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Abstract: Sugars will eventually be exported transporter (SWEET), a class of glucose
transport proteins, is crucial in plants for glucose transport by redistribution of sugars and
regulates growth, development, and stress tolerance. Although the SWEET family has
been studied in many plants, little is known about its function in winter B. rapa (Brassica
rapa L.). Bioinformatics approaches were adopted to identify the SWEET gene (BraSWEETs)
family in B. rapa to investigate its role during overwintering. From the whole-genome
data, 31 BraSWEET genes were identified. Gene expansion was realized by tandem and
fragment duplication, and the 31 genes were classified into four branches by phylogenetic
analysis. As indicated by exon—intron structure, cis-acting elements, MEME (Multiple
EM for Motif Elicitation) motifs, and protein structure, BraSWEETs were evolutionarily
conserved. According to the heat map, 23 BraSWEET genes were differentially expressed
during overwintering, revealing their potential functions in response to low-temperature
stress and involvement in the overwintering memory-formation mechanism. BraSWEET10
is mainly associated with plant reproductive growth and may be crucial in the formation
of overwintering memory in B. rapa. The BraSWEETI10 gene was cloned into B. rapa
(Longyou-7, L7). The BraSWEET10 protein contained seven transmembrane structural
domains. Real-time fluorescence quantitative PCR (qRT-PCR) showed that the BraSWEET10
gene responded to low-temperature stress. BraSWEET10 was localized to the cell membrane.
The root length of overexpressing transgenic A. thaliana was significantly higher than that
of wild-type (WT) A. thaliana under low temperatures. Our findings suggest that this gene
may be important for the adaptation of winter B. rapa to low-temperature stress. Overall,
the findings are expected to contribute to understanding the evolutionary links of the
BraSWEET family and lay the foundation for future studies on the functional characteristics
of BraSWEET genes.
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1. Introduction

Sugar transport and homeostasis are crucial for regulating plant growth, development,
and responses to biotic and abiotic stress. The content of soluble sugars, including sucrose,
glucose, fructose, and galactose, varies in plants during freezing resistance, and it is an
important physiological indicator directing freezing resistance in plants [1].
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In plants, sugars are produced by the photosynthetic tissue (source) and then trans-
ported to non-autotrophic tissue (reservoir). This process involves sugar transport across
cell organelles, transport across different cells, and long-distance transport through the
phloem. During transport, sugars need to traverse through organelle membranes and
cell membranes several times [2], and sugar transporters are pivotal in these processes.
This implies that sugar transporters are key factors regulating the redistribution of sol-
uble sugars and can respond to various stresses [1]. To date, several membrane-located
sugar transporters have been identified in plants, including the sucrose transporters (SUTs)
family [3], monosaccharide transporters (MSTs) [4,5], and the sugars will eventually be
exported transporter (SWEET) family [6].

SWEET proteins are a newly identified class of sugar efflux transporters. As pH-
independent bidirectional transporters of sugars, SWEET proteins can facilitate the diffu-
sion of various soluble sugars to the apoplast on cell efflux by crossing the cell membrane
following the concentration gradient, and they function as low-affinity glucose transport
proteins to regulate glucose uptake across the cell membrane [7,8]. In eukaryotes, such as
humans, nematodes, ascidians, and plants, the SWEET transporter protein comprises seven
trans-membrane «-helices (trans-membrane helix (TMH)). At the N terminal and C termi-
nal of the SWEET protein, there is an MtN3/saliva structural domain, which comprises
two conservative 3-TMH, resultant of tandem duplication. The remaining TMH serves as a
link in the middle, thus forming a “3-1-3" structure [6].

The number of the SWEET gene family members varies in different species and
has not been implicated in the complexity of species evolution [8]. For example, the
Chlamydomonas SWEET gene family comprises three genes, while the higher creature
(human) and mice contain only one gene separately [7]. In contrast, vascular plants contain
multiple SWEET genes. For instance, the SWEET family has 17, 21, and 15 members in A.
thaliana, rice, and alfalfa, respectively [9]. SWEETs exhibit functional diversity in plants.
According to relevant studies, genes in this family are involved in many biological processes,
such as sugar transport, ion transport, host-pathogen interaction, plant development,
senescence, and stress resistance.

In recent years, studies on the relationship between SWEETs and abiotic stress resis-
tance in plants have mainly focused on A. thaliana. Many SWEET genes in different plants
are induced by abiotic stress at the transcriptional level, indicating their possible association
with plant response to stress. AtSWEET15 is related to plant senescence and is involved in
mediating response to abiotic stress. The expression of AtSWEET15 is induced by cold, high
salt, and drought via the ABA-dependent pathway, and is upregulated under cold stress.
AtSWEET15 overexpression lines are more sensitive to salt stress, and mutants exhibit
higher root cell viability under salt stress compared with the control [10]. AtSWEET17,
a tonoplast-located fructose transporter, can mediate fructose transport in vacuoles. The
AtSWEET17 mutant accumulates more fructose under nitrogen deficiency and cold stress,
suggesting that AtSWEET17 is involved in plant stress resistance [11,12]. AtSWEET16,
a homolog of AtSWEET17, is downregulated in leaves under cold stress, osmotic stress,
and low-nitrogen stress. Under cold stress, the overexpression lines of AtSWEET16 show
increased fructose concentration in leaves, enhanced root growth, increased plant cold tol-
erance, and improved nitrogen use efficiency [11]. AtSWEET11 and AtSWEET12 participate
in cold stress tolerance by regulating the number and pore diameter of xylem vessels [13].
During cold acclimation, the expressions of CSSWEET?2, 3, and 6 are notably inhibited,
while those of CsSWEET1 and CsSWEET17 increase sharply. Under high-salt and cold
stress, the induced expression of SWEETs in other plants, such as barley and tomato, also
supports the involvement of SWEET genes in regulating abiotic stress [8].
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In northern China, winter B. rapa is the only overwintering oil crop [14]. In the cold

winter, winter B. rapa can resist the cold environment by preserving its roots and the shoot

apical meristem [15]. A systematic study on the SWEET gene family of winter B. rapa is

lacking. Owing to its high homology, reports on the SWEET gene family have focused on

its role in reproductive development and the clubroot of Brassica crops. Several SWEET

genes belonging to branches I and III show remarkable upregulation during Plasmodiophora

Brassicae-induced formation [16]. BraSWEET9/BcNS is crucial in development, particularly
that of the floral nectary [17]. Nonetheless, a relevant study on the function of the SWEET
genes in stress resistance of B. rapa is lacking. In this study, Longyou-7 (L7) (cold tolerances)

was chosen as the experimental object, and we focused on the phylogeny, gene structure,

chromosome distribution, and cis-acting regulatory elements of the SWEET family. Simulta-

neously, BraSWEET gene expression during overwintering was analyzed. This study aimed

to explore the important function of the BraSWEET gene family in the excellent freezing

resistance from the perspective of gene evolution and structure in B. rapa. It provides

valuable information for studies on improved freezing resistance in B. rapa.

