayGAN achieved 99.8% accuracy and high performance in detecting CML, whereas
the hybrid convolutional neural network with interactive autodidactic school (HCNN-
IAS) reached 100% accuracy and sensitivity in organizing leukemia data kinds [29]. As
a result, AI provides novel insights and instruments to improve diagnosis, prognosis,
and prediction for chronic myeloid leukemia. Furthermore, by providing sophisticated
insights to healthcare professionals, integrated AI solutions enhance clinical results in CML
management and optimize patient care.

To estimate 5-year survival in patients with CML, Shanbehzadeh et al. employed
eight machine-learning techniques using data from CML patients. These tools included
eXtreme gradient boosting, multilayer perceptrons, pattern recognition networks, k-nearest
neighborhoods, probabilistic neural networks, SVM, and J-48 [30]. “Full features” and
“selected features” were the two datasets into which features were separated. Important
characteristics chosen using minimal redundancy and maximal relevance feature selection
make up the latter. SCM (kernel = RBF) performed the best on chosen characteristics out
of the eight algorithms that were taken into consideration, with accuracy, specificity, and
sensitivity of 85.7%, 85%, and 86%, respectively. When full features were considered, the
performance decreased in accuracy (69.7%), specificity (69.1%), and sensitivity (71.3%) [30].

The potential of applying AI to assess the likelihood of CML progression has been
examined in another study. An application of a commercially available ANN software tool
to CML cases exhibiting either blastic phase (BC) or accelerated phase (AP) was previously
described [25]. Based on whether the disease had progressed within 18 or 30 months
of diagnosis, patients were split into two study groups. The patients were successfully
classified by the ANN software based on morphometric, hematologic, and clinical data.
This study suggested that early or late disease progression might be demonstrated by
commercial software that was not created especially for interpreting CML data [31].

AI techniques can also be used to optimize and customize CML therapy. For example,
it can be used to estimate drug response or resistance and choose the best treatment, as
patients who are predicted to not achieve MR3.0 within 24 months of first-line imatinib
treatment may benefit more from second-generation TKIs like dasatinib or nilotinib.

Banjar and associates created a predictive model on adult CML patients who had
imatinib frontline and either attained or failed to achieve MR3.0 [32]. To provide datasets
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for machine learning, models based on categorization and regression trees (CART), the
authors separated the patient cohort into two categories. Predictive assays were taken into
consideration together with clinical, molecular, and peripheral blood variables. Over the
course of the investigation, six distinct models were created. Every model had a positive
predictive value that was more than the other conventional scores that were taken into
consideration (73–96% vs. 67%). After considering several factors, model D was determined
to be the most effective and subsequently verified externally. Despite the great accuracy of
the common prognostic risk scores (Sokal, Euro, and Eutos), the ML-based model had the
highest specificity (35%) of any model. It was verified that patients who would not attain
MR3.0 for two years were correctly predicted by the ML-based model that was created [32].

Additionally, an extreme gradient boosting decision tree-based approach for opti-
mizing the treatment of TKIs in adult CML patients in CP was reported under the name
leukemia artificial intelligence program (LEAP) [33]. The study considered 101 factors
gathered at diagnosis and included 504 patients in the training/validation cohort and
126 in the test cohort. The following treatment options were taken under consideration:
ponatinib, dasatinib, nilotinib, and imatinib. By recommending a treatment that is linked
to a higher chance of survival than one that is not recommended by the LEAP model, the
study showed how AI may help clinicians [33].

