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Abstract: Genistein (4,5,7-trihydroxyisoflavone) is a phytoestrogen belonging to a subclass
of natural flavonoids that exhibits a wide range of pharmacological functions, including an-
tioxidant and anti-inflammatory properties. These characteristics make genistein a valuable
phytochemical compound for the prevention and/or treatment of cancer. Genistein effec-
tively inhibits tumor growth and dissemination by modulating key cellular mechanisms.
This includes the suppression of angiogenesis, the inhibition of epithelial-mesenchymal
transition, and the regulation of cancer stem cell proliferation. These effects are mediated
through pivotal signaling pathways such as JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK,
NEF-«kB, and Wnt/3-catenin. Moreover, genistein interferes with the function of specific
cyclin/CDK complexes and modulates the activation of Bcl-2/Bax and caspases, playing a
critical role in halting tumor cell division and promoting apoptosis. The aim of this review
is to discuss in detail the key cellular and molecular mechanisms underlying the pleiotropic
anticancer effects of this flavonoid.

Keywords: flavonoid; phytoestrogen; angiogenesis; epithelial-mesenchymal transition;
cancer stem cells; cell cycle; programmed cell death

1. Introduction

Cancer encompasses a diverse group of complex and dynamic diseases, defined by
distinct characteristics such as uncontrolled cell proliferation, resistance to apoptosis, epi-
genetic reprogramming, immune evasion, and phenotypic plasticity [1,2]. Despite their
limitations, including severe cytotoxicity, and the development of multidrug resistance, the
most employed anticancer and antimetastatic treatments include chemotherapy, radiother-
apy, surgery, and immunotherapy, often administered in combination [3]. Furthermore,
as one of the leading causes of death worldwide, cancer highlights the need for effective
therapeutic approaches, with chemoprevention emerging as one of the most promising
strategies [4—6]. In this context, several members of the naturally occurring flavonoids,
already known for their multiple health benefits, also show efficacy in chemopreven-
tion [7-10]. Genistein (4,5,7-trihydroxyisoflavone, a member of the flavonoid family) is
a phytoestrogen also acting as a potent inhibitor of tyrosine kinases [11] that has already
been successfully tested in the management of breast and prostate cancers [12-16]. Further
experimental evidence has demonstrated genistein’s ability to influence a broad spectrum
of cell signaling pathways, thus interfering with the progression of several other types
of cancer [17,18]. Building on these premises, this review explores the most significant
findings on the anticancer properties of genistein, with a focus on its capacity to modulate
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key molecular pathways involved in angiogenesis, tumor cell migration and invasion,
epithelial-mesenchymal transition (EMT), maintenance of cancer stem cells (CSCs), cell
cycle arrest, and the induction of tumor cell death.

2. Chemistry

Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-chromen-4-one) is a naturally occur-
ring isoflavone in soy products [19]. Isoflavones are members of the flavonoid family,
which comprises over 5000 compounds [15]. The aglycone form of isoflavones is the
biologically active form. The biologically active isoflavone is the aglycosylated form ob-
tained after food processing of genistin, found in natural sources [19-21]. Knowing the
chemical structure of genistein helps to understand its biological activity. Genistein is a
4’ 5,7-trihydroxyisoflavone (C15H1005) with a low molecular weight of 270.24. It is a
light-sensitive plant secondary metabolite formed by two aromatic benzene rings (A and C)
and a non-aromatic heterocyclic pyran ring (B) (3-phenylchromen-4-one backbone), and the
substituents at positions 4/, 5, and 7 of rings A and B are hydroxyl groups (Figure 1) [22].
These phenols give this class of compounds significant antioxidant activity. Moreover,
genistein is poorly soluble in water and is soluble in acetone, ethanol, and other polar
solvents [21]. Due to its structural similarity to human endogenous estrogen, namely
173-estradiol (E2), genistein can compete with it and bind to estrogen receptors (ERs) o
and (3 through the two hydroxyl groups located on carbons 4 and 7 [21,23]. Moreover,
genistein is a recognized inhibitor of protein kinases [15,24]. This activity is thought to be
due to the C4’ phenolic group of this phytoestrogen, which is structurally similar to the
phosphoacceptor group of tyrosine [15].