2. Results
2.1. Identification and Structural Analysis of BraSWEET Genes Family

Thirty-one SWEET genes were identified in the genome of B. rapa (Table 1), 1.82 times

that of the AtSWEET gene family. Among the 31 BraSWEET genes, Brapa05T003594.1/
BraSWEETS.1 belongs to the semi-SWEET group containing only one MtN3 domain, and all
other proteins contain two MtN3 domains [18]. Except for Brapa05T003594.1/BraSWEETS.1,
the CDS (Coding DNA Sequence) lengths of the genes ranged from 686 (BraSWEET16.1)
to 1274 bp (BraSWEET11.2); the encoded protein lengths varied from 205 to 298 amino
acid residues; molecular weights (MW) were between 22.813 kDa (BraSWEET4.1) and
33.384 kDa (BraSWEET15.2); and the predicted isoelectric (PI) values varied from 7.66
(BraSWEET4.1) to 9.54 (BraSWEET6.1). A comparison of the homology of the 17 AtfSWEET
genes and 31 BraSWEET genes is shown in Table 1.

Table 1. Characteristics of SWEET genes in B. rapa and information relevant to A. thaliana.

Gene Name Gene ID Chromosome Transmembrane CDS Protein MW PI Number of
Number Domains (bp) Length (aa) (kD) Domains
BraSWEET1.1 Brapa06T001655.1 A06 7 948 246 27.155 9.3 2
BraSWEET1.2 Brapa08T002789.1 A08 7 1006 250 27.66 9.29 2
BraSWEET?2 Brapa05T002998.1 A05 7 1210 236 26.644 8.95 2
BraSWEET?2.1 Brapa01T003748.1 A01 7 969 236 26.3626 8.93 2
BraSWEET3 Brapa02T001534.1 A02 6 799 242 27.584 8.52 2
BraSWEET4.1 Brapa02T003964.1 A02 6 688 205 22.813 7.66 2
BraSWEET4.2 Brapa06T003316.1 A06 8 1183 297 32.983 9.22 2
BraSWEETS5 Brapa09T005858.1 A09 7 723 240 27.244 9.04 2
BraSWEET5.1 Brapa02T004551.1 A02 7 723 240 26.971 8.15 2
BraSWEET5.2 Brapa02T004552.1 A02 7 723 240 26.823 8.14 2
BraSWEET6.1 Brapa09T003889.1 A09 7 741 246 27.215 9.54 2
BraSWEET6.2 Brapa03T002763.1 A03 6 789 262 28.707 9.25 2
BraSWEETS8 Brapa04T001417.1 A04 6 717 238 26.794 8.97 2
BraSWEETS.1 Brapa05T003594.1 A05 1 189 62 7.012 4.66 1
BraSWEETS.2 Brapa05T003592.1 A05 6 924 242 27.207 8.42 2
BraSWEET9 Brapa03T002066.1 A03 7 813 270 30.125 9.18 2
BraSWEET10 Brapa03T001544.1 A03 7 952 289 33.042 9.29 2
BraSWEET11.1 Brapa01T002415.1 A01 7 1197 290 32.344 9.04 2
BraSWEET11.2 Brapa06T001802.1 A06 7 1274 289 32.067 9.25 2
BraSWEET12.1 Brapa06T002739.1 A06 7 1318 288 31.782 9.07 2
BraSWEET12.2 Brapa09T005963.1 A09 7 1146 277 30.498 9.13 2
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Gene Name Gene ID Chromosome Transmembrane CDS Protein MW PI Number of

Number Domains (bp) Length (aa) (kD) Domains
BraSWEET14 Brapa03T005270.1 A03 7 1048 273 30.29 9.27 2
BraSWEET14.1 Brapa08T002066.1 A08 7 930 272 29.917 9.18 2
BraSWEET14.2 Brapa01T001548.1 A01 7 1079 273 30.1 9.2 2
BraSWEET15.1 Brapa03T000563.1 A03 7 1057 292 32.848 8.16 2
BraSWEET15.2 Brapal10T000811.1 A10 7 1155 298 33.384 8.44 2
BraSWEET15.3 Brapa02T000470.1 A02 7 1129 297 33.156 8.26 2
BraSWEET16.1 Brapa03T003796.1 A03 7 686 231 25.68 9.06 2
BraSWEET16.2 Brapa01T003622.1 A01 7 696 231 25.755 8.69 2
BraSWEET17.1 Brapa08T001162.1 A08 7 1001 240 26.561 9.24 2
BraSWEET17.2 Brapa03T004706.1 A03 7 1182 240 26.455 8.76 2

The trans-membrane regions of 31 BraSWEET proteins were predicted using the
TMHMM2.0 (http:/ /www.cbs.dtu.dk/services/ TMHMM/ (accessed on 5 March 2025))
software. Twenty-four members of the BraSWEET family had seven typical trans-
membrane helixes (Figure 1), similar to the characteristics of SWEET family members
in other species containing seven trans-membrane helixes and two MtN3 domains. Five
members had six trans-membrane helixes; BraSWEET8.1/Brapa05T003594.1 contained
only one trans-membrane domain; and BraSWEET4.2 /Brapa06T003316.1 included eight
trans-membrane domains. Accordingly, BraSWEET family proteins may be localized on
the membrane as receptors.
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Figure 1. The transmembrane domain of BraSWEET proteins. The blue lines signify the intracel-
lular region. The thick purple line denotes the transmembrane region. Yellow lines indicate the
extracellular region.
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Group3

B Exon = Intron

Intron—-exon mapping analysis showed a highly conserved number and distribution
of introns and exons of SWEET genes in B. rapa (Figure 2B). Six exons are contained in
27 members of the BraSWEET family, five in the BraSWEET3/Brapa02T001534.1, four in two
members (BraSWEET6.1/Brapa09T003889.1 and BraSWEET6.2/Brapa03T002763.1), and two

in the shortest, BraSWEETS.1/Brapa05T003594.1.
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Figure 2. Gene structure and motifs of the BraSWEET genes. (A) The phylogenetic tree of BraSWEET
proteins. (B) The exon—intron structure of 31 BraSWEET genes. Exons and introns are represented by
rose boxes and blue lines, respectively. (C) The motif composition of BraSWEET proteins. The seven
motifs are represented by differently colored rectangles.