Finally, a study that presented a novel approach capable of forecasting the clinical
effectiveness of anti-leukemic medications in patients by transferring traits derived from
the gene-expression analysis of various cell lines offered an exceptional, ground-breaking
illustration of personalized medicine. The authors analyzed three datasets—two of solid
tumor data and one of CML data—and took target drugs into consideration. A total of
28 samples—16 responders and 12 non-responders—treated with imatinib were included
among CML patients. Three distinct machine learning techniques—SVM, binary trees, and
random forests (RF)—were used in the study to construct predictor-classifiers. While SVM
and binary trees’ ideal data transfer parameters enabled a proper separation of clinical
responders from non-responders, RF was unsuitable as a data transfer technique in the
dataset under consideration [34]. Similarly, in the context of the ENEST clinical trial, a sub-
analysis was conducted using an ML method. In this instance, important microRNAs with
differential expressions were found to be predictive biomarkers of nilotinib response using
an ML-driven approach. Data from 58 patients both before and after nilotinib treatment
were considered. Based on RF and Bayesian ML algorithms in conjunction with a survival
statistical analysis, the study validated AI’s potential to enable CML treatment optimization
by separating responders from non-responders [35] (Table 2).

Table 2. AI’s application in CML management.

Morphometric Analysis

Material AI Ref.

Peripheral blood CNN [18]

Blood CNN [19]

Bone marrow blood CNN [20]

Bone marrow biopsy cGAN [22,23]

Immunophenotyping

Periferal and bone marrow blood ML [26]

Bone marrow blood SVM [27]
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Table 2. Cont.

Morphometric Analysis

Karyotyping

Bone marrow blood Specific algorithm [28]

Integrated data

Aim

Prognosis ML [30]

Prediction ANN [31]

Prediction ML [32]

Response to treatment LEAP [33]

Response to treatment SVM [34]

Response to treatment RF [35]

CNN: convolutional neural network; cGAN: conditional generative adversarial network; ML: machine learning;
SVM: support vector machine; ANN: artificial neural network; LEAP: leukemia artificial intelligence program; RF:
random forest.

4. AI-Based Assessment of Drug Resistance in CML Patients
Even though TKI therapy works for the majority of CML patients, resistance may

develop. Drug efficacy in patients with CML could be improved by using more sensitive
techniques, such as AI, mathematical modeling, and computational prediction methods,
which could uncover the underlying mechanisms of drug resistance and make it easier to
create more efficient treatment plans [36].

The identification of mutations that decrease the affinity of type I and type II inhibitors
led to the development of SUSPECT-ABL, a ground-breaking web-based diagnostic tool
for predicting resistance dynamics. It was possible to identify and compute the differences
in ligand affinities brought by resistance mutations in ABL1. Through in silico saturation
mutagenesis, the technique has discovered possibly novel resistance mutations, opening
the door for in vivo experimental validation. The suggested strategy is a valuable tool for
improving precision medicine efforts and for developing next-generation inhibitors that
are less prone to develop resistance. The tool has been made publicly available online by
the authors, allowing the scientific community to assess it [37]. In an analogous way, Jie Su
et al. [38] used AI to create novel therapeutic compounds to overcome mutations linked to
T315I resistance and verified outcomes using in vitro cultures (Table 2).

They specifically evaluated autophagy, apoptosis, cycle arrest, and suppression of
BCR-ABL1 phosphorylation.

AI and Treatment Side Effects in Individuals with CML

An indirect use of AI was demonstrated to detect TKI side effects. Adverse events,
including those underreported or preclinical, were predicted using a unique text-mining
approach. The authors proposed a novel cross-domain text mining method that used hub
node network analysis, link prediction, and a knowledge graph to predict new relationships.
Tyrosine kinase-related probable adverse events (AEs) that are less well-known can be
found using novel cross-domain text mining across all 30+ million biomedical publications
in PubMed. Using bag-of-words cluster analysis, adverse events can be linked to TKI
drug classes. Thus, new findings are made available by cross-domain text mining through
natural language processing (NLP) and machine learning (ML) [39].

A virtual laboratory called ProTox-II is used to predict the toxicity of small com-
pounds. It combines molecular correlation, pharmacophores, AIGT propensities, and
machine-learning models to predict a variety of toxicity endpoints, including toxicity tar-
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gets, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse
outcomes pathways (Tox21), and acute toxicity. The predictions are supported by data from
in vitro tests as well as in vivo examples.