HO 0
B |
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Figure 1. Chemical structure of genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-chromen-4-one). It is
formed by two aromatic benzene rings (A and C) and a non-aromatic heterocyclic pyran ring (B), and
the substituents at positions 4/, 5, and 7 of rings A and B are hydroxyl groups.

3. Sources

Genistein is an isoflavone abundantly found in the roots and seeds of plants belonging
to the Fabaceae (Leguminosae) family [25]. The phytoestrogen is abundant in soy foods,
soy drinks, and soybeans (Table 1) [21,26]. The genistein content of mature soybeans ranges
from 5.6 to 276 mg/100 g, with an average of 81 mg/100 g [26,27]. These differences in
genistein content of soybeans are not influenced by the soil cultivation system [28] whereas
the technological tillage of soybeans has a significant effect on this parameter. Genistein
concentrations are significantly higher in fermented soy products (e.g., miso, tempeh, sufu,
natto, soy sauce) compared to unfermented soy and soy-based products such as soy milk,
soy drinks, okara, tofu, and soy cheeses [22,29]. The second most abundant source of
this isoflavone is represented by legumes with an average content ranging from 0.2 and
0.6 mg/100 g [21,30,31]. Fruits, nuts, and vegetables contain variable amounts of genistein,
in the range of 0.03 to 0.2 mg/100 g [31]. A more comprehensive list of genistein content in
food classes is available online [26].
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Table 1. Foods with the highest genistein content [32].

Source Content (mg/100 g)
Soybeans seeds 5.56-267.2
Miso 33.69-67.20
Natto 21.52-59.37
Tempeh 1.11-112.21
Pistachio nuts 0.10-3.40
Chickpeas 0.069-0.214
Peanuts 0.02-0.39
Lentils 0.00-0.36
Parsley 0.057
Almonds 0.00-0.01

Various treatments (such as hulling, flaking, and defatting) are used to isolate soya
proteins from the soya bean [33]. Fermentation is a common low-cost process to improve
the bioavailability of soy [34]. The isoflavone is extracted from soybean meal in organic
solvents and genistin-containing fractions are converted to genistein by acid hydrolysis [35].
The products are solubilized in water and genistein is crystallized from the solution [36].
Recently, the methods for the isolation of genistein have been improved and have become
more complex and sensitive [37]. Most of the separation and purification methods are
based on thin-layer chromatography and other chromatographic techniques that are based
on a solid stationary phase, such as semi-preparative and preparative HPLC [38,39]. In
recent years, high-speed countercurrent chromatography (HSCCC) has become the method
of choice for isoflavone preparation [38,40].

4. Bioavailability and Metabolism

While it is possible to produce synthetic forms of genistein to increase the supply [27,41],
the main source for most people remains soy products in their diet [20,42].

In soybeans, soy foods, and natural sources, isoflavones are generally present as a
mixture of glycoside conjugates linked to either glucose, malonyl, or acetyl derivatives
of glucose in cell vacuoles [32,43-47]. In soybeans, the glycoside (sugar conjugate) form
of genistein, known as genistin, is the more abundant while the biologically active and
free form (aglycone) is present in small amounts [47,48]. Although studies on human
bioavailability have produced conflicting results, at least partly due to the different formu-
lations used, isoflavones generally exhibit low bioavailability [49,50]. However, compared
to aglycones, the glycosylated forms of isoflavones tend to be more water-soluble and
polar and, for this reason, they are poorly absorbed from the gastrointestinal tract and
show weak biological activity [49,50]. Hydrolysis of the carbohydrate moiety is required to
ensure the bioavailability of these forms [44]. Various reports, however, suggest that the
oral bioavailability of genistin is higher than that of genistein, as the former compound is
found more rapidly in plasma than the latter [45,51,52].

Free genistein concentrations in soy users’ blood are in the low nanomolar range [15].
Instead, isoflavone aglycones can be rapidly transported from the jejunum by non-ionic
passive diffusion but they have a low bioavailability due to their lipophilicity [44]. Indeed,
in humans, isoflavones appear in blood plasma faster and in higher concentrations after
oral aglycone rather than glycoside administration [53]. The isoflavones are hydrolyzed by
the gut microbiota [54] or gut wall enzymes (such as phloridzin-lactate hydrolase and other
intestinal 3-glucosidases [35,55]) and their sugar moiety is released [56,57]. Subsequently,
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genistein and its derivatives are metabolized in the gut or liver to glucorinidated and
sulfated forms [56,57]. They are then transported back into the intestinal lumen and the
blood [16,17,58,59]. The conjugation of genistein with sugars ensures rapid elimination by
biliary and urinary excretion [17,60]. Several approaches are being used to optimize the
solubility and bioavailability of genistein including nanostructured lipid carriers or other
molecular carriers, complexation with chemically modified cyclodextrins, or co-crystal
engineering [58-61].