Using the MEME program, conserved motifs of 31 BraSWEETs were predicted. Based
on the BraSWEETs” sequence characteristics, seven motifs, designated motifs 1-7, were
identified and exhibited (Figure 2C and Figure S1). Thirty-one members contained mo-
tif 3. Except for BraSWEETS.1/Brapa05T003594.1, the remaining genes contained motif
5. BraSWEETS8/Brapa04T001417.1 and BraSWEET4.1/Brapa02T003964.1 contained motifs
2,3,4, and 6. BraSWEET3/Brapa02T001534.1 contained motifs 1, 3, 4, and 5. In combina-
tion with the clade, Group 1, Group 3, and Group 4 had conserved motifs. For example,
motifs 6 and 7 were only found in Group 3. The number and distribution of motifs in
Group 2 differed. BraSWEETS8.1/Brapa05T003594.1, BraSWEET8.2/Brapa05T003592.1, and
BraSWEET6.2/Brapa03T002763.1 contained fewer motif types, and other homolog proteins
had similar motif composition and distribution. Similar motif compositions in the same
clade are indicative of the functional similarity of the members of each clade.
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2.2. Phylogenetic Analysis of BraSWEET Proteins

B. rapa and A. thaliana belong to the Brassicae family. By aligning using the MEGA
VII (v7.0.14) software, a phylogenetic tree was constructed for the 31 BraSWEET and
17 AtSWEET amino acid sequences (Figure 3). According to the phylogenetic tree,
BraSWEET proteins were classified into four clades, namely Group 1, Group 2, Group 3,
and Group 4, respectively. Each clade contained 5, 10, 12, and 4 members of the BraSWEET
family, respectively. Notably, it contained no corresponding proteins in B. rapa which were
evolutionarily close to AtSWEET7 and AtSWEET13.
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Figure 3. Phylogenetic tree of SWEET proteins in Brassica rapa L. (L7) and A. thaliana. The numbers
on the branches indicate the bootstrap percentage values calculated from 1000 replicates. The genes
in the pink, yellow, blue, and green clades are clubbed in Groupl, Group2, Group3, and Group4,
respectively. The clades containing only AtSWEET genes are marked with a red star. The clade
containing only one MtN3 motif is indicated using a green triangle.

2.3. Chromosomal Localization, Collinearity Analysis, and Tandem Replication of BraSWEETs

Thirty-one BraSWEET genes were distributed on 9 of 10 chromosomes (Figure 4).
Seven genes were distributed on chromosome 3, the most among all chromosomes. There
were four BraSWEET genes on chromosomes 1 and 6, five on chromosome 2, three on
chromosomes 5, 8, and 9, and only one gene on chromosomes 4 and 10. There were no
BraSWEET genes on chromosome 7. As shown by chromosomal localization analysis of
SWEET family genes, the distribution of the BraSWEET genes on chromosomes was random
and throughout the genome, rather than concentrated on a small number of chromosomes.
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Figure 4. Chromosomal locations of BraSWEET genes. Black lines represent the gene position on the
chromosome. Tandemly duplicated genes are indicated with orange boxes.

Gene duplication, including tandem and segmental duplication, is crucial for plant
genome evolution. Only one pair of BraSWEET genes (BraSWEETS5.1/Brapa02T004551.1,
BraSWEETS5.2/Brapa02T004552.1) was identified as tandem duplication and was located
on chromosome 2 (Figure 4). There is a close genetic distance between BraSWEETS.1/
Brapa05T003594.1 and BraSWEET8.2/Brapa05T003592.1, but the length of BraSWEETS.1 is
merely 189 bp, which is less than 70% of the length of the BraSWEETS.2 gene. Thus, it was
not considered tandem duplication. A total of 18 fragment duplications were identified,
all located on different chromosomes (Figure 5). Thus, gene replication is pivotal for the
expansion of the BraSWEET gene family.

The rates of synonymous substitution (Ks) and non-synonymous substitution (Ka)
were calculated, along with the Ka/Ks ratio of 19 pairs of duplicated genes to further
understand the duplications of BraSWEET genes (Table 2). The Ka/Ks ratio is an important
indicator of the selection pressure of the evaluated genes. Values of Ka/Ks = 1 indicate
neutral selection, Ka/Ks < 1 denotes the purifying selection, and Ka/Ks > 1 signifies positive
selection for acceleration of evolution [19]. The Ka/Ks ratio of homologous BraSWEET
genes was much lower than 1, indicating that these were strongly purified during the
evolution. The SWEET duplicated gene pairs were separated from each other from 5 to
24 million years ago (MYA), except for BraSWEET5.1 and BraSWEET5.2, on the one hand,
and BraSWEET14.2 and BraSWEET10, which were separated from each other by 3.1 and
70.8 MYA, respectively. Ks/2r (r = 1.5 x 10 — 8) was used for calculation.
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Figure 5. Synteny analysis for the SWEET family in B. rapa (L7). Gray lines indicate all synteny blocks
in the genome of B. rapa (L7). Red lines indicate the duplication of BraSWEET gene pairs.

Table 2. Identification of substitution rates for homologous BraSWEET genes.