An allosteric inhibitor called asciminib binds to a myristoyl region of the BCR::ABL1
protein. Asciminib targets both normal and modified BCR::ABL1, including the inter-
mediate T315I mutant [40]. The drug works by locking the BCR::ABL1 into an inactive
conformation, which sets it apart from all other ABL kinase inhibitors. Despite having
strong selectivity for only ABL1 and ABL2 kinases, it shows minimal action against unmu-
tated BCR::ABL1 and all clinically detected ATP-site mutations, including T315I. This is
because the myristoyl pocket has a special shape [41]. Serious hematological abnormalities
and/or gastrointestinal side effects are among the health risks associated with an overdose,
which are likely to align with the adverse effect profile of asciminib.

The goal of the study was to use the natural vitamin E molecule gamma-tocotrienol
as a BCR::ABL1 inhibitor to overcome the toxicity that currently exists in the medications
that are currently supplied for (Ph+)leukemia. A toxicity comparison study with asciminib
was conducted after the de novo drug design of tocotrienol using an AI DL system [42],
and three successful de novo therapeutic compounds for the BCR::ABL1 fusion protein
were created using gamma-tocotrienol in an AI drug design system. Out of the three,
artificial intelligence gamma-tocotrienol’s (AIGT) drug-likeliness investigation resulted in
its designation as a potential target. In addition to being more effective overall, the toxicity
assessment study also shows that AIGT is hepatoprotective [42] (Table 2).

5. AI-Powered Drug Discovery for CML Patients
AI is a highly effective tool for drug discovery because it can reveal the latent but

causal links between the biological and chemical sides [43,44]. A targeted chemical library
of compounds can be readily adjusted by setting suitable similarity cut-offs and a number
of physicochemical parameters. Retrospective molecular docking simulations can help in
silico trials pick drugs for experimental testing in a logical manner [45]. Understanding the
importance of allosteric regulatory sites and, thus, the logical design of novel, promising
allosteric inhibitors can be greatly aided by in silico techniques. The most widely used
methods in this regard are based on ligand- and structure-based techniques. When a target’s
homology models or crystallographic solution structures are available, the former is used.
The latter is used when structural data information is lacking, making structural similarity
to known active compounds crucial for conducting investigations such as pharmacophore
modeling and quantitative structure–activity relationships [46,47].

Several tools were used. By evaluating the WADDAICA online server, the innovative
method of revolutionary AI for drug creation using deep learning algorithms was put
into practice.

Because it makes it possible to predict virtually how small chemicals would interact
with proteins, such as receptors or enzymes, docking is a useful screening technique.
AlphaFold is an artificial intelligence program created by DeepMind that uses a deep
learning model to predict the three-dimensional structures of proteins [48]. Moreover,
DeepSite is a protein-binding pocket modulator based on deep neural networks.

By offering a thorough test set based on more than 7000 proteins from the scPDB
database, a machine learning algorithm that uses DCNNs to predict ligand-binding sites
in proteins shows that consumers can capture binding site characteristic features given
enough training data [49].

The BCR::ABL1 fusion protein’s PDB file was uploaded to the NVIDIA GPU-equipped
server via a WebGL graphical user interface to identify and locate pockets. The AIGT
compound was studied using the Molinspiration tool, which helps forecast the likelihood
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that target molecules will become pharmaceutical medications [50]. This method was used
to estimate the bioactivity scores of the most significant pharmaceutical targets and to
compute key molecular attributes (e.g., logP, polar surface area, number of hydrogen bond
donors and acceptors, etc.). Numerous free web-server programs make extensive use of
other computer-aided techniques. The AllositePro version 2.10 website provides an exam-
ple, which is based on a technique for allosteric site prediction utilizing an SVM based on
perturbation analysis in conjunction with topological and physiochemical pocket data [51].
As an alternative, CavityPlus finds potential binding sites on the surface of a certain protein
structure and ranks them based on ligandability and druggability criteria [52].