5. Genistein and Angiogenesis

Angiogenesis involves the dynamic formation of new blood vessels from a preformed
vascular system [62]. Angiogenesis is tightly regulated by pro- and antiangiogenic media-
tors and primarily occurs during embryonic development. In healthy adults, it is generally
infrequent and is associated with specific physiological events, such as the female menstrual
cycle and pregnancy [62-65]. In the tumor context, the aberrant metabolism coupled with
the typical hypoxic conditions leads to proangiogenic factor overexpression, including vas-
cular endothelial growth factor (VEGEF), platelet-derived growth factor (PDGF), fibroblast
growth factor (FGF), and matrix metalloproteases (MMPs) [66,67]. Consequently, angio-
genesis is a crucial process during all phases of the tumor disease promoting cancer cell
proliferation, migration, and invasion, as well as metastases formation [68,69]. Therefore,
targeting tumor angiogenesis appears to be a strategic method to interfere with cancer
expansion [69]. As part of its chemopreventive properties, genistein functions as a potent
antiangiogenic agent and has demonstrated efficacy in managing breast and prostate can-
cers [12-14,16]. For example, as extensively reviewed by Varinska et al. (2015), by interfer-
ing with the activity of various proangiogenic mediators including VEGF, epithelial growth
factor receptor (EGFR), MMPs, nuclear factor-kappa B (NF-«B), phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (PI3K/Akt), and GEN (ERK1/2) signaling pathways, GEN
strongly inhibited angiogenesis in human breast cancer (BC) [70]. Experimental evidence
demonstrates the antiangiogenic properties of the flavonoid, showing that genistein can
bind to hypoxia-inducible factor-1oc (HIF-1¢) in an in vitro model of human BC [71]. HIF-1x
signaling is a crucial hub implicated in activating the angiogenic switch, sustaining tumor
growth and metastases diffusion. Thus, it is reasonable that targeting the HIF-1oc/HIF
axis may represent a promising antiangiogenic and anticancer therapeutic approach [72].
Furthermore, in line with the action of the flavonoid explained above, by using a dedicated
multiplex-array assay, Uifalean and co-workers (2018) showed genistein dose-dependently
hindered C-X-C motif chemokine ligand 16 (CXCL16) and vascular endothelial growth
factor-A (VEGFA) secretion in BC in vitro (in MCF-7 estrogen-dependent and MDA-MB-231
estrogen-independent cell lines) [73]. Interestingly, both CXCL16 and VEGFA not only
trigger angiogenesis but also promote metastasis [73,74]. More investigations reveal that
genistein inhibits angiogenesis in other tumor types [75,76]. For example, it was found that
the compound repressed the expression/secretion of different angiogenic factors (including
VEGF and PDGF) and matrix-degrading enzymes (such as urokinase-type plasminogen
activator (uPA), MMP-2, and MMP-9) in human bladder cancer cells, upregulating an-
giogenesis inhibitor levels (such as plasminogen activator inhibitor-1 (PAI-1), angiostatin,
endostatin, and thrombospondin-1 (TSP-1)) [75]. In addition, genistein treatment caused
a relevant decrease in VEGF mRNA expression in thyroid carcinoma cells [76]. Of note,
this suppressive effect was more emphasized in the case of the genistein-thymoquinone
combination [76]. Taken together, this evidence emphasizes genistein’s inhibitory effect on
tumor angiogenesis as part of its chemopreventive efficacy (Figure 2).
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Figure 2. Schematic representation of the inhibitory effect of genistein on angiogenesis. The
isoflavonoid suppresses tumor neovascularization by interfering with the action of specific growth
factors (such as VEGEF, FGF, and PDGF) and matrix-degrading enzymes, including MMPs. Full names
of the proteins and other abbreviations can be found in the Abbreviations section.