. Non-Synonymous Synonymous Duplication Date
Orthologous Gene Pairs Substitution Rate (Ka) Substitution Rate (Ks) Ka/Ks (MYA)
Brapa06T001655/BraSWEET1.1 0.0302 0.2264 0.1332 7.55
Brapa08T002789/BraSWEET1.2
Brapa01T003748/BraSWEET?2.1 0.0714 0.3188 0.2241 10.63
Brapa05T002998/BraSWEET?2
Brapa02T003964/BraSWEET4.1 0.0375 0.2520 0.1488 8.40
Brapa06T003316/BraSWEET4.2
Brapa02T004551/BraSWEET5.1 0.0764 0.0928 0.8239 3.09
Brapa02T004552/BraSWEET5.2
Brapa02T004551/BraSWEETS5.1 0.1144 0.2685 0.4261 8.95
Brapa09T005858/BraSWEET5
Brapa03T002763/BraSWEET6.2 0.2182 0.5115 0.4267 17.05
Brapa09T003889/BraSWEET6.1
Brapa01T002415/BraSWEET11.1 0.0738 0.2497 0.2955 8.32
Brapa06T001802/BraSWEET11.2
Brapa06T001802/BraSWEET11.2 0.0777 0.7063 0.1100 23.54
Brapa06T002739/BraSWEET12.1
Brapa06T002739/BraSWEET12.1 0.0460 0.1753 0.2625 5.84
Brapa09T005963/BraSWEET12.2
Brapa03T005270/BraSWEET14 0.0431 0.2317 0.1861 7.72
Brapa08T002066/BraSWEET14.1
Brapa01T001548/BraSWEET14.2 0.0340 0.2175 0.1565 7.25

Brapa03T005270/BraSWEET14
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Table 2. Cont.
. Non-Synonymous Synonymous Duplication Date

Orthologous Gene Pairs Substituzlion Ii,ate (Ka) Substi};utio}rll Rate (Ks) Ka/Ks P (MYA)
Brapa01T001548/BraSWEET14.2 0.0323 0.2122 0.1521 7.07
Brapa08T002066/BraSWEET14.1
Brapa01T001548/BraSWEET14.2 0.4723 2.1231 0.2224 70.77

Brapa03T001544/BraSWEET10

Brapa03T000563/BraSWEET15.1 0.0782 0.2395 0.3263 7.98
Brapal0T000811/BraSWEET15.2
Brapa01T003622/BraSWEET16.2 0.0452 0.3249 0.1392 10.83
Brapa03T003796/BraSWEET16.1
Brapa01T003622/BraSWEET16.2 0.1716 0.6453 0.2659 21.51
Brapa03T004706/BraSWEET17.2
Brapa02T000470/BraSWEET17.2 0.0967 0.2848 0.3394 9.49
Brapa03T000563/BraSWEET15.1
Brapa02T000470/BraSWEET17.2 0.0937 0.2711 0.3458 9.04
Brapal0T000811/BraSWEET15.2
Brapa03T004706/BraSWEET17.2 0.0520 0.1836 0.2831 6.12

Brapa08T001162/BraSWEET17.1

ATH

Brapal.7

rapa

Orthologous BraSWEET genes in the B. rapa genome were explored with those in the
Chinese cabbage and A. thaliana genomes to clarify divergence in the evolution of B. rapa.
In this study, collinearity was observed among SWEET family genes in B. rapa (L7), with
27 genes in A. thaliana and 37 in Chinese cabbage (Figure 6). According to these results, B.
rapa has a close relationship with A. thaliana and Chinese cabbage; in particular, SWEET
genes of Chinese cabbage have similar functions.

2 3 4 5

N

7L ||‘ )

Figure 6. Synteny analysis of SWEET genes in B. rapa (L7), Arabidopsis, and Chinese cabbage. The
gray lines in the background represent collinear blocks in genomes of B. rapa (BrapaL7), A. thaliana
(ATH), and Chinese cabbage (rapa), and the red lines highlight collinear SWEET gene pairs.

2.4. Analysis of Secondary and Tertiary Structures of BraSWEET Proteins

Varied percentages of alpha-helix (29.03-48.92%), extended chain (14.83-38.71%),
B-turn (1.34-9.68%), and random coils (22.58-42.56%) were found in BraSWEET proteins.
Nonetheless, in the same evolutionary clades, the secondary structures showed certain
clustering, except for BraSWEETS.1/Brapa05T003594.1 (Table S1). Similar tertiary structures
of 31 BraSWEET proteins were formed by folding of the secondary structures (Figure 7).
There were structural differences in Group 2, including BraSWEET4.1/Brapa02T003964.1,
BraSWEET6.2/Brapa03T002763.1, and BraSWEETS.1/Brapa05T003594.1.
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Figure 7. Predicted tertiary structure of BraSWEET proteins.

2.5. Cis-Element Analysis for the BraSWEET Gene Family

Metabolic networks and regulatory mechanisms of BraSWEET genes were performed
to understand the genetic functions using cis-acting elements in the 1.5 kb promoter se-
quences. There were four classes of cis-acting elements associated with growth and de-
velopment, light response, phytohormone response, and stress response in the promoter
region (Table S2). By focusing on the cis-acting elements related to stress response (Figure 8),
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Brapa01T001548.1

all 31 gene promoter regions contained MYC, and 30 gene promoter regions included MYB,
except for BraSWEET2.1/Brapa01T003748.1. Abscisic acid responsive element (ABRE) was
found in 28 BraSWEET genes in multiple copies, except for BraSWEET5/Brapa09T005858.1,
BraSWEETS.1/Brapa05T003594.1, and BraSWEET17.2/Brapa03T004706.1. All three types of
cis-acting elements were associated with ABA-induced responses and are present on various
resistance gene promoters. Ethylene-responsive element (ERE) was present in 24 BraSWEET
genes. LTR (cis-acting element involved in low-temperature responsiveness) was found
in 15 BraSWEET genes. Four gene promoters (namely BraSWEET®6.2/Brapa03T002763.1,
BraSWEETS.2/Brapa05T003592.1, BraSWEET10/Brapa03T001544.1, and BraSWEET16.1/
Brapa03T003796.1) contained dehydration responsive element (DRE), which were expressed
under drought, high salt, and low-temperature stress [20,21]. Fifteen genes contained the
W-box (WRKY transcription factor binding site) element, generally regulated by salicylic
acid and presented in disease-resistance genes [22,23]. Twenty-nine genes harbored the
antioxidant response element (ARE) and were involved in hypoxic conditions.
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Figure 8. Cis-acting elements in the promoter regions of BraSWEETs. Cis-acting elements were
identified by PlantCARE using upstream 1500 bp sequences of the BraSWEETs. Red inverted triangle,
green inverted triangle, brown square, blue triangle, light blue square, orange inverted triangle,
purple square, dark green square, dark red triangle, and red inverted triangle represent ABRE, ARE,
DRE, ERE, LTR, MBS, MYB, MYC, and W-Box, respectively. The scale bar on the bottom indicates the
length of promoter sequences.