The Kinase Atlas server web application, a curated library of untapped allosteric sites,
is another effective implementation for allosteric drug development [53]. The collection is
based on 4910 PDB structures of 376 diverse kinds of kinases that have been crystallized.
FTMap is a method that uses small organic molecules as probes to identify the so-called
binding hot spots [54].

Random forest, support vector machine, and deep neural network techniques have
been used in Miljković’s work to create precise and reliable models [55]. A vast database
of chemicals experimenting with various binding mechanisms is used to train the models.
Allosteric and non-allosteric kinase inhibitors with comparable but different modes of
action can be distinguished by the global and balanced models that are produced. These
findings are highly appealing since they open a new potential off-patent chemical arena by
allowing the exploration of novel scaffolds.

Additionally, two in silico approaches were used to create novel possible small-
molecule allosteric TKIs on one side and study the Abl allosteric binding pocket on the
other. To clarify the most typical allosteric residues and their energetic contribution, the first
analysis specifically used a structure-based approach that was centered on the myristoyl
binding site. The second study made use of an internal automated generative ML algo-
rithm that may create a library of novel, potentially selective TKIs with easily adjustable
user-specified features [56].

Melge and colleagues validated two distinct ML-supervised models in vitro using
CML cell lines. They used AI to create a novel medication that combines two distinct
compounds, one of which (ponatinib) targets BCR::ABL1. ML-supervised models created a
variety of chemical compounds, but the most promising one showed activity in inhibiting
cell line growth in both TKI-sensitive and TKI-resistant cells [57].

Moreover, the utilization of natural compounds to treat CML represents a wide range
of AI applications. It has been demonstrated that the secondary metabolite withaferin-A
(Wi-A), which is isolated from ashwagandha (Withania somnifera), has anticancer properties.
The authors found ABL to be a promising candidate after doing an inverse virtual screening
to examine its capacity to bind to the catalytic site of protein kinases. The impacts on
constitutively active BCR::ABL1 oncogenic signaling that results in unchecked proliferation
and apoptosis inhibition in CML were examined using molecular docking and molecular
dynamics simulations. Wi-A’s Inverse Virtual Screening as a Protein Kinase Inhibitor Using
the xglide.py script of the Schrodinger suite 2018-2, which includes the standard precision
method of Glyde, Wi-A was screened for 851 kinase protein–ligand structures that were
retrieved from the scPDB database [58,59].

The authors discovered interactions between Wi-A and Withanone (Wi-N), a closely
similar withanolide, at the ABL’s catalytic and allosteric regions. When comparing Wi-
A to the clinically utilized medications Imatinib and Asciminib, the computed binding
energies were higher at the catalytic and allosteric sites, respectively. At the allosteric
site, Wi-N’s binding energy was lower than Asciminib’s. When exposed to ligand contact,
the conformational changes and interaction were found to be comparable to those of the
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medications Asciminib and Imatinib [60]. According to the results, Wi-A and Wi-N could
be used as natural medications to treat CML. Although much more in vitro and in vivo
research is necessary, the inhibition of ABL is proposed as one of the contributing causes to
the anti-cancer effect of Wi-A and Wi-N (Table 3).

Table 3. Use of AI in the study of toxicity and side effects of TKis, management of drug resistance
and generation of new drugs.

Toxicity and Side Effects

Target Drug AI Ref.

Gamma-Tocotrienol Asciminib Deep learning [42]

Drug resistance

Aim

Resistance profiles against
8 drugs

Axitinib, Bosutinib, Dasatinib,
Erlotinib, Gefitinib, Imatinib,
Nilotinib, and Ponatinib

Machine learning [37]

Overcome T315I resistance Imatinib mesylate, nilotinib,
dasatinib Machine learning [38]

Generation of new drugs

Evaluation of bioactivity scores Support Vector Machine [51]

Potential binding sites Support Vector Machine
Cavity Plus [52]

Allosteric drug development FTMap [53]

Identification of binding hot spot FTMap [54]

Evaluation of allosteric and
non-allosteric inhibitors

Random forest, Support Vector
Machine, Deep neural
network

[55]