6. Genistein Inhibits Cancer Invasion and Metastases

Extracellular matrix (ECM) remodeling and degradation are critical in cancer pro-
gression [77,78]. Matrix-degrading enzymes, including Ca?*- and Zn?*-dependent en-
dopeptidases, namely MMPs and the uPA system, are the main mediators responsible for
ECM molecule lysis [79-82]. As part of its chemopreventive action, by modulating the
different molecular signaling pathways discussed below, genistein negatively influences
the expression/activation of matrix-lysis enzymes, thereby acting on multiple aspects of
cancer metastasis [79,83]. In this regard, a study by Kousidou and colleagues demonstrated
that genistein downregulates the mRINA expression of several members of the MMP family
in human BC cells, including estrogen-receptor-negative MDA-MB-231 and MCEF-7 cell
lines. Functionally, this reduced invasion of the cancer cells [82]. In addition, genistein
dose-dependently efficiently inhibits transforming growth factor betal (TGF-{31)-induced
invasion and metastatic potential of human pancreatic cancer in vitro by downregulating
MMP-2 and uPA expression [84]. The anti-invasive impact of genistein on pancreatic cancer
cells was also supported by the targeting of Forkhead box protein M1 (FOXM1) as shown by
Wang et al. (2010) [85]. Furthermore, Xiao and co-workers demonstrated that the isoflavone
inhibited (in a dose-dependent manner) the invasiveness of human colon-rectal cancer
(CRC) cells, as well as metastasis formation in murine orthotopic implantation models,
through the selective suppression of the proangiogenic marker Fms-related tyrosine kinase
4 (FLT4) (i.e., VEGFR2) and MMP-2 [86]. Additionally, Hussain et al. (2021) revealed
that genistein, in a time-dependent manner, inhibited the invasive ability of HeLa cells by
modulating MMP-9 and tissue inhibitor of metalloproteinases 1 (TIMP-1) [87].

The invasiveness of cancer cells is closely related to the abundance of focal adhesions
(FAs), large and dynamic protein complexes, that link the cytoskeleton to the ECM; of
note, FAs particularly accumulate in specialized membrane protrusions (i.e., invadopodia
and podosomes) that contribute to the lysis of ECM through the action of MMPs [88].



Int. J. Mol. Sci. 2025, 26, 1114

6 of 47

Focal adhesion kinase (FAK) and paxillin are the main FA-associated kinases, and their
activation is crucial in controlling cell migration and invasion [89]. Given this, genistein,
by downregulating p125FAK, inhibited the metastatic activity of hepatocellular carcinoma
(HCC) cells (Bel 7402) coupled with angiogenesis suppression in a murine xenograft
model [90].

As already emphasized, genistein is recognized as a phytoestrogen due to its ability
to interact with ERs [91]. Not surprisingly, its biological functions are largely modulated
by the ERa and ERf subtypes [92]. On this premise, Chan et al. (2018) noticed that
genistein (in a dose-dependent trend) significantly reduced both migration and invasive
ability of ER-positive ovarian cancer cells (SKOV-3 positive for ERx and A2780CP express-
ing ERP) by suppressing FAK signaling [93]. Similarly, the invasion ability of human
choriocarcinoma cells (JAR cells) was silenced by genistein via ERf3 binding, followed by
metastasis-associated proteins 3 (MTA3)/Snail/E-cadherin pathway activation [94].

The mitogen-activated protein kinase (MAPK) pathway transmits extracellular signals
from the membrane to intracellular compartments and it is involved in several cellular
processes including cell proliferation, migration, invasion, as well as cell death [95]. A study
by Chen and colleagues demonstrated that genistein, in a dose-dependent manner, inhibited
the metastatic potential of human cervical cancer cells (HeLa) in vitro by interfering with
MAPK signaling pathways and FAK-paxillin activation [96]. Furthermore, by inhibiting
MMP-9 expression and interrupting specific transductors of the MAPK pathway (namely
MEK/ERK and JNK signaling pathways), genistein (in a dose-dependent manner) was able
to suppress both migration and invasion of squamous cell carcinoma in vitro (SK-MEL-28
cells) [97].

Interestingly, in 16F10 melanoma cells, different doses of genistein were found to
affect cancer cell invasiveness. High doses of the phytoestrogen (100 pM), by inacti-
vating the FAK/paxillin signaling cascade, inhibited the cell adhesion, migration, and
invasion triggering apoptosis; on the contrary, a low dosage of genisetin (12.5-50 uM)
significantly promoted both invasion and migration of melanoma cells by activating the
FAK/paxillin and MAPK signaling pathways [98]. Moreover, using a B16 mouse model
of murine melanoma (B164A5 melanoma cell line and C57BL/ 6] mice), genistein showed
antimetastatic activity and reduced the tumor’s size [99].