2.6. Protein—Protein Interaction Network for BraSWEETs

A BraSWEET interaction network was constructed for Arabidopsis orthologous pro-
teins to explore the potential regulatory network and function of BraSWEETs. According
to the protein—protein interactor predictions, some BraSWEETs could interact with other
BraSWEETs; for instance, BraSWEET10 interacted with BraSWEETS (Figure S2). BraSWEETs
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interacted with other proteins, suggestive of a common role (Figure 9). As indicated by
these results, BraSWEETs are involved in regulating growth, development, and mediating
biotic stress in plants.

SWEETS -

I s 1\ P N

AT

Figure 9. Predicted protein—-protein interaction network for BraSWEET proteins. The network nodes
represent proteins. The line width indicates the reliability of the interaction. The node size represents
the number of proteins that interact with each other.

2.7. Analysis of Transcriptional Expression of BraSWEET Genes During Overwintering

The root collar tissues of L7 were selected to evaluate the expression levels of
BraSWEETSs in different overwintering stages. Twenty-three genes exhibited notable changes
in expression (Figure 10). Brapa08T002066.1/BraSWEET14.1, Brapa08T001162.1/BraSWEET17.1,
and Brapa09T003889.1/BraSWEET6.1 were highly expressed in the S1 stage, and those of
Brapa08T001162.1/BraSWEET17.1 and Brapa09T003889.1/BraSWEET6.1 lasted till the S2
stage. Brapa08T002789.1/BraSWEET1.2 and Brapa06T003316.1/BraSWEET4.2 were highly
expressed in the S2 stage and decreased gradually. The expressions of Brapa037001544.1/
BraSWEET10, Brapa09T005963.1/BraSWEET12.2, Brapa03T005270.1/BraSWEET14, BrapaO1T
001548.1/BraSWEET14.2, and Brapa05T002998.1/BraSWEET2 were high in the S3 stage. The
expressions of Brapa03T003796.1/BraSWEET16.1 and Brapa01T003622.1/BraSWEET16.2 were
the highest in the 54 stage. The expressions of Brapa01T003748.1/BraSWEET2.1 and Brapa03
T002763.1/BraSWEETS6.2 increased in the S4 stage. The expressions of Brapa03T000563.1/
BraSWEET15.1, Brapal0T000811.1/BraSWEET15.2, Brapa02T000470.1/BraSWEET15.3, and
Brapa04T001417.1/BraSWEETS8 were the highest in the S5 stage. Brapa01T002415.1/BraSWEET11.1,
Brapa06T002739.1/BraSWEET12.1, Brapa02T003964.1/BraSWEET4.1, and Brapa02T004551.1/
BraSWEET5.1 were highly expressed in the S6 stage when the plant turned green.
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On the whole, when the temperature was above zero (4 °C), three BraSWEET genes
(Brapa08T002066.1/BraSWEET14.1, Brapa08T001162.1/BraSWEET17.1, and Brapa09T003889.1/
BraSWEET6.1) were expressed in response. Sixteen genes were highly expressed in sub-zero
low-temperature stages (52-S5 stages). When the temperature increased gradually (with
the lowest air temperature of —1 °C) and the plants turned green, four genes, includ-
ing Brapa01T002415.1/BraSWEET11.1, Brapa06T002739.1/BraSWEET12.1, Brapa02T003964.1/
BraSWEET4.1, and Brapa02T004551.1/BraSWEETb.1, were expressed.

A B

2
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Brapa02T003964.1/BraSWEET4.1
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Figure 10. Expression profiles of 23 BraSWEWT5 genes in different overwintering periods. (A) Heat
map of BraSWEWT5 genes in six periods of overwintering (S1-56). (B) Plant growth map in different
wintering periods (51-56).

2.8. Subcellular Localization of BraSWEET10 Protein in Tobacco

A previously constructed subcellular localization vector, 355-BraSWEET10-GFP, was
transiently expressed in tobacco leaves, and after 2-3 days of dark culture, the leaves
were observed under a confocal microscope. Green fluorescence was localized in the cell
membranes of the cells of the tobacco leaves (Figure 11), and we inferred that BraSWEET10
was localized to the cell membranes, consistent with the prediction. This result was further
verified by other methods in the later stages.

Figure 11. Subcellular localization of BraSWEET10 in tobacco. Treatment: 20% sucrose, 5-10 min.
(A) Fluorescence image for BraSWEET10-GFP. (B) Bright field. (C) Merger of the first two images.
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2.9. Screening and Characterization of BraSWEET10 Overexpressing Transgenic A. thaliana

A. thaliana pure lines overexpressing the BraSWEET10 gene were successfully obtained
by the flower dipping method. BraSWEET10 gene expression was characterized by qRT-
PCR. As shown in Figure 12, among the A. thaliana pure lines obtained by screening, the
relative expression of the BraSWEET10 gene was 5-fold higher than that of the wild-type
A. thaliana. plants No. 1 and No. 3; the expression in No. 2 plants was basically the same
as that of the A. thaliana wild-type plants. Therefore, in the subsequent experiments, we
selected No. 1 and No. 3 as experimental objects.

Relative expression of BraSWEETI0

—

(.

WT 1# 2# 3#

Figure 12. Expression level of BraSWEET10 in transgenic A. thaliana. WT: wild type, 1#/2#/3#:
BraSWEET10 transgenic A. thaliana. ® p < 0.01 vs. WT group, ® p < 0.05 vs. WT group.

2.10. Resistance Analysis of BraSWEET10 Overexpressing A. thaliana Plants

Wild-type A. thaliana and transgenic plants were planted on MS plates and incubated
vertically for 10 days at 4 °C for 12 h and normally for 7 days. Root lengths were mea-
sured, as shown in Figure 13. The root lengths of overexpressing A. thaliana plants without
low-temperature treatment were the same as those of the wild type, and those of overex-
pressing A. thaliana plants were significantly longer than those of wild-type plants after
low-temperature treatment. This indicated BraSWEET10’s potential involvement in the
regulation of root development at low temperature.

45

Root length
N o
o= v W e

e
EY

Temperature

Figure 13. Root length of transgenic A. thaliana after low-temperature stress. WT: wild type, 3#:
BraSWEETI0 transgenic A. thaliana. (A) Normal condition culture, (B) low-temperature (4 °C)
treatment, (C) root length of A. thaliana plants after low-temperature treatment. 2 p < 0.01, 3# group
vs. WT group.