Production of TKIs inhibiting
TKI-resistant cells Machine learning [57]

Evaluation of Withaferin A as TKi Algorithm of Glide, Visual
Molecular Dynamics [60]

Applying AI to the Study of CML’s Molecular Space

Even more pertinent than previously mentioned is the application of AI to the in-
vestigation of novel medicinal compounds in CML patients. Due mostly to extensive
screening efforts, a wealth of information about how small compounds affect biological
systems is growing. We should make significant progress in understanding biological
chemistry and in identifying prospective therapeutic chemicals and targets by analyzing
such datasets using the kinds of computational methods that the bioinformatics community
pioneered [61].

In fact, a crucial factor in understanding the nature of living systems is that biological
molecules do not act in isolation in the dilute solutions familiar to most chemists. Instead,
they are packed together to an extraordinary degree within cells [62,63].

It is therefore necessary to characterize the various chemical substances present in a
microenvironment and evaluate their relationships. Chemicals can be characterized by a
wide range of ‘descriptors’, such as their lipophilicity, molecular mass, and topological
features. ‘Chemical space’ is a term often used in place of ‘multi-dimensional descriptor
space’: it is a region defined by a particular choice of descriptors and the limits placed
on them. According to this realization, chemical space is the entire descriptor space
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that contains all of the tiny carbon-based molecules that are theoretically possible to
produce [64].

Although a coordinate-based model of molecular space is commonly used and of-
fers an attractive representation, it has some drawbacks, including high dimensionality.
The use of dimensionality reduction techniques is obviously necessary for the display
of the high-dimensional chemical space. Principal component analysis, self-organizing
maps, stochastic proximity embedding, t-distributed stochastic neighbor embedding, and
generative topographic mapping (GTM) are the most often used techniques [65].

A different approach is to compute a coordinate-free space representation using a
molecular similarity, in which a node stands for a molecule and an edge stores the similarity
between the two molecules it connects [66,67]. By first converting each molecule into its
pharmacophore graph, a study suggested visualizing and analyzing a chemical space
devoted to BCR-ABL tyrosine kinase inhibitors at the pharmacophore level. The authors of
a study presented the pharmacophore network, in which the parent–child relationships
between the pharmacophores are the edges and the topological pharmacophores are the
nodes [68]. Using the graph edit distance (GED), authors in a previous study spatialized
a selection of topological pharmacophores and grouped them into clusters where the
elements share important structural characteristics and activity [69].

Numerous drug discovery projects have emerged as a result of imatinib resistance,
which has helped chemical databases store thousands of data points. Over 124,000 patterns
with at least 10 molecules supporting them and displaying four to seven pharmacophoric
properties have been produced by the dataset mining process. In total, 99% of the molecules
in the dataset are covered by these patterns. Despite the long-standing benefits of pharma-
cophore triplets, the authors of this study did not take order three patterns into account
because of the size of BCR-ABL inhibitors. Here, the excessive simplicity of O3 patterns
makes it difficult to distinguish between big molecules with different general structures but
a few essential characteristics in common, limiting their capacity to adequately represent
the intricacies of molecular interactions during drug–target binding. The procedure known
as maximal marginal relevance feature selection (MMRFS) was used to choose a representa-
tive subset of patterns. To prevent selection biases and guarantee thorough coverage of
the molecular dataset, the subset was computed before evaluating the patterns’ association
with activity. Ninety-eight percent of the sample was covered by the 298 patterns that were
identified using MMRFS [68].

This work demonstrated a novel approach that does not require the selection of
training sets in advance for autonomously calculating topological pharmacophore hy-
potheses from large molecular datasets. Before evaluating pharmacophore quality, impor-
tant changes to the representative pharmacophore hypothesis selection stage guarantee
objective subset determination. Additionally, by comparing the extensions of different
pharmacophores pairwise, the authors assessed the structural proximities between them.
The improvement of node labeling on the pharmacophore space by classifying covered
compounds into four activity classes rather than a binary model was one noteworthy
accomplishment. By improving the color scheme used in the pharmacophore space, this
improvement makes specific areas of interest analysis and visual inspection easier [68].