Tetradecanoylphorbol-13-acetate (TPA) is one of the most widely used agents to
study the mechanisms of carcinogenesis and metastasis; in fact, it induces MMP expres-
sion/activation by modulating different signaling pathways [100]. Wang et al. (2014)
observed that genistein blocks TPA-mediated metastasis via the downregulation of MMP-9
and epidermal growth factor receptor (EGFR) followed by the suppression of nuclear
factor-«B (NF-kB) and activating protein-1 (AP-1) transcription factors and inhibition of
MAPK, IkB, and PI3K/ Akt signaling pathways in an HCC model [101].

Recently, Khongsti and co-workers found that human BC cells (MDA-MB-435 and
MDA-MB-231) treated with genistein showed a reduction in osteopontin (OPN) secretion
associated with increased phosphorylation of ERK1/2 and mitogen-activated protein kinase
kinase 1/2 (MEK1/2) and upregulation of a member of the NAD (+)-dependent histone
deacetylase family, namely SIRT1. Thus, the authors speculated that OPN inhibition
via genistein may be epigenetically regulated by MAPK-pathway-induced SIRT1 [102].
Notably, OPN plays a pivotal role in cancer [103].

In prostate cancer (PC), the effects of genistein are rather inconsistent [104-107]. As a
matter of fact, in a study by Touny et al. (2009) genistein curiously promoted and exacer-
bated the metastatic propensity of undiagnosed early-stage human PC through an estrogen-
and PI3K-dependent mechanism, also involving OPN upregulation [104]. Conversely, in
another investigation, genistein inhibited PC invasion and MMP-2 activation, switching
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off TGF-f3-mediated phosphorylation of MAPK-activated protein kinase 2 (MAPKAPK2)
and heat shock protein 27 (HSP27), both downstream regulators of p38MAP kinase sig-
naling [105]. The antimetastatic effect of genistein on PC cells (1532CPTX, 1532NPTX,
1542NPTX, 1542CPTX, PC3, and PC3-M cell lines) was further supported by Xu et al.
(2009) who showed suppression of MMP-2 by targeting the mitogen-activated protein
kinase kinase 4 (MEK4) [107]. In this circumstance, the authors also noted the clinical
relevance of genistein treatment in inhibiting signaling pathways involved in PC invasion.
By analyzing normal prostate epithelial cells isolated from the prostate tissue of patients
enrolled in a prospective, randomized phase II trial, they observed lower levels of MMP-2
expression compared to cells from untreated patients [107]. To address the controversial
impact of genistein treatment on PC, Nakamura’s group developed a clinically relevant
xenograft model generated from a patient’s prostatectomy specimen and demonstrated a
prometastatic effect of the flavonoid. Thus, the authors speculated that genistein may have
heterogeneous antimetastatic effects correlated with differential ERB expressions among
patients [106]. Additionally, as discussed below, non-coding RNAs (ncRNAs), including
different microRNAs (miRs, 18-25 nt), that act as oncogenes and /or tumor suppressors in
different cancers, can be regulated by genistein [108]. Indeed, as discovered by Chiyomaru
and co-workers, genistein, both in vitro and in mouse models, by upregulating miR-574-3p
expression and affecting related signaling pathways, decreased the invasion and metastatic
activity of androgen-independent PC cell lines (PC3 and DU145, both expressing the ERf3
subtype) [109].

Extensive evidence suggests that a dysregulated expression of KCNK9 (a mem-
ber of the two-pore domain potassium (K2P) channel family) supports cancer progres-
sion [110,111]. Pertinently, a study by Cheng’s group demonstrated that genistein, by
downregulating KCNK9 expression, acted on the Wnt/ 3-catenin signaling pathway, sup-
pressing the malignant phenotype of human colon cancer [112].

The catalytic subunit of DNA-PK kinase (DNA-PKcs), which plays a major role in
DNA damage signaling repair, also shows a proinvasive action [113]. As radiotherapy
increases the invasive tendency of DNA-PKcs-positive glioblastoma multiforme (GBM), it
has recently been shown that genistein can specifically bind to DNA-PKcs, suppressing the
DNA-PKcs/Akt2/Racl signaling pathway, thereby successfully inhibiting the radiation-
induced invasiveness of GBM cells in vitro and in vivo [114].