3. Discussion

The first member of the SWEET gene family, named MtN3, was identified in the
legume Medicago truncatula [24]. A new class of sugar transporters, called SWEETs, was
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discovered in 2010 by employing optical glucose sensors and are primarily involved in
sugar efflux [6]. The functions of SWEET genes have been explored and studied in different
plant species such as A. thaliana, wheat, cucumber, alfalfa, Chinese cabbage, sorghum,
cassava, soybean, cotton, and sugarcane [25]. These studies have mainly focused on their
role in growth and development, pollen development, and response to abiotic and biotic
stress in plants [17,26-37]. L7 shows remarkably strong cold resistance, withstanding
extremely low temperature, even sub-zero 32 °C. In this study, 31 BraSWEET genes were
successfully identified from the B. rapa whole-genome data. These genes were classified
into Groups 14, conforming to the previous clades of A. thaliana and maize. According
to expression profile analysis, 23 BraSWEET genes were differentially expressed during
overwintering, and these might be involved in coping with overwintering.

3.1. Characteristics of the BraSWEET Gene Family

Most predicted SWEET proteins possess seven transmembrane helices, forming two
MtN3 domains [6,7,38,39]. As shown in this study, most BraSWEET proteins contained
seven transmembrane helices, and TM1-3 and TMb5-7 constituted the two MtN3 domains.
This domain was highly evolutionarily conserved. Brapa05T003594.1/BraSWEETS.1 was a
semi-SWEET, containing only one MtN3 domain. Thirty-one members of the BraSWEET
family are localized to the plasma membrane [6].

BraSWEETs can be divided into four clades, and Groups 2 and 3 were the main
clades in most plants. This feature was confirmed in this study. Genes 10 and 11 were
defined in Groups 2 and 3, respectively, indicating their vital function. As indicated in
previous studies on the characteristics of sugar transport, the SWEET proteins in Groups
1, 2, and 4 transported hexoses, including glucose, fructose, and galactose, while Group
3 encoded proteins controlling the efflux of sucrose [40—-42]. The structure of BraSWEET
genes was closely related to their function, mainly in the distribution of conserved motif
(Figure 2C). Motif2-3-5-1-4-4 was found in Groups 1, 2, and 4, and Motif2-3-6-5-1-4-7 was
found in Group 3, indicating the diversity and functional differentiation of BraSWEET
genes through evolution. Furthermore, the number and location of intron-exon were
correlated with the function. Most BraSWEET genes had six exons and five introns, as
in other plants, including soybean [43], cucumber [44], and B. rapa [16,35]. The clustered
BraSWEET genes exhibited roughly the same gene structure. For instance, BraSWEET15.1,
15.2, and 15.3 in Group 3 had a special structure comprising one long intron and four short
introns; BraSWEET17.1/Brapa08T001162.1 and BraSWEET17.2/Brapa03T004706.1 in Group
4 possessed a special structure with three short introns and two long introns (Figure 2B).

3.2. Evolutionary Analysis of the BraSWEET Gene Family

Whole-genome triplication (WGT) has been carried out since the separation of Brassica
from A. thaliana was discovered in 2016 [45]. A total of 31 BraSWEET genes were found in
B. rapa (L7), which is 1.82 times higher than the 17 AtSWEET genes (Table 1). BraSWEET
genes were predicted to expand by triplication. Five groups of BraSWEET lost genes
during evolution; for example, AtSWETT7 and AtSWETT13 have no homologs in the B.
rapa genome, while AtSWETT3, AtSWETT9, and AtSWETT10 have only one homolog each
(Figure 1). Due to the increase in BraSWEET genes, the SWEET gene family exhibits more
functions. Simultaneously, there may be functional redundancy or differentiation among
its members. According to this study, winter B. rapa expanded by tandem duplication
and fragment duplication, and a total of 18 pairs of fragment-repetitive genes have been
identified. Furthermore, 27 and 37 BraSWEET genes indicated collinearity with the A.
thaliana and B. rapa genome, respectively. This suggests similar functions of the SWEET
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genes. BraSWEET genes were found to be under purifying selection, consistent with
previous evolutionary analyses [8,16,43,46].

3.3. Prediction of Gene Function Based on Protein Interaction and Promoter Analysis

SWEETS interacts with several pollen development-related proteins, such as DEX1,
NUP, CYP703A2, CYP704B1, and ACOS5 [24-26]. BraSWEET?2, 3, 8, and 9 interact with
translation regulation-related protein, PUM23 [27]. BraSWEET4, 10, 11, and 12 can interact
with sucrose transporters SUT2 and SUT4. AtSUT4 regulates sucrose balance and sink via
the ABA pathway, which is closely associated with low-temperature, high-salt, and osmotic
stress in A. thaliana [28]. BraSWEET15 can interact with the plant senescence regulatory-
related protein SAG12 [29] and with the plant stress resistance-related transcription factor
NACES6 [30]. BraSWEET10 might interact with the pathogen response-related protein RIN4
and with the programmed death-related protein PGK [31-33]. Cis-acting elements of
BraSWEET promoter regions were mainly divided into four classes, namely growth and
development regulation, light response, hormone response, and stress response elements
(Figure 8, Table S2). Among stress response elements, three ABA-induced response elements
were detected, namely the MYB (CCAATbox) element, MYC (CACATGbox) element, and
ABRE homeopathic element. Other stress response elements were identified, including
W-box involved in salicylic acid and disease stress response, ERE involved in ethylene
response, LTR, DRE, and ARE. In this study, BraSWEET proteins were found to interact
with pollen development proteins, senescence regulation-related proteins, stress resistance-
related transcription factors, pathogen response-related proteins, and programmed death
proteins. According to these results, BraSWEETs may be involved in regulating the growth,
development, and biotic stress adaption of plants through hormonal regulation.