The knowledge gained from these investigations can be applied to rule-based systems
in the future to forecast biological activity thanks to the use of AI.

6. Prospects for the Application of AI in CML in the Future
The combined use of AI with other sophisticated investigation methodologies may

improve the care of CML patients. Raman spectroscopy, for example, is a non-invasive laser-
based vibrational spectroscopy technique that yields a spectral output that can be examined
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to clarify the sample’s biological makeup [70]. Raman spectroscopy can be used to identify
changes in cancer cells that occur in the amounts and/or conformation of proteins, lipids,
carbohydrates, and nucleic acids since it gives a fingerprint of molecules [71–74]. Further-
more, because it is a non-invasive approach, it enables exogenous label-free data gathering
at the single-cell level in vitro. Moreover, Raman scattering by molecules adsorbed on
rough metal surfaces or by nanostructures like plasmonic-magnetic silica nanotubes is am-
plified by surface-enhanced Raman spectroscopy, also known as surface-enhanced Raman
scattering (SERS) [75,76].

In a study, an ordered array-assisted microfluidic chip and ML analysis were combined
to create a SERS-based platform for leukemia phenotyping [77]. Clinical samples’ SERS
spectra were gathered and prepared beforehand. Baseline deduction, spectrum smoothing,
feature peak fitting, and peak intensity extraction are all part of the pre-processing. With
normalized data and automated kernel scaling, the training model was configured as a
linear SVM model. To validate the model, a cross-validation method was used. The SVM
model improved general usability and expedited the analytical procedure. In clinical blood
samples, the model showed an accuracy of up to 98.6%, suggesting its potential for use
in leukemia diagnosis. But there are also two issues with the current platform that need
to be fixed. First, not all subtypes can be covered by the available library of SERS probes.
Second, operators are required since the automation potential of microfluidics has not yet
been completely utilized. It is relevant that this technology will reduce the time needed
for clinical leukemia typing, which often takes days, to less than one hour with automated
microfluidics and a full library of probes [77].

Furthermore, even though many of the most well-known AI applications are based on
ML techniques, there are other AI fields that are gaining prominence and attention. Formal
ontologies, for instance, are among the most representative. In the subject of automated
reasoning, ontologies are especially relevant because the goal is for an agent to be able to
make logical deductions based on general principles and known facts. Despite not being
as popular as ML-based methods just yet, this class of approaches has a lot of potential
advantages: ontologies can store enormous amounts of knowledge, can be verified by
human experts, which supports their explainability and reliability, and can be expanded
if added information becomes available. Additionally, they can be combined with ML
techniques to create synergy [78–80].

7. Conclusions
Through the creation of clinical systems based on guidelines and techniques in data

processing and clinical image analysis, AI has changed the diagnosis, treatment, and
prognosis of several hematological diseases [81,82] (Figure 1).

While some systems automate the classification and diagnosis of CML using medical
pictures, others allow for the early detection of CML based on clinical and laboratory
data. Early identification, timely treatment, and better clinical outcomes are possible by
these developments. AI provides deep, useful, and non-invasive analytical capabilities in
complicated and uncertain settings, including forecasting cancer outcomes and survival, in
contrast to conventional statistical and experimental prediction methods [83,84].