Epigenetic plasticity (i.e., DNA methylation/demethylation, histone modifications, as
well as short and long ncRNA involvement) can contribute to cancer onset and progres-
sion [115]. For example, the methylation in the promoter of the gene coding Wnt inhibitory
factor 1 (WIFI) favors cancer development by switching off the Wnt/3-catenin signaling
pathway [116]. Pertinently, Zhu and co-workers found that genistein inhibited the invasion
and migration of colon cancer cells (HT29) by inducing WIF1 gene demethylation, thereby
restoring its activity. These effects were also supported by the regulation of cancer cell
invasion-associated genes, including MMP-9, MMP-2, TIMP-1, E-cadherin, and Wnt sig-
naling pathway mediators including (3-catenin, c-Myc proto-oncogene protein, and cyclin
D [117]. As mentioned above, the epigenetic modulator miRs can represent a target of
genistein [108]. Consistently, it was observed that the phytochemical, by targeting miR-27a,
inhibited invasion, suppressed cell growth, and induced apoptosis in pancreatic cancer
cells [118]. In addition, Hirata et al. (2021) demonstrated that isoflavones, by regulating
miR-1260b expression, inhibited Wnt signaling effector genes such as secreted frizzled-
related protein 1 (sFRP1), Dickkopf 2 (Dkk2), and Smad4 in renal cancer cells (786-O, A-498,
Caki-2 cell lines); functionally, cancer cell invasiveness together with proliferation and
apoptosis phenomena was significantly decreased [119]. Another interesting study showed
that genistein interrupted the metastatic activity of human colorectal cancer (CRC) by
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suppressing the interplay between the long ncRNA TATTY18 and the Akt pathway [120].
In more detail, genistein-treated CRC cells (SW480), among other phenomena, showed
downregulated expressions of TATTY18 and reduced cell migration, coupled to a decrease
in glucocorticoid-regulated kinase 1 (SGK1) and reduced Akt and p38-MAPK phosphory-
lation; these results were confirmed in vivo using genistein-treated tumor-bearing nude
mice [118]. Circular RNAs (circRNAs), like other ncRNAs (i.e., micro- and long-ncRNAs),
can act as oncogenes [121-123]. Recently, members of the flavonoid family have been
reported to interfere with cancer progression by targeting specific circRNAs [122,123].
FOXM1, a cell-cycle-regulating transcription factor upregulated in cancer, has the role
of maintaining malignant hallmarks by modulating the expression of target genes at the
transcriptional level [124]. Interestingly, Yu et al. (2021) discovered that genistein exposure
regulated non-small cell lung cancer (NSCLC) cell migration and invasion by decreasing the
circRNA circ_0031250; in parallel, they showed that miR-873-5p is a target of circ_0031250 to
finally conclude that genistein restricts NSCLC invasiveness and progression by involving
the circ_0031250/miR-873-5p /FOXM1 axis [125].

It has been observed that genistein can synergistically hinder cancer spreading when
combined with other compounds including specific phytochemicals. For example, a mix-
ture of genistein and retinoic acid (ATRA) significantly inhibits the invasion ability of hu-
man adenocarcinoma cells (A549 cell line) by downregulating the transmembrane protein
mucin 1 (MUC1) as well as intercellular adhesion molecules-1 (ICAM1) expression [126].
Furthermore, adding rottlerin to genistein on neuroblastoma cells (SH-SY5Y and Kelly) led
to notable decreased levels of eukaryotic elongation factor 2 kinase (EF2K) which is known
to influence invasion/metastasis and the integrin/Src/FAK axis [127].

To sum up, genistein can interfere with cancer invasion and metastasis by acting on
multiple molecular mechanisms (Figure 3).

Genistein

CANCER INVASION

METASTASIS

\
/ \

ECM LYSIS: MAPK signaling EPIGENOME:
MMPs pathway ncRNAs EJS:;%C);i?‘/oTVEegS:IORS
uPA system FAK/Paxillin activation Histones modifications

Figure 3. Influence of genistein on cancer progression. Genistein abrogates cancer invasion and
metastasis by interfering with multiple mechanisms including EMC lysis, MAPK/FAK/paxillin
activation, epigenetic changes (ncRNA engagement and histone modifications), and estrogenic
receptor involvement. Full names of the proteins and other abbreviations can be found in the
Abbreviations section.