3.4. Analysis of BraSWEET Expression During Overwintering

Plants can transfer more nutrients from the aboveground organ to the underground
survival organ (root collar tissues) during overwintering. After regreening of the above-
ground part, some low-temperature stress genes function at low temperature. From the
transcriptome data, differential expression of BraSWEET genes during overwintering was
detected [14]. SWEET6, 14, and 17 were highly expressed in the pre-winter stage (S1), and 16
BraSWEET genes (BraSWEET1.1, BraSWEET1.2, BraSWEET2, BraSWEET2.1, BraSWEET4.2,
BraSWEET6.2, BraSWEETS, BraSWEET10, BraSWEET12.2, BraSWEET14, BraSWEET14.2,
BraSWEET15.1, BraSWEET15.2, BraSWEET15.3, BraSWEET16.1, and BraSWEET16.2) were
differentially expressed in the overwintering stages (52-S5). According to a report, some of
these genes in other species provide cold stress resistance. For example, overexpression of
AtSWEET16 and AtSWEET17 enhances cold resistance in A. thaliana [1,47]. AtSWEET15
expression is induced under high-salt and drought stress and upregulated under cold
stress [10,48]. GhSWEET2a and GhSWEET2b are upregulated under cold treatment [35].
CsSWEET16 can respond to cold stress and export fructose from vacuoles, and CsSWEET?2,
CsSWEET3, and CsSWEET®6 are associated with cold stress [49,50]. Moreover, MtSWEET1a
is inhibited under cold and drought stress but induced under salt stress [36]. Mutants of
AtSWEET11 and AtSWEET12 affected freezing tolerance in A. thaliana [13]. Nonetheless,
some genes, such as BraSWEETS, BraSWEET10, and BraSWEET14, were first found to be
associated with freezing resistance. As demonstrated in previous studies, AtfSWEET8 and
AtSWEET13 are crucial for pollen nutrition and are expressed in the tapetum and anthers,
respectively. AISWEET? serves as a sucrose transporter for nectar production [42]. In rice,
OsSWEET14 is crucial for reproductive organ development [51]. Whether these genes are
important for the successful overwintering mechanism in winter B. rapa merits further
investigation based on the flowering of plants. In the regreening stage (56), the expressions
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of BraSWEET4, BraSWEETS5, BraSWEET11, and BraSWEET12 were upregulated, suggesting
that the aboveground parts began to re-synthesize carbohydrates, further transferring
them to the root collar tissues and ensuring their continuous resistance to low-temperature
stress. During the overwintering of winter rapeseed, the aboveground tissues died, sug-
gesting that no more sugars were synthesized. Several BraSWEET genes were differentially
expressed in the root collar tissues (including the shoot apical meristem). These results
indicate that some BraSWEET genes are playing a role in the concentration of sugars in the
root collar tissues, thus better resisting low-temperature stress and inducing flowering.

In general, 31 BraSWEET genes were identified in the L7 genome. These genes acted as
sugar transporters and played essential roles in the growth and development of plants and
in mediating responses to abiotic stresses. In this study, the evolutionary relationships and
overwintering expression patterns of the BraSWEET genes were explored. Moreover, we
hypothesized that some BraSWEET genes were associated with frost resistance and some
genes were involved in overwintering memory mechanisms. The results provide insights
into the potential functions and characteristics of the BraSWEET genes and lay the founda-
tion for future studies on the biological roles of the BraSWEET genes in winter B. rapa.

3.5. Functional Analysis of BraSWEET10

The promoter region of the BraSWEET10 gene contains several cis-acting elements
related to stress response, phytohormones, light response, circadian rhythms, and promoter.
It is actively involved in hormone regulation and stress tolerance. The BraSWEET10
protein is related to sucrose transporter proteins, jasmonic acid (JA) biosynthesis-associated
proteins, bud meristem regulation, programmed death proteins, sex proteins, programmed
death proteins, and sex differentiation-related proteins, which may be involved in plant
sugar transport, flower differentiation, and pollen development.

We overexpressed BraSWEET10 in A. thaliana and observed their phenotypes under
low temperature. The root length of BraSWEET10-overexpressing A. thaliana plants was
significantly longer than WT plants under low-temperature treatment, suggesting that
BraSWEET10 may be involved in the regulation of root development at low temperature
to improve its freezing tolerance by enhancing root development. However, its function
related to the regulation of flowering has not been thoroughly investigated in winter B. rapa.

4. Materials and Methods
4.1. Identification of the SWEET Gene Family in B. rapa

The hidden Markov model (HMM) profiles of the SWEET domain (PF03083) were
downloaded from the Pfam database (http://pfam.xfam.org/ (accessed on 21 March 2024))
and used to search the MtN3_saliva domains in the B. rapa (L7) proteome by employing
the HMMER software (3.3.2) (http://hmmer.org/ (accessed on 22 March 2024)) [36,52].
With default parameters, a p-value of 0.01 was the significance threshold. ClustalW was
used to compare all extracted candidate genes possibly containing MtN3_saliva domain,
and the HMM model was reconstructed (with a value below 0.001). Redundant sequences
were removed. By applying the SMART program (http://smart.embl-heidelberg.de//
(accessed on 22 March 2024)), the core sequence of the MtN3_saliva domain was identified.
After multiple comparisons, 31 SWEET genes were finally confirmed in the rapeseed
genome. Afterward, by employing the tools in ExPasy (http:/ /web.expasy.org/protparam/
/ (accessed on 24 March 2024)), the sequence length, molecular weight, and isoelectric point
predictions of the confirmed SWEET proteins were obtained [53].
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4.2. Multiple Sequence Alignment and Phylogenetic Analysis of BraSWEET Genes

The full-length amino acid sequences of AtSWEETs (data from the TAIR website) and
BraSWEETs were used for phylogenetic analysis. Multi-sequence alignment was performed
by adopting the clustalW program, and an unrooted neighbor-joining phylogenetic tree
was constructed using the MEGA7 (v7.0.14) software. All parameters used were default,
and the bootstrap was 1000 [54,55]. Based on the topological structure of the phylogenetic
tree and the classification of AtSWEETs, BraSWEETs were divided into four groups.

4.3. Analysis of Transmembrane Structure, Conserved Motif, and Gene Structure

Transmembrane helices of the BraSWEET family proteins were predicted by employing
TMHMM2.0 (http:/ /www.cbs.dtu.dk/services/TMHMM/ (accessed on 24 March 2024))
with their amino acid sequences [56]. Twenty-four members of the BraSWEET proteins had
typical seven trans-membrane helices. The MEME software (v4.3.12) (https://meme-suite.
org/ (accessed on 24 March 2024)) was adopted to predict the common conservative motifs
of 31 BraSWEET proteins. The parameters were set as follows: optimal sequence width
was set to 6 and 50; the maximum number of designed motifs was seven, and the iterative
cycle was set as default [57]. The structure of BraSWEET genes was analyzed using GSDS
(http://gsds.gao-lab.org/ (accessed on 25 March 2024)) [58].