However, it is crucial to consider the drawbacks of using AI as well. The full and quick
adoption of AI in the medical area is hampered by a number of issues, and the extensive use
of ML is limited. Issues including inadequate sample numbers and subpar study design
must be resolved, and data mutability is another issue with the use of such systems in
hematology. Moreover, overfitting, a prevalent issue in machine learning models because of
their high degree of data distribution flexibility, presents a distinct challenge. An excellent
fit on the training set but subpar performance on the test set may arise from this. Moreover,
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choosing the right variables is essential when creating a model since adding superfluous or
irrelevant variables can degrade its functionality. Finally, algorithms must be developed
specifically to enhance clinical workflow in order for DL to be used in clinical practice [85].
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Furthermore, one of the most difficult problems in image analysis is reproducibility.
Because the cognitive patterns of an AI agent can be obscure, particularly if it is built on an
ANN-family algorithm, it can be challenging to determine the involvement of the technol-
ogy in image acquisition and reconstruction. Results may be impacted by some artifacts
that may vary depending on the hardware quality, the set and version of reconstruction
methods used, and certain ambient characteristics that may not be reproducible elsewhere.
Furthermore, there are serious ethical concerns with AI’s development. The relationship
between the decision maker (DM) and the decision support system (DSS) is one aspect
of the issue, in addition to privacy concerns (the requirement to retain vast amounts of
personal data). Due to cultural and legal ramifications, the DM has historically been the
clinician, and the software is a DSS. The DM then decides supported by his knowledge
(science) and feelings (art) following consultation with the DSS. The AI decision-making
process is obviously entirely different.

Moreover, the “black box” issue, characterized by the opacity and complexity of ma-
chine learning model internals, presents a considerable hurdle in medical utilization. It is
crucial to develop explainable AI solutions because a lack of transparency may impede
patients’ and clinicians’ trust and adoption. Between the demand for intelligible, inter-
pretable predictions and the high performance of contemporary machine learning models,
explainable AI seeks to close the gap. The creation of tools like SHAP, LIME, and Influence
Functions supports the validity and dependability of the models while also providing
transparency [86].

Lastly, because AI systems must be trained or optimized on vast volumes of data, the
systems that are produced are often biased in favor of the population from which the data
were gathered. The majority of this comes from wealthy Western nations that currently
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have the resources and infrastructure to allow the establishment of data pipelines and
ecosystems for data sharing. Hence, underrepresented populations may not receive the
best possible care.

AI is currently capable of delivering exceptional results, especially when it comes to
data analysis. Beyond the bounds of human cognitive patterns, it can study relationships
between vast collections of covariates or utilize imperfect knowledge to develop precise
diagnostic and prognostic predictive models. Along with preventing or treating adverse
effects, this also opens up new therapeutic possibilities. With the potential to identify new
compounds more quickly, shorten trial durations, and significantly lower costs, the field of
new drug exploration in particular seems to be the most promising.

But there are a number of aspects that need to be considered. As an example, ML is
more empirical than classical analysis and is focused on testing outcomes a posteriori. This
necessitates a more critical interpretation of the findings. In addition, many of the steps
that span from data gathering to model performance evaluation lack standards.

Additionally, results are still pending external validation with samples drawn from
groups that differ from those studied in the original research. Finally, data from a single site
or data acquired differently than in clinical practice were used in certain research, which
had tiny sample sizes.

However, although the use of AI to treat hematologic malignancies is still a ways off, it
is undoubtedly worth considering and researching. It is important to remember that every
hematologic disease has unique characteristics that affect the purposes and usefulness
of AI applications. Similar to what has already been established in other hematological
diseases like acute myeloid leukemia, AI has been demonstrated to be more capable than
humans when it comes to analyzing the cytomorphology of bone marrow samples and
peripheral blood smears. In CML patients AI may assist researchers in finding novel
medications and modifying them to ensure less toxicity, much as what has been shown
in other disorders. However, therapy discontinuation is a new area where AI may be
crucial for CML patients [87]. After stopping TKI treatment, between 40 and 60 percent of
patients who achieve a stable deep molecular response will continue to be in remission;
this is known as treatment-free remission (TFR) [88]. After stopping treatment, however,
the majority of patients relapse, necessitating the resumption of TKI therapy [89]. AI-
powered multiparametric analysis could more reliably identify patients who are ready to
stop treatment.

In any case, it is anticipated that AI-driven multimodal data integration and the
creation of increasingly intelligent operational platforms would both make it easier to
investigate the disease and offer new tools and approaches for better management of CML.
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