7. Genistein and Epithelial Mesenchymal Transition

EMT is a dynamic and complex process by which epithelial cells lose their junctions
and polarity and acquire a migratory mesenchymal phenotype, involving reorganization
of the cytoskeletal scaffold [128,129]. Thus, typical epithelial markers including E-cadherin
(CDH1), claudins, zonula occludens-1 (ZO-1), desmoplakin, and plakophilin are replaced



Int. J. Mol. Sci. 2025, 26, 1114

9 of 47

by mesenchymal proteins such as N-cadherin (CDH2), vimentin (Vim), and a-smooth
muscle actin (x-SMA) [128]. Multiple and interacting signaling pathways orchestrate
the EMT phenomenon, such as tumor growth factor-3 (TGF-f3), epidermal growth factor
(EGEF), FGF, PDGEF, Notch, Wnt/ 3-catenin, PI3K-Akt, FAK/paxillin, MAPK signaling, and
the Hippo-Yes-associated protein (YAP)/PDZ-binding motif (TAZ) pathways, as well as
several ncRNAs [128,130-132]. In synergy with the above molecular signals, numerous
transcription factors such as Snail, Slug, Twist, NF-«xB, HIF1/2 and zinc finger E-box bind-
ing homeobox 1/2 (ZEB1/2), and basic helix-loop-helix (P HLH), are involved in EMT [133].
Physiologically, EMT plays a crucial role in organogenesis and tissue repair [134]. In the tu-
mor context, this process contributes to cancer malignancy by eliciting cell invasion, cancer
stem cell (CSC) grouping, and drug resistance and supporting metastasis formation [135].
Therefore, inhibiting or reversing EMT may be a clinically relevant strategy to prevent
cancer spread. As explored by Hsieh et al. (2020), genistein was able to suppress (in a
dose-dependent trend) the prometastatic propensity of human head and neck cancer (HNC)
coupled with a decrease in multidrug resistance by regulation of typical EMT markers (i.e.,
E-cadherin, Vim, Slug, and ZEB1) [136]. Additionally, by introducing an in vivo model, the
authors concluded that genistein inhibited the aggressiveness of the HNC cells by perturb-
ing the miR-34a/RTCB axis [136]. Another study showed that genistein, in combination
with a specific miR-223 inhibitor, reversed the EMT process in gemcitabine-resistant pan-
creatic cancer cells, as supported by a downregulation in the expressions of mesenchymal
markers (such as Slug, Vim, Snail, ZEB1, and ZEB2), thus enhancing the drug sensitiv-
ity and inhibiting cell motility and invasion [137]. As previously highlighted, genistein
as a phytoestrogen can exert multiple biological functions by binding to ERs, including
chemoprevention [16,18,19,21]. E2, as well as the typical endocrine-disrupting chemicals
(EDCs) such as bisphenol A (BPA) and nonylphenol (NP), has been shown to promote
EMT and invasiveness in estrogen-responsive cancers, including ovarian cancer [138]. On
these premises, Kim and co-workers found that genistein was effective in reversing the
ER-mediated EMT process activated by E2, as well as BPA and NP, in human ovarian cancer
cells (BG-1) and reducing the resulting increase in expression of invasion markers such as
MMP-2 and cathepsin D. In a parallel setting, the same investigators showed that the phy-
toestrogen was also able to reactivate the TGF-f3 signaling pathway in the BG-1 cells after its
suppression by the compounds mentioned above [138]. Furthermore, in human HCC, genis-
tein dose-dependently reversed EMT in vitro by partly suppressing the nuclear factor of
activated T cell 1 (NFAT1) expression and thus showed antimetastatic activity in nude mice
bearing liver orthotopic tumor implants [139]. In human colon cancer cells (HT-29) genis-
tein (200 pgmol /L) decreased the expression of typical EMT molecules (i.e., N-cadherin,
Snail2/Slug, ZEB1, ZEB2, FOXC1, FOXC2, and TWIST1), perturbed the Notch-1/NF-«B
axis, and induced apoptosis [140]. Moreover, in human pancreatic cancer cell line Panc-1,
genistein, through a Smad4-dependent signaling pathway, in a dose-dependent fashion,
suppressed TGF-f31-induced EMT and invasiveness [84]. As discussed in other contexts of
this review, the role of the genistein in PC remains disputable [104-106,108,109]. However,
using dedicated PC cell lines (highly metastatic IA8-ARCaP cells and LNCaP/HIF-1o
cells that stably overexpress HIF-1x), Zhang et al. (2008) found that low-dose genistein
(0.2-15 pmol /L) inhibited invasion in vitro by reversing the EMT process [141]. Differently,
a study performed by Du and co-workers found that genistein treatment inhibited endothe-
lial growth factor (EGF)-dependent EMT in laryngeal cancer cells (Hep-2 cell line), inhibited
cancer cell growth and migration, and promoted apoptosis; moreover, all these antitumor
effects were more evident when trichostatin A (TSA) was added to genistein [109]. Another
investigation demonstrated that genistein treatment of papillary thyroid carcinoma (PTC)
cells, by preventing nucleus translocation of 3-catenin, was able to block the EMT process
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as documented by alteration of EMT-related modulators (i.e., E- and N-cadherin; Vim and
Snail), suppressed cell cycle/proliferation, and promoted cell death [142].