4.4. Chromosomal Location and Gene Duplication of BraSWEET Genes

Based on the physical location of 31 BraSWEET genes on chromosomes, the MapChart
software (v5.4.6) was used to map the genes [59]. Tandem duplications and segmental
duplications of the BraSWEET gene family were searched to analyze the pattern of gene
evolution. Using BLAST (v2.16.0), the region of tandem duplication was found. By
employing MCScan X (default parameter), segmental duplications were examined [60]. The
time of occurrence of segmental duplication events for homologous genes was calculated
as T=Ks/2r, (r=1.5 x 107%) and expressed in MYA.

4.5. Analysis of the Secondary and Tertiary Structures of BraSWEET Proteins

The secondary structure of the BraSWEET proteins was predicted using the self-
optimized prediction method with alignment (SOPMA) server (https://npsa-prabi.ibcp.fr/
cgi-bin/npsa_automat.pl?page=/NPSA /npsa_sopma.html (accessed on 29 March 2024)),
with a similarity threshold of 8. The SWISS-MODEL (https://swissmodel.expasy.org/) was
adopted to identify the known structure with over 30% consistency with the BraSWEET
sequences, and the known structure was deemed as a template to construct the target
protein structure, followed by drawing the 3D structures of the 31 BraSWEET proteins. The
structures are available at (https:/ /saves.mbi.ucla.edu/).

4.6. Promoter Analysis for BraSWEETs

Generally, the 1500 bp sequence upstream of the gene was extracted using in-house
Perl scripts and considered the promoter region, used for cis-acting element prediction of
the BraSWEET family. Using the Plant CARE website (http://bioinformatics.psb.ugent.
be/webtools/plantcare/html/ (accessed on 3 April 2024)), several cis-acting elements
were obtained by analyzing FASTA sequences. By rigorous screening, some cis-acting
elements possibly involved in hormonal processes, growth regulation, and stress response
were retained. The GSDS (http://gsds.cbi.pku.edu.cn/) was applied to analyze the cis-
regulatory element of the BraSWEET family [58].
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4.7. Plant Materials, Field Trails, Sample Collection, and Transcriptional Expression Analysis of
BraSWEET Genes During Overwintering by RNA-Seq Data Analysis

L7 was selected as the plant material and planted in the Gansu Research Center of
Rapeseed Engineering and Technology located in Shangchuan town, Yongdeng county,
Lanzhou City, Gansu province (longitude: 103.67° E; latitude: 36.05° N; altitude: 2180 m).
From autumn 2019 to spring 2020, samples were collected at six time points, namely
9 October 2019 (L7_S1), 2 November 2019 (L7_S2), 24 November 2019 (L7_S3), 15 December
2019 (L7_54), 4 January 2020 (L7_S5), and 25 April 2020 (L7_S6). The first sampling
day was 9 October 2019, and the lowest air temperature was 4 °C. From 2 November
2019, to 4 January 2020, the average lowest air temperature was —13 °C. On the last
sampling day of 25 April 2020, the lowest air temperature was —1 °C, and the winter
B. rapa regreened. As roots are critical tissues and the only living organs in winter B.
rapa required for survival during overwintering, the root collar tissues (a 5 mm section
below the cotyledon nodes), including the shoot apical meristem (a 3 mm section above
the crown base), were selected in the six sampling stages with the same proportion for
RNA-Seq analyses. Each material was collected from more than three plants. For the specific
method, please refer to Lijun Liu’s treatment protocol [14]. RNA-Seq data were processed
with TBtools (v0.655) and plotted as a heatmap to visualize the changes in SWEET gene
expression (https://github.com/CJ-Chen/TBtools (accessed on 12 April 2024)).

4.8. Construction of the Overexpression Vector

Specific primers (BraSWEET10-F1/R1) flanking the BraSWEET10 gene were designed
using Primer Premier 5.0, with Xbal and Kpnl restriction sites engineered at their 5’ ends.
The primer sequences used are as follows:

BraSWEET10-F1: CGGGGGACGAGCTCGGTACCATGGCGGTTTCAATAGTCG.

BraSWEET10-R1: ACCATGGTGTCGACTCTAGATTCTTGGATATAAGAAGCAT.

The PCR-amplified BraSWEET10 fragment was ligated into the pCAMBIA2300-355
vector via Xbal/Kpnl digestion. Positive clones were verified by sequencing and trans-
formed into Agrobacterium tumefaciens GV3101 for subsequent use.

4.9. Subcellular Localization of the BraSWEET10 Protein in Tobacco (Nicotiana benthamiana)

The pCAMBIA2300-BraSWEET10-GFP-positive Agrobacterium spp. was transiently
transformed into tobacco, and the infested tobacco was placed in 23 °C in the dark for
2-3 days. Tobacco leaves were cut and placed under a laser confocal microscope (LSCM
800), and the fluorescence localization of GFP was observed at an excitation wavelength
of 488 nm.

4.10. Transformation of A. thaliana Using Overexpression Vectors

Wild-type A. thaliana was used as a background for the flower-dipping method and
screening pure combinations. The specific method was as follows:

The constructed Agrobacterium spp. containing the BraSWEET10 gene was harvested
when the OD600 of the activated spp. reached 0.8. The sample was centrifuged at
4000-6000 rpm for 15-10 min at room temperature; the supernatant was discarded, and
50 mL of infiltration medium (1/2 MS, 5% sucrose, 0.02% surfactant, 0.1% MES, pH of about
5.7) was used to suspend the pellet. This step was repeated twice and poured into a clean
petri dish. Pod-stage A. thaliana seedlings without fruit pods were selected for infestation,
and they were poured into the infestation medium for 30-60 s. After removal, they were
incubated for 24 h away from light and then incubated normally until TO generation seeds
were collected.

The TO generation seeds were planted on the MS solid medium containing Kan, and
the Kan-resistant transgenic A. thaliana with green cotyledon color was transplanted and
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cultured to collect the T1 generation seeds. The T1 generation seeds were planted on an MS
solid medium containing Kan and cultured. The T2 generation was obtained by collecting
the seeds from a single plant. The T2 generation seeds were tested on the MS medium
containing Kan again for segregation ratio. Fully viable seedlings and their corresponding
T2 generation seeds were considered pure, and the transgenic pure strain was obtained.
Total RNA was extracted from the leaves of the transgenic plants, and the cDNA was
reverse transcribed to identify the overexpression of the target gene by qRT-PCR.

4.11. Phenotypic Observations of Transgenic A. thaliana

Wild-type and transgenic A. thaliana, approximately 10 d after germination were
incubated at 4 °C in an incubator for 12 h, and the culture was continued for 7 d under
normal conditions to observe the root length of the plants.
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