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Abstract: The phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of the rapamycin
(mTOR) pathway plays a crucial role in the regulation of autophagy, a cellular mechanism
vital for homeostasis through the degradation of damaged organelles and proteins. The
dysregulation of this pathway is significantly associated with cancer progression, metastasis,
and resistance to therapy. Targeting the PI3K/AKT/mTOR signaling pathway presents
a promising strategy for cancer treatment; however, traditional therapeutics frequently
encounter issues related to nonspecific distribution and systemic toxicity. Nanoparticle-
based drug delivery systems represent a significant advancement in addressing these
limitations. Nanoparticles enhance the bioavailability, stability, and targeted delivery
of therapeutic agents, facilitating the precise modulation of autophagy in cancer cells.
Functionalized nanoparticles, such as liposomes, polymeric nanoparticles, and metal-
based nanocarriers, facilitate targeted drug delivery to tumor tissues, minimizing off-target
effects and improving therapeutic efficacy. These systems can deliver multiple agents
concurrently, enhancing the modulation of PI3K/AKT/mTOR-mediated autophagy and
related oncogenic pathways. This review examines advancements in nanoparticle-mediated
drug delivery that target the PI3K/AKT/mTOR pathway, emphasizing their contribution
to improving precision and minimizing side effects in cancer therapy. The integration
of nanotechnology with molecularly targeted therapies presents substantial potential for
addressing drug resistance. Future initiatives must prioritize the optimization of these
systems to enhance clinical translation and patient outcomes.

Keywords: nanoparticles; drug delivery; PI3K/AKT/mTOR; autophagy; cancer therapy;
targeted therapy

1. Introduction

Autophagy is a crucial mechanism that conserves cellular integrity by degrading and
recycling damaged organelles and proteins, thereby maintaining cellular homeostasis [1,2].
Autophagy functions in a dual capacity in cancer, serving as a tumor suppressor in early
stages and as a tumor promoter in advanced stages, where it supplies cancer cells with
essential metabolic resources for survival under stress [3]. The phosphoinositide 3-kinase
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(PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway plays a central
role in the regulation of autophagy, affecting cellular growth, survival, and metabolic
processes [4]. Dysregulation of this pathway is commonly observed in cancer, contributing
to tumorigenesis, metastasis, and resistance to standard therapies. However, cancer remains
a major global health challenge, with its progression, metastasis, and therapy resistance
frequently associated with complex molecular mechanisms that regulate cellular behavior.

The PI3BK/AKT/mTOR signaling pathway is a pivotal regulator of cellular growth,
survival, metabolism, and autophagy [5]. This pathway is initiated by extracellular signals,
such as growth factors, cytokines, and nutrients, which activate intracellular cascades
essential for cellular homeostasis. The PI3K/AKT/mTOR system exerts a negative regu-
lation on autophagy, primarily via mTORC1, which suppresses the ULK1/2 (unc-51-like
kinase 1/2) complex, a crucial starter of autophagy [6]. In the presence of ample nutrition
and growth stimuli, PI3K phosphorylates PIP2 (phosphatidylinositol-4,5-bisphosphate) to
produce PIP3 (phosphatidylinositol-3,4,5-trisphosphate), thereby activating AKT [7]. AKT
subsequently phosphorylates and inhibits TSC1/TSC2 (tuberous sclerosis complex 1/2),
resulting in mTORC1 activation and autophagy inhibition [8]. Conversely, during stress or
hunger, PI3K/AKT signaling is diminished, resulting in mTORC1 inhibition, which triggers
autophagy to reutilize intracellular components for energy generation [9]. Dysregulation
of the PI3K/AKT/mTOR pathway is frequently noted in cancer, resulting in unregulated
cell proliferation, survival, and resistance to therapy (Figure 1) [10]. Hyperactivation of
mTORCI inhibits autophagy, facilitating tumor growth by obstructing the breakdown
of oncogenic proteins [11]. Nonetheless, autophagy may also facilitate the survival of
cancer cells under stressful conditions, including chemotherapy or hypoxia [12]. Utilizing
small molecule inhibitors (e.g., PI3K, AKT, and mTOR inhibitors) to target this system
has emerged as a viable method for cancer therapy [13]. The simultaneous regulation of
PI3K/AKT/mTOR signaling and autophagy is under investigation to address resistance
mechanisms and enhance therapeutic efficacy in cancer treatment [14]. Therefore, compre-
hending the regulatory interaction between PI3K/AKT/mTOR signaling, autophagy, and
cancer is essential for formulating innovative therapeutic strategies.

The PI3K/AKT/mTOR signaling system serves as a principal negative regulator of
autophagy, predominantly via mTORC1 [5]. In nutrient-rich situations, PI3K phospho-
rylates PIP2 to become PIP3, thereby activating AKT, which then phosphorylates and
inhibits TSC1/TSC2 [15]. This inhibition results in mTORC1 activation, which inhibits
autophagy by phosphorylating ULK1, hence obstructing autophagosome formation [16].
In contrast, under stress circumstances, such as food restriction or hypoxia, PI3K/AKT sig-
naling is suppressed, resulting in mTORC1 inhibition, which activates ULK1 and initiates
autophagy [17]. This transition allows cells to decompose and reutilize intracellular con-
stituents to sustain energy equilibrium and viability. In cancer, the hyperactivation of the
PI3K/AKT/mTOR pathway inhibits autophagy, facilitating tumor formation; conversely,
in certain instances, the activity of autophagy aids cancer cells in enduring therapy-induced
stress [18]. Consequently, targeting this route offers a prospective therapeutic approach for
regulating autophagy in cancer therapy.

Nanotechnology provides a significant solution to these challenges via the creation of
nanoparticle-based drug delivery systems [19]. Nanoparticles exhibit distinctive physico-
chemical characteristics, including their nanoscale dimensions, high surface area-to-volume
ratio, and potential for functionalization with targeting ligands [20]. These attributes allow
nanoparticles to transport therapeutic agents to cancer cells with high specificity and effi-
ciency, thereby reducing off-target effects. Functionalized nanoparticles, such as liposomes,
polymeric nanoparticles, and metal-based nanocarriers, can be designed to improve drug
stability, bioavailability, and controlled release [21].
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Figure 1. The PI3K/AKT/mTOR pathway in Cancer. After a growth factor binds to its receptor,
the route activates Class I phosphoinositide 3-kinases. Receptor tyrosine kinases activate Class
IA PI3K, while G-protein-coupled receptors activate Class IB. Both classes convert PIP2 into PIP3,
which recruits and activates plasma membrane AKT. Activated AKT phosphorylates and suppresses
TSC1/2, a negative regulator of mTORC1. This blockage activates mTORC]1, a protein synthesis,
cell metabolism, and growth master regulator. The mTORC1 complex boosts translation and cancer
growth, proliferation, and survival. The mechanism also aids cancer migration and metastasis. The
figure was created using the BioRender.com online commercial platform.

Nanoparticle-based systems exhibit significant potential for targeted delivery to tumor
tissues, primarily due to the enhanced permeability and retention (EPR) effect [22]. The
EPR effect plays a crucial role in nanoparticle-based drug delivery for cancer treatment.
Due to the leaky vasculature and poor lymphatic drainage in tumor tissues, nanoparticles
accumulate preferentially in the tumor microenvironment [23]. This selective accumulation
enhances the therapeutic efficacy of anticancer agents while reducing off-target effects and
systemic toxicity, which are major concerns in conventional chemotherapy. Additionally,
nanoparticles can be engineered to react to stimuli, including pH, temperature, or redox
conditions, facilitating targeted drug release [24]. This feature is beneficial for modu-
lating autophagy by allowing targeted intervention in the PI3K/AKT/mTOR pathway
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within the tumor microenvironment. The interaction of nanoparticle signaling with the
PI3K/AKT/mTOR and autophagy pathways highlights the dual function of autophagy in
cancer, serving as both a pro-survival mechanism and a facilitator of apoptosis (Figure 2).
Recognizing this dynamic interplay is essential for enhancing nanoparticle-based treatment
approaches that target cancer growth and progression.
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Figure 2. PI3K/AKT/mTOR and autophagy-mediated nanoparticle signaling in cancer. Nanopar-
ticles bind with receptor tyrosine kinases (RTKs) on cancer cells, initiating the activation of the
PI3K/AKT/mTOR signaling cascade. Activated PI3K produces PIP3, which attracts and activates
AKT. AKT phosphorylates and inhibits the TSC1/2 (tuberous sclerosis complex), hence obstructing
the inhibition of Rheb, a small GTPase that stimulates mTORC1 and autophagy-mediated cell death.
Nanoparticles play a significant role in cancer therapy by modulating reactive oxygen species (ROS)
levels and inducing apoptosis in cancer cells. The interactions among nanoparticles, ROS production,
and apoptosis can occur either independently or simultaneously in cancer cells, depending upon
cellular context, NP characteristics, and microenvironmental factors. The figure was created using
the BioRender.com online commercial platform.

Recent advancements have occurred in the design and application of nanoparticle-
based drug delivery systems targeting the PI3K/AKT/mTOR pathway [25]. Preclinical
studies indicate that these systems may improve the effectiveness of cancer therapies and
reduce adverse effects. Liposomal formulations of PI3K inhibitors demonstrate enhanced
bioavailability and tumor accumulation relative to free drugs [26]. Polymeric nanoparti-
cles containing dual inhibitors of PI3K and mTOR have shown promising outcomes in
preclinical cancer models [27]. Metal-based nanocarriers, including gold and iron oxide
nanoparticles, have been investigated for their potential in delivering therapeutic agents
and enhancing imaging-guided therapy [28]. The advancements underscore the versatility
and potential of nanoparticle-based platforms in cancer treatment. The combination of
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nanotechnology and molecularly targeted therapy signifies a significant advancement in
cancer treatment [29]. Nanoparticle-based systems present a promising strategy to en-
hance the effectiveness of cancer therapies by selectively influencing the PI3K/AKT/mTOR
pathway and other tumor-promoting processes, thereby overcoming the limitations of
conventional treatments [30]. This method may improve the accuracy, effectiveness, and
safety of cancer treatments, thereby enhancing patient outcomes. Ongoing research will
facilitate the clinical translation of these systems, leading to more effective and personalized
cancer treatments.

Thus, nanoparticle-mediated drug delivery systems offer a viable approach for tar-
geting the PI3K/AKT/mTOR signaling pathway in cancer treatment. These systems have
the potential to transform cancer treatment by addressing the limitations of conventional
therapies, enhancing precision, minimizing side effects, and overcoming drug resistance.
This review presents an overview of advancements in nanoparticle-based strategies for
modulating PI3K/AKT/mTOR-mediated autophagy in cancer. This investigation aims
to contribute to ongoing efforts in utilizing nanotechnology to enhance cancer treatment
outcomes by emphasizing recent advancements and future directions.

2. Nanoparticles-Based Drug Delivery in Cancer Management

Nanoparticles (NPs) represent a significant advancement in cancer management,
providing novel approaches to address the limitations of traditional cancer treatments.
Nanostructures, generally measuring between 1 and 100 nanometers, exhibit distinctive
physicochemical properties, including a high surface area-to-volume ratio, adjustable size,
and potential for functionalization [31]. These features facilitate efficient drug loading,
controlled release, and targeted delivery of therapeutic agents to cancer cells, thereby
enhancing therapeutic outcomes and reducing systemic side effects.

2.1. Classification and Categories of Nanoparticles

Nanoparticles are categorized into various types according to their composition and
structure (Figure 3). Lipid-based nanoparticles, such as liposomes and solid lipid nanopar-
ticles (SLNs), represent some of the most thoroughly researched carriers in cancer therapy.
Liposomes are composed of phospholipid bilayers that encapsulate hydrophilic and hy-
drophobic drugs, facilitating stable delivery. Solid lipid nanoparticles (SLNs) provide
improved stability and facilitate controlled drug release. Polymer-based nanoparticles,
such as poly(lactic-co-glycolic acid) (PLGA), chitosan, and dendrimers, are extensively
employed in drug delivery systems. PLGA nanoparticles exhibit biocompatibility and
biodegradability, rendering them suitable for sustained drug release applications. Chitosan,
obtained from natural sources, exhibits mucoadhesive properties and is frequently utilized
in targeted cancer therapies. Dendrimers possess branched architectures that facilitate
accurate drug loading and functionalization aimed at targeted cancer therapy. Inorganic
nanoparticles, including gold, silica, and quantum dots, are widely studied for their distinct
optical and electronic characteristics. Gold nanoparticles (AuNPs) are employed in pho-
tothermal therapy, a process in which they absorb light and transform it into heat to induce
cytotoxicity in cancer cells. Silica nanoparticles offer a porous architecture conducive to
high drug loading, whereas quantum dots facilitate imaging-guided drug delivery owing
to their fluorescence characteristics. Hybrid nanoparticles integrate organic and inorganic
materials to utilize the benefits of each component. Lipid-coated nanoparticles combine
the biocompatibility of lipids with the photothermal properties of gold, thereby improving
their therapeutic potential in cancer treatment.
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Figure 3. Key nanoparticle categories for cancer drug delivery. Many nanoparticles are used in
cancer therapy and a therapeutic use. Liposomes and solid lipid nanoparticles (SLNs) are intensively
explored for encapsulating hydrophilic and hydrophobic medicines. Another important group is
polymer-based nanoparticles, such as PLGA, chitosan, and dendrimers. PLGA nanoparticles are
biocompatible and biodegradable, making them excellent for prolonged drug release. Chitosan, a
natural polymer, is mucoadhesive and ideal for targeted therapy. Dendrimers’ branching architectures
enable precise drug loading and functionalization, improving targeting. Gold nanoparticles (AuNPs),
silica nanoparticles, and quantum dots are recognized for their unique functions. In photothermal
therapy, gold nanoparticles absorb light and generate heat to kill cancer cells. Silica nanoparticles’
porous architecture allows high drug loading, while quantum dots’ fluorescence allows imaging-
guided drug delivery. Hybrid nanoparticles combine organic and inorganic benefits. Lipid-coated
gold nanoparticles combine biocompatibility with photothermal characteristics, improving cancer
treatment. The figure was created using the BioRender online commercial platform.

2.2. Benefits of Drug Delivery Utilizing Nanoparticles

Nanoparticle-based drug delivery systems offer numerous advantages compared to
conventional chemotherapy and radiotherapy, effectively addressing various limitations
inherent in traditional cancer treatments. The enhanced permeability and retention (EPR)
effect facilitates the preferential accumulation of nanoparticles in tumor tissues, attributable
to their leaky vasculature and inadequate lymphatic drainage. This passive targeting
mechanism increases the accumulation of therapeutic agents at the tumor site, minimizing
exposure to healthy tissues. Surface modification of nanoparticles through functionalization
with ligands, including antibodies, peptides, or aptamers, facilitates the active targeting
of specific cancer cell receptors. This method enhances therapeutic effectiveness while
minimizing off-target effects. Nanoparticles enhance the pharmacokinetics of encapsulated
drugs by minimizing systemic toxicity and preventing premature degradation, thereby
facilitating controlled release profiles that ensure sustained therapeutic effects.
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2.3. Application of Nanoparticles in Cancer Treatment

Nanoparticles exhibit significant potential for the delivery of chemotherapeutic agents,
gene therapies, and immunotherapies. Liposomal formulations, exemplified by Doxil
(liposomal doxorubicin), have received FDA approval for the treatment of cancer. Polymer-
based and inorganic nanoparticles are being extensively studied for the delivery of siRNA,
CRISPR-Cas9, and checkpoint inhibitors, presenting new opportunities for cancer im-
munotherapy. Thus, nanoparticle-based drug delivery systems signify a significant ad-
vancement in cancer management, overcoming the limitations of traditional therapies and
facilitating more precise, effective, and patient-centered treatments. Their adaptability and
adjustable characteristics guarantee their essential function in the future of oncology.

3. Targeting PI3BK/AKT/mTOR-Mediated Autophagy with Nanoparticles

Nanoparticles have emerged as an effective tool for the precise control of the
PI3K/AKT/mTOR pathway, significantly contributing to cancer therapy. Nanoscale carri-
ers can be designed to deliver small molecule inhibitors, siRNA, or gene-editing tools with
great specificity, thereby improving therapeutic efficacy and reducing off-target effects.

3.1. Small Molecule Inhibitors

Nanoparticles have gained significant attention in cancer therapy due to their ability
to selectively deliver therapeutic agents, improving drug bioavailability and treatment
outcomes. The PI3K/AKT/mTOR pathway is a key regulator of cancer progression, in-
fluencing various cellular processes, including autophagy [32]. Utilizing nanoparticles
to target this pathway has become a promising approach for enhancing cancer treatment
efficacy. Table 1 presented illustrates several nanoparticles that specifically target the
PI3K/AKT/mTOR-mediated autophagy pathway across various cancer types. Liposomes
containing PI3K inhibitors, such as LY294002, represent an extensively researched cate-
gory of nanoparticle systems [33]. Liposomal formulations inhibit PI3K signaling, leading
to the suppression of autophagy and the promotion of apoptosis in cancers, including
breast and prostate cancer. Polymeric nanoparticles containing rapamycin, a recognized
mTOR inhibitor, are employed to target glioblastoma, as mTORC1 inhibition decreases
autophagic flux and impedes tumor survival [34]. Gold nanoparticles containing AKT
inhibitors, including AKT Inhibitor VIII, selectively inhibit AKT phosphorylation in ovarian
cancer, enhancing chemosensitivity and decreasing autophagy-mediated resistance [35].
Silica nanoparticles loaded with LY294002 improve the delivery of PI3K inhibitors to lung
cancer cells, thereby enhancing chemotherapeutic efficacy through the inhibition of au-
tophagic processes [36]. Everolimus, an mTOR inhibitor, has been effectively utilized in
solid lipid nanoparticles (SLNs) for targeted pancreatic cancer therapy. By incorporating
Everolimus into SLNSs, its solubility and bioavailability are enhanced, leading to improved
therapeutic efficacy. Additionally, Everolimus suppresses autophagy, a cellular survival
mechanism that cancer cells often exploit for growth under stress conditions. By inhibiting
autophagy, Everolimus contributes to tumor suppression, making it a promising strategy
in pancreatic cancer treatment [37]. Dendrimers containing Wortmannin, a PI3K inhibitor,
enhance anti-tumor activity and apoptosis in breast cancer cells through the disruption of
autophagy [38]. Rapamycin is encapsulated in iron oxide nanoparticles to inhibit mTOR
activity in hepatocellular carcinoma, thereby enhancing therapeutic response [39]. PLGA,
(poly(lactic-co-glycolic acid)) nanoparticles incorporating MK2206, an AKT inhibitor, have
demonstrated an increased anticancer efficacy in non-small cell lung cancer through the
disruption of autophagic mechanisms [40]. Chitosan nanoparticles containing GDC-0941 in-
hibit PI3K in triple-negative breast cancer, thereby enhancing chemotherapy sensitivity [41].
Meanwhile, carbon nanotubes loaded with Torin 1 suppress both mTORC1 and mTORC2
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in colorectal cancer, leading to decreased tumor cell viability and improved treatment
outcomes [42].

Table 1. Diverse nanoparticle systems demonstrate the potential of targeted drug delivery to modulate

autophagy and enhance the efficacy of cancer therapies.

Nanoparticle Encapsulated/ Target Cancer
Incorporated Mechanism Outcome Ref.
Type D Pathway Type
rug
Breast and Inhibits PI3K signaling Enhanced apoptosis
Liposomes LY294002 PI3K to suppress autophagy and reduced [33]
prostate cancer .
and tumor progression. tumor growth.
Polymeric Inhibits mTORC1 to Decreased cell
yme Rapamycin mTOR Glioblastoma reduce autophagy flux proliferation and [34]
nanoparticles f . .
and tumor survival. angiogenesis.
Selectively inhibits AKT Promotes
Gold AKT . phosphorylation to chemosensitization and
nanoparticles Inhibitor VIII AKT Ovarian cancer block autophagic [35]
downstream signaling. flux suppression.
PI3K inhibition,
Silica blocking autophagy, Improved drug delivery
. LY294002 PIBK Lung cancer and enhancing and increased cancer [36]
nanoparticles :
chemotherapeutic cell death.
drug response.
Solid lipid Jargets mTORCL fo Enhanced drug
nanoparti- Everolimus mTOR Pancreatic cancer PP phasy bioavailability and [37]
and tumor cell .
cles (SLNs) . . tumor suppression.
survival mechanisms.
Inhibits autophagy by .
Dendrimers Wortmannin PI3K Breast cancer targeting the icltig\?iien:re‘l(;ll aant; TOECSW [38]
PI3K pathway. y pop ’
Downregulates mTOR
Iron 0x1.de Rapamyein mTOR Hepatgcellular to impair autophagic Synergistic rec}uchon in [39]
nanoparticles carcinoma flux and enhance tumor size.
therapeutic response.
AKT inhibition leads to Improved therapeutic
PLGA. MK2206 AKT Non-small cell autophagic efficacy with reduced [40]
nanoparticles lung cancer . . .
pathway disruption. drug toxicity.
Blocks PI3BK-mediated
Chitosan Triple-negative autophagy, enhancing Enhanced tumor
. GDC-0941 PI3K L shrinkage and [41]
nanoparticles breast cancer sensitivity .
survival rates.
to chemotherapy.
Carbon Dual inhibition of Reduced tumor cell
nanotubes Torin 1 mTOR Colorectal cancer ~ mTORC1 and mTORC2  viability and improved [42]
suppresses autophagy. therapeutic outcomes.

3.2. siRNA and Gene Therapy

Nanoparticles can improve siRNA and gene therapy delivery to the PI3K/AKT/mTOR-
mediated autophagy pathway in cancer treatment [43]. Liposomes, polymeric nanoparti-
cles, gold nanoparticles, dendrimers, MSNs, polymeric micelles, SLNs, calcium phosphate
nanoparticles, graphene oxide nanoparticles, and nanogels have different drug loading,
stability, release profiles, and tumor-specific targeting. To improve therapeutic outcomes,
toxicity, circulatory stability, and drug-loading capacity must be addressed. Table 2 high-
lights various types of nanoparticles, their potential for gene therapy via siRNA delivery,
and their role in targeting the PI3K/AKT/mTOR-mediated autophagy pathway in can-
cer treatment. Bilayer membrane-forming phospholipid and cholesterol nanoparticles
are liposomes. These nanoparticles can carry siRNA to cancer cells, where it silences
PI3K/AKT/mTOR signaling pathway components [44]. Biocompatible liposomes have
been widely researched for gene transfer because they protect siRNA and provide regulated
release. Liposomes quiet PI3K/AKT/mTOR pathway components to decrease autophagy



Int. J. Mol. Sci. 2025, 26, 1868

9 of 20

in cancer cells, potentially improving chemotherapy and radiation therapy [45]. Liposomes
are rapidly cleared by the immune system, limiting their therapeutic usefulness. Polymeric
nanoparticles, produced from biodegradable polymers, like PEG or PLGA, have lengthy
circulation periods and may load enormous amounts of siRNA. These nanoparticles can
be created for controlled release to deliver PI3K/AKT/mTOR pathway siRNA to tumor
cells over time. Polymeric nanoparticles deliver siRNA targeting the PI3K/AKT/mTOR
pathway to prevent autophagy in cancer cells, enhancing conventional therapies [46]. De-
spite their benefits, some polymer components may be hazardous; therefore, formulation
processes must be performed carefully. Their optical characteristics, biocompatibility, and
simplicity of surface functionalization make gold nanoparticles (AuNPs) popular drug
delivery candidates. To target cancer cells, these nanoparticles can be functionalized with
ligands or compounds, like siRNA. Gold nanoparticles can silence PI3K/AKT/mTOR
genes, interrupting autophagy and boosting cancer cell death [47]. Gold nanoparticles
stabilize siRNA during circulation, blocking ribonuclease breakdown. Gold nanoparticles
can be hazardous at high doses, limiting their therapeutic use.

Nanoscale, highly branching dendrimers have well-defined structures and function-
alized surfaces. These nanoparticles are perfect for PI3K/AKT/mTOR siRNA delivery
due to their high loading capacity. Dendrimers efficiently encapsulate and release siRNA,
silencing cancer cell genes [48]. Targeting ligands can modify the surface for tumor-specific
delivery, improving treatment efficacy. Dendrimers provide benefits, but their synthesis
is complicated, and they can be harmful at high dosages. Mesoporous silica nanoparti-
cles (MSNis) are ideal for drug delivery due to their high surface area and variable pore
diameters. MSNs loaded with siRNA can target tumor cells and silence PI3K/AKT/mTOR
pathway components and modulate autophagy [49]. MSNs can release siRNA continuously,
ensuring long-lasting effects on the tumor microenvironment [50]. However, silica-based
nanoparticles may cause inflammation and tissue toxicity, which must be addressed during
formulation. Amphiphilic copolymers create self-assembling particles called polymeric
micelles. Encapsulating hydrophobic medicines or siRNA in their core, these nanoparticles
are used for regulated drug delivery. PI3K/AKT/mTOR siRNA delivery by polymeric
micelles has been investigated for gene therapy [50]. These nanoparticles improve siRNA
stability and bioavailability, boosting cancer cell treatment. Polymeric micelles have min-
imal toxicity and good pharmacokinetics, but their blood circulation stability must be
improved to maximize their therapeutic potential.

Solid lipid nanoparticles (SLNs) have a solid lipid core and a surfactant layer. Biocom-
patible SLNSs are stable and prevent siRNA from undergoing enzymatic degradation [51].
These nanoparticles deliver siRNA targeting the PI3K/AKT/mTOR pathway, which may
reverse autophagy therapy resistance. SLNs preserve siRNA but have low drug-loading
capabilities, limiting their use for therapeutic siRNA delivery. Calcium and phosphate ions
form calcium phosphate nanoparticles. Biodegradability and siRNA encapsulation make
these nanoparticles promising medication delivery vehicles. Calcium phosphate nanoparti-
cles can silence PI3K/AKT/mTOR pathway components in cancer cells without harming
them, making them intriguing gene therapy candidates [36]. Calcium phosphate nanoparti-
cles’ poor release rates limit siRNA delivery’s therapeutic efficacy. The two-dimensional
lattice of carbon atoms in graphene is used to make graphene oxide nanoparticles. These
nanoparticles have a high surface area, biocompatibility, and ability to functionalize with
several biomolecules, including siRNA. Graphene oxide nanoparticles can block cancer cell
autophagy with PI3K/AKT/mTOR siRNA [52]. They have great drug-loading capacity
and stability, but their high-dose cytotoxicity and inclination to agglomerate in biological
systems must be addressed. Hydrophilic, crosslinked polymeric nanogels can contain
hydrophilic and hydrophobic substances. Highly biocompatible nanoparticles can be made
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to release siRNA continuously [53]. In cancer treatment, nanogels deliver siRNA targeting
the PI3K/AKT/mTOR pathway to control autophagy and improve results. Nanogels
can be modified for appropriate release rates, providing effective therapy [53]. Nanogels
without surface modification have little cellular absorption, which limits their efficacy.

Table 2. Numerous nanoparticles and their siRNA delivery potential for gene therapy, as well as their

function in cancer treatment targeting the PI3K/AKT/mTOR-mediated autophagy system.

Nan%{’;zhde Composition Target N(I)‘;c:ztri‘ :’snm ;I;’;rﬁf:; (t)l; Advantages Limitations Ref
.. Encapsulation of Gene silencing of Biocompatible, Limited
Liposomes Phospholipids,  PI3K/AKT/mTOR siRNA, delivery to pathway effective gene stability in [45]
cholesterol pathway . . .
cancer cells components delivery circulation
s Long Potential
. Polyethylene Controlled release of Inhibition of . . .
Polyme}‘ ¢ lycol (PEG), PI3K, AKT, siRNA to inhibit autophagy-related c%rculat.l on toxicity of [46]
nanoparticles &Y mTOR phagy time, high olymer
PLGA PI3K/AKT/mTOR genes ' 18 poy
drug loading components
. I Easy function- .
Gold core with . . Targeted silencing o Potential for
GOld. functionalized mTOR, AKT Delivery o.f SIR.NA of mTOR/AKT alization, cytotoxicity at [47]
nanoparticles for gene silencing enhanced .
shell pathway e high doses
stability
) Complex
Branched PI3K. AKT Efficient siRNA Gene therapy for :/I\./ellt-dreﬁrﬁfdh synthesis,
Dendrimers olvmers. PEG m"l:OR ’ loading, targeting PI3K/AKT s uli);d; & limited [48]
poly ! tumor cells pathway in cancers 5 biodegradabil-
capacity ;
ity
Mess(i)ﬁ g:ous Silica, PIRK. AKT Encapsulation of Combination High surface iig;e;tlal tf.or
. functionalized ! ! siRNA, controlled therapy with gene area, tunable mation [49]
nanoparticles surface mTOR rele Ply 1 & . due to silica
(MSNs) ase silencing pore size material
. . . - Limited
. sy siRNA encapsulation ~ Targeted delivery Low toxicity, I
Po{ymerlc Amphiphilic PI3K/AKT/mTOR in micellar core, of gene silencing good pharma- stability in [50]
micelles copolymers H blood
controlled release agents cokinetics . .
circulation
Caes . Lo RNAI therapy for . . .
Solid llpld Solid lipid core, 51RNA loadlr'lg in PI3K/AKT/mTOR ngh stabqlt.y, lelted.
nanoparticles PI3K, AKT lipid matrix, biocompatibil- drug-loading [51]
(SLNs) surfactants targeting cancer cells pathway ity capacit
getng modulation pactty
Calcium Calcium silfﬁiipsgiztlloerllisir Gene silencing of ~ Biodegradable, Potential for
phosphate phosphate, AKT, mTOR Vi,a gcalcium y PI3K/AKT in efficient low release [36]
nanoparticles PEG cancer encapsulation rates
phosphate
Graphene GraPhene Loading of siRNA on Targeted cancer High surface Cyt.0t0x1c1ty at
. oxide, PI3K, AKT, . high doses,
oxide . . surface, gene therapy through area, biocom- . [52]
. functionalized mTOR o e N aggregation
nanoparticles silencing effect pathway inhibition patibility -
surface risk
. . Limited
Hy‘il;(t)}%els mTOR. PI3K Encapsulation of Modulation of ng:ti}lllitl)ictom- cellular uptake
Nanogels . ’ ’ siRNA in nanogel, autophagy-related p Y without [53]
crosslinked AKT . . .o tunable release
targeted delivery signaling in cancer surface
polymers rates e
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3.3. Combination Therapies

Nanoparticle-assisted combination therapies present a promising strategy for im-
proving the efficacy of chemotherapeutic drugs by precisely modulating autophagy and
counteracting drug resistance mechanisms. These nanoparticles modulate key pathways,
such as PI3K/AKT/mTOR, to overcome chemoresistance, improve drug delivery, and
enhance cytotoxic effects on various cancer types, as presented in Table 3. Liposomes
are a widely utilized nanoparticle delivery technique in cancer therapy, owing to their
biocompatibility and capacity to encapsulate both hydrophilic and hydrophobic pharma-
ceuticals. Doxorubicin-encapsulated liposomes specifically target the PI3K/AKT/mTOR
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pathway, regulating autophagy through the inhibition of mTOR signaling [54]. This inhi-
bition diminishes the cancer cells’ capacity to endure stress, enhancing the lethal effects
of the encapsulated doxorubicin. This nanoparticle formulation, in conjunction with dox-
orubicin, has demonstrated the ability to increase cell death in multiple malignancies,
such as breast, lung, and ovarian cancers, by overcoming chemoresistance and facilitating
apoptosis. Polymeric nanoparticles (PNPs) are designed to provide medications with
enhanced stability and regulated release. These nanoparticles can selectively target the
PI3K/AKT/mTOR pathway, consequently regulating autophagy and augmenting the effi-
cacy of chemotherapeutic drugs, such as paclitaxel [35]. Inhibiting autophagy via mTOR
suppression in cancer cells enhances therapeutic efficacy. In colorectal, pulmonary, and
prostate malignancies, PNPs can synergistically augment the effectiveness of chemotherapy,
diminishing tumor size and enhancing patient outcomes by circumventing drug resistance
pathways. Gold nanoparticles (AuNPs) are extensively investigated for their superior bio-
compatibility, facile functionalization, and capability to selectively transport medications to
tumor locations. AuNPs suppress autophagy by targeting the AKT/mTOR pathway, a vital
mechanism for cancer cell survival under stress. When utilized alongside chemotherapeutic
medicines, such as cisplatin, AuNPs can enhance the cytotoxicity of the drug, offering a
more effective therapy strategy for malignancies including lung, ovarian, and pancreatic
cancer [55]. The combined impact of autophagy inhibition with chemotherapy ampli-
fies the overall anticancer efficacy, resulting in enhanced treatment outcomes. Polymeric
micelles, derived from amphiphilic block copolymers, have demonstrated efficacy in target-
ing the PI3K/AKT/mTOR pathway and regulating autophagy [56]. These nanoparticles
encapsulate hydrophobic pharmaceuticals, such as 5-fluorouracil (5-FU) and target their
delivery to tumor cells preferentially. Polymeric micelles enhance the therapeutic efficacy of
chemotherapy by suppressing autophagy through the mTOR pathway, hence increasing the
sensitivity of cancer cells [56]. The combination of autophagy regulation and chemotherapy
utilizing polymeric micelles can markedly suppress tumor development in colorectal and
gastric malignancies.

Mesoporous silica nanoparticles (MSNs) have arisen as a potent nanocarrier owing to
their extensive surface area, adjustable pore dimensions, and capacity to encapsulate both
hydrophilic and hydrophobic pharmaceuticals [57]. MSNs influence the PI3K/AKT/mTOR
pathway to regulate autophagy, limiting this process through mTOR suppression. The
use of chemotherapeutic drugs, such as docetaxel, in conjunction with autophagy inhibi-
tion, has demonstrated encouraging outcomes in the management of prostate and lung
malignancies. MSNs provide an effective therapeutic method by boosting medication
bioavailability and promoting apoptosis via autophagy regulation. Chitosan nanoparticles
are synthesized from chitosan, a natural polymer characterized by superior biocompatibil-
ity and biodegradability. These nanoparticles can regulate autophagy via the AKT/mTOR
signaling pathway. Chitosan nanoparticles, when used in conjunction with doxorubicin,
augment the cytotoxicity of chemotherapy by suppressing autophagy, a mechanism fre-
quently employed by cancer cells for protection [58]. This synergistic method has proven
beneficial in liver and breast cancer models, resulting in substantial tumor reduction due
to amplified chemotherapeutic action. Curcumin, a natural polyphenol, possesses recog-
nized anticancer effects; nevertheless, its therapeutic utility is constrained by inadequate
bioavailability. Liposome-encapsulated curcumin improves its therapeutic effectiveness by
targeting tumor cells directly. The nanoparticles additionally target the PI3K/AKT/mTOR
pathway, suppressing autophagy and enhancing the efficacy of chemotherapy drugs, such
as gemcitabine [59]. This combination therapy has demonstrated enhanced apoptosis in
pancreatic and breast cancer cells, hence increasing treatment results by circumventing
autophagy-induced chemoresistance.
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Polyethylenimine (PEI) nanoparticles have exceptional efficacy in the delivery
of nucleic acids and small compounds to cells. These nanoparticles regulate the
PI3K/AKT/mTOR pathway to suppress autophagy, hence enhancing the susceptibility of
cancer cells to chemotherapy [49]. PEI nanoparticles demonstrate synergistic benefits in
conjunction with methotrexate, diminishing tumor development and spread in models of
leukemia and brain tumors. By modulating the autophagy mechanism, these nanoparticles
augment the cytotoxic efficacy of chemotherapy, hence enhancing the overall therapeutic
response. Graphene oxide nanoparticles have distinctive characteristics, such as a substan-
tial surface area, flexibility, and the capacity to engage with biological molecules. These
nanoparticles can obstruct autophagy via the mTOR pathway, and when administered
alongside cisplatin, they enhance the drug’s cytotoxicity [60]. This synergistic effect is espe-
cially potent in lung and ovarian malignancies, where the nanoparticles promote apoptosis
and diminish chemoresistance, resulting in improved therapeutic outcomes. Nanostruc-
tured lipid carriers (NLCs) consist of a solid lipid core encased in a liquid lipid shell,
offering superior stability for drug delivery. These nanoparticles can regulate autophagy
via the AKT/mTOR pathway, augmenting the efficacy of paclitaxel and other chemother-
apy drugs [61]. NLCs demonstrate enhanced anticancer activity in breast, colon, and lung
malignancies by simultaneously targeting autophagy and tumor cells. This combined
therapy diminishes tumor growth and enhances tumor cell apoptosis by circumventing
autophagy-induced chemoresistance.

Table 3. Demonstrates the potential of integrating autophagy modulation by nanoparticle-based
drug delivery systems with chemotherapeutic drugs to improve the efficacy of cancer treatment.
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Nanoparticle Pathway Modulation Agent Synergistic Effect Type Ref
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(PNPs) y SUpPpressio and chemotherapy prostate
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nanoparticles AKT/mTOR mTOR inhibition Cisplatin decreased autophagy and ner ’ [55]
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Pr(;liynhe ric PI3K/AKT/mTOR via the (ft Sr FI’j i) growth inhibition by COlof;Ctal’ [56]
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(NLCs) signaling resistance lung




Int. J. Mol. Sci. 2025, 26, 1868

13 of 20

4. Nanoparticles and Their Molecular Mechanisms Modulating
PI3K/AKT/mTOR-Mediated Autophagy in Cancer

The PI3BK/AKT/mTOR signaling pathway is a crucial regulator of autophagy and
significantly influences cancer progression. NPs have been developed as a possible thera-
peutic approach to regulate this system by either promoting or suppressing autophagy in
cancer cells (Figure 4).
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Figure 4. Modulation of PI3K/AKT/mTOR-mediated autophagy by NPs in cancer therapy. The dual
function of nanoparticles (NPs) in modulating the PI3K/AKT/mTOR signaling pathway to regulate
autophagy in cancer cells. Nanoparticles, including gold nanoparticles (AuNPs), silica nanoparticles
(SiNPs), lipid-based nanoparticles, iron oxide nanoparticles (IONPs), graphene oxide nanoparticles
(GONPs), chitosan-based nanoparticles, and polymeric nanoparticles, impede the PI3K/AKT/mTOR
pathway, resulting in the induction of autophagy. This pathway promotes cancer cell death by elevating
autophagic flux, oxidative stress, and apoptosis. Conversely, some nanoparticles, such as cerium
oxide nanoparticles (CeONPs), silica-coated quantum dots, calcium phosphate nanoparticles (CaPNPs),
and albumin-based nanoparticles stimulate the PI3K/AKT/mTOR pathway, thereby suppressing
autophagy. This inhibition diminishes autophagy-related cancer cell survival, hence augmenting the
effectiveness of chemotherapeutic drugs. The figure was created using the BioRender.com online
commercial platform.

4.1. Nanoparticles That Induce Autophagy via PI3K/AKT/mTOR Inhibition

Gold nanoparticles (AuNPs) impede the phosphorylation of AKT and mTOR, resulting
in the induction of autophagy in cancer cells [47]. The inhibition of mTORC1 activity leads
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to enhanced autophagy flux, facilitating cell death in multiple malignancies, such as breast
and lung cancer. Silica nanoparticles (5INPs) generate oxidative stress and reactive oxygen
species (ROS) production, which subsequently downregulates PI3K/AKT signaling [62].
This inhibition stimulates AMPK, suppressing mTOR and facilitating autophagy-induced
cancer cell death. Lipid-based nanoparticles encapsulating rapamycin or other mTOR
inhibitors directly suppress mTOR activity [63]. These nanoparticles augment autophagy
induction, hence increasing the susceptibility of cancer cells to treatment in glioblastoma
and ovarian cancer models. Iron oxide nanoparticles (IONPs) promote reactive oxygen
species (ROS) production and inhibit the PI3K/AKT/mTOR signaling pathway [64]. This
initiates autophagy, resulting in the lysosomal destruction of damaged organelles and
proteins, hence augmenting the anticancer efficacy of chemotherapeutics. Graphene oxide
nanoparticles (GONPs) inhibit mTORC1 signaling and promote autophagy via disrupting
AKT phosphorylation [65]. This method enhances the susceptibility of cancer cells to
apoptosis and diminishes tumor proliferation. Chitosan nanoparticles containing bioac-
tive substances, such as curcumin suppress PI3K/AKT signaling [66]. This inhibition
diminishes mTOR activity, resulting in increased autophagy flux and apoptotic cell death
in hepatocellular cancer. Poly(lactic-co-glycolic acid) (PLGA) nanoparticle-encapsulating
medications, like doxorubicin, block the AKT/mTOR pathway, hence inducing autophagy
and increasing cancer cell susceptibility to treatment [67].

4.2. Nanoparticles That Inhibit Autophagy via PI3K/AKT/mTOR Activation

Cerium oxide nanoparticles (CeONPs) facilitate the activation of AKT and mTOR
pathways, thereby suppressing autophagy [68]. This system protects normal cells from
harm and diminishes the autophagy-driven survival of cancer cells. Silica-coated quan-
tum dot nanoparticles stimulate the PI3K/AKT/mTOR pathway, inhibiting autophagy
in resistant cancer cells [69]. This inhibition reinstates the efficacy of chemotherapeutic
drugs in malignancies reliant on autophagy for survival. Calcium phosphate nanoparti-
cles (CaPNPs) stimulate PI3K/AKT signaling and diminish autophagy by augmenting
mTOR activity [70]. This inhibition results in the sensitivity of cancer cells to apoptosis
generated by chemotherapy. Albumin-based nanoparticles coated with paclitaxel stimulate
AKT/mTOR signaling to suppress protective autophagy, hence enhancing apoptosis in
pancreatic and breast cancer cells [71].

5. Perspectives, Challenges, and Future Directions in Targeting
PI3K/AKT/mTOR-Mediated Autophagy Utilizing Nanoparticles

5.1. Perspectives

The application of nanotechnology into cancer treatment has transformed targeted
medication delivery, especially in regulating autophagy through the PI3K/AKT/mTOR
pathway. Nanoparticles (NPs) boost bioavailability, improve pharmacokinetics, and enable
controlled drug release, optimizing therapeutic efficacy and reducing systemic toxicity.
Their capacity to encapsulate various therapeutic drugs, such as mTOR inhibitors and
autophagy modulators, presents intriguing strategies for surmounting resistance mech-
anisms in cancer cells. The integration of ligand-functionalized nanoparticles facilitates
targeted tumor delivery, minimizing off-target effects and increasing drug accumulation in
tumor tissues via the increased permeability and retention (EPR) effect [72]. Nonetheless,
numerous barriers persist in the translation of nanoparticle-based medicines into clinical
practice, and comprehending these impediments is essential for the progression of the area.
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5.2. Challenges

Despite their potential, several challenges hinder the clinical translation of nanoparticle-
based autophagy modulation strategies.

5.2.1. Biocompatibility and Possible Toxicity

A fundamental challenge regarding the utilization of nanoparticles in therapeutic
applications is their biocompatibility. While nanoparticles can efficiently transport med-
ications to specific cells, their aggregation in non-target tissues or organs may result in
hazardous repercussions [73]. This is particularly crucial when focusing on intracellular
networks, such as PI3K/AKT/mTOR, where the exact regulation of autophagy can either fa-
cilitate cancer cell apoptosis or unintentionally support tumor viability [18]. Consequently,
guaranteeing that nanoparticles are biocompatible, non-toxic, and safely disintegrate within
the body constitutes a critical problem to address.

5.2.2. Immune System Recognition and Clearance

Nanoparticles are frequently identified by the immune system as exogenous entities,
perhaps leading to their swift elimination prior to arrival at the tumor location. This con-
strains their therapeutic effectiveness and may result in inadequate sustained medication
release at the target site. The immune system’s sensitivity to nanoparticles may provoke
inflammatory responses, complicating their application in patients with weakened immune
systems [74]. Techniques to alter the surface properties of nanoparticles, including the
application of biocompatible polymers or antibodies, can diminish immune recognition
and improve their stability in the circulatory system.

5.2.3. Enhancement and Consistency of Nanoparticle Fabrication

The synthesis of nanoparticles for research has advanced significantly, although scal-
ing up production for therapeutic uses is a considerable hurdle. The reproducibility of
nanoparticle synthesis is essential for maintaining consistent quality and drug-loading
efficacy [75]. Fluctuations in nanoparticle dimensions, surface charge, and composition
can profoundly influence their pharmacokinetics, biodistribution, and therapeutic effi-
cacy. Standardizing synthesis techniques and creating economic, large-scale production
processes are crucial for the widespread adoption of nanoparticle-based therapeutics in
clinical environments.

5.2.4. Tumor Heterogeneity

Tumor heterogeneity poses a distinct obstacle in the advancement of nanoparticle-
based therapeutics. Various tumor subtypes or distinct locations within the same tumor
may exhibit divergent responses to the inhibition of the PI3K/AKT/mTOR pathway [76].
Moreover, off-target effects, including inadvertent drug release in healthy tissues, may
result in toxicities that restrict therapeutic efficacy. Customizing nanoparticle-based thera-
peutics to address the unique biological attributes of cancers will be crucial in surmounting
this barrier.

5.3. Future Directions

To address these challenges, future research should focus on the following topics.

5.3.1. Creation of Stimuli-Responsive Nanoparticles for Spatiotemporal Regulation
of Drug Release

Subsequent study ought to concentrate on creating nanoparticles capable of respond-
ing to stimuli inside the tumor microenvironment. Stimuli-responsive nanoparticles may
discharge their therapeutic payload in reaction to variations in pH, temperature, or en-
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zymatic activity, which are frequently modified in neoplastic cells [77]. This method
may provide accurate spatiotemporal regulation of drug administration, ensuring that
PI3K/AKT/mTOR inhibitors are administered exclusively when and where they are most
required, hence reducing toxicity to healthy tissues. Additionally, PI3K/AKT signaling
activates HSF-1 (heat shock factor 1), leading to increased expression of HSP70 (heat
shock protein 70), which plays a protective role in cancer cells by inhibiting apoptosis
and enhancing stress resistance [78]. This mechanism can reduce the effectiveness of pho-
tothermal and photodynamic therapies by promoting cell survival under heat or oxidative
stress conditions.

5.3.2. Incorporation of Artificial Intelligence and Machine Learning in Nanoparticle Design

The design of nanoparticles for targeted drug administration is a complex process that
requires consideration of aspects, such as particle size, surface charge, and drug release
characteristics. The incorporation of artificial intelligence (AI) and machine learning (ML)
in nanoparticle design could significantly improve the accuracy and efficacy of creating op-
timum nanoparticles for targeting the PI3K/AKT/mTOR pathway [79]. AI/ML algorithms
can be utilized to forecast nanoparticle behavior in biological systems, model their interac-
tions with certain tumor cell types, and refine their design to enhance therapeutic efficacy.

5.3.3. Clinical Trials to Assess Safety and Efficacy in Varied Patient Populations

Although nanoparticle-based medicines exhibit significant potential in preclinical
models, their safety and efficacy in human populations require thorough assessment [80].
Future clinical trials ought to concentrate on heterogeneous patient populations to evalu-
ate the potential advantages of targeting PI3K/AKT/mTOR-mediated autophagy across
different cancer types. These trials will be essential in assessing the long-term safety
of nanoparticles, their capacity to target specific cancers, and their overall therapeutic
effectiveness in conjunction with other cancer treatments.

5.3.4. Investigation of Nanoparticles for Customized Cancer Therapy

The primary objective of nanoparticle-based therapeutics is to provide individual-
ized therapy alternatives that are specifically designed to align with the distinct molec-
ular characteristics of each patient’s tumor. By integrating biomarkers associated with
PI3K/AKT/mTOR activation, nanoparticles can be engineered to administer tailored
medicines to patients most likely to derive benefit [81]. This tailored strategy could
markedly enhance treatment results and reduce the negative effects linked to conven-
tional chemotherapy or radiation therapy.

6. Conclusions

Nanoparticle-based drugs delivery methods possess significant potential to influence
the PI3K/AKT/mTOR pathway and control autophagy in cancer [63]. Progress in nanotech-
nology and enhanced comprehension of autophagy mechanisms enable the development
of more efficacious and individualized cancer treatments. Overcoming current barriers
and enhancing nanoparticle design is going to be essential for converting these promising
strategies into a possible successful strategy. Therefore, nanoparticle-based treatments
possess considerable promise for targeting PI3K/AKT/mTOR-mediated autophagy in
cancer therapy. Addressing the challenges of biocompatibility, immune recognition, scala-
bility, and tumor heterogeneity, while investigating future avenues, like stimuli-responsive
nanoparticles, Al-driven designs, and personalized medicine, is crucial for actualizing the
clinical potential of this novel therapeutic strategy.
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