Taken together, this experimental evidence suggests that genistein, by acting on
multiple EMT-related mechanisms, can effectively contribute to blocking cell invasion and
the metastatic propensity of different tumor entities (Figure 4).
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Figure 4. Picture showing the main molecular targets genistein interferes with during cancer-
related EMT. Specific signaling pathways and transcription factors are mentioned in the epithelial
phenotype box and mesenchymal phenotype box, respectively. Of note, genistein drives cytoskeleton
rearrangement coupled to cellular junction disintegration. TJs: Tight junctions; AJs: Adherent
junctions; FAKs: Focal adhesions (including integrins and paxilin). Full names of the proteins and
other abbreviations can be found in the Abbreviations section.

8. Genistein Eradicates Cancer Stem Cells

CSCs constitute a cluster of highly invasive cancer cells able to trigger tumorigenesis,
supporting the metastatic cascade [143]. Like normal stem cells, CSCs are capable of
self-renewal and differentiation [144]. However, various aberrant signaling pathways are
involved in the maintenance and propagation of this tumor subpopulation, including
TGF-, Wnt/ 3-catenin, Notch, Hedgehog, PI3K/Akt/mTOR, NF-«B signaling, as well as
the Hippo-YAP/TAZ pathways [145-148]. Furthermore, several biomarkers, including cell
surface molecules (i.e., cluster of differentiation (CD) 24, CD90, and CD133), and various
transcription factors, such as octamer-binding transcription factors 3 and 4 (Oct-3 and
-4), Nanog, and SEX-determining region (SRY) homology box 2 (Sox2), are frequently
used to identify and isolate CSCs [149]. A peculiar aptitude of CSCs shown in in vitro
conditions is their ability to form “spheroids” (known as mammospheres in the case of
breast CSCs); moreover, CSCs have an instrumental role in conferring drug resistance
as well as tumor recurrence; thus, given their potent role in tumor aggressiveness, CSCs
represent a considerable target for cancer therapy [150].

Recent studies have highlighted the potential of various phytochemicals, such as
isoflavones, to interfere with numerous signaling pathways involved in CSC propagation,
effectively reducing their ability to metastasize [151]. In this scenario, it has been demon-
strated that genistein, by acting on specific signaling pathways (i.e., Sonic Hedgehog (SHH),
Wnt/ -catenin, Notch, NF-«B JAK-STAT, PI3K/Akt/mTOR signaling), affects CSC prolif-
eration, thereby inhibiting tumor invasiveness and metastasis (Figure 5) [152]. Particularly,
it is postulated that genistein exerts its anticancer effects by modulating specific signaling
pathways such as the Wnt/3-catenin, Notch, and Hedgehog pathways, which are crucial
for stemness maintenance and self-renewal [108]. Moreover, genistein is associated with
several pharmacological activities, including inhibition of various kinases, transmembrane
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channels, and other crucial molecular mechanisms [153]. For instance, topoisomerase II,
tyrosine kinases, MAPK, ATP-binding cassette (Abc) transporters, P13K/Akt, polo-like
kinase 1 (PLK1), SHH, and Wnt/ 3 catenin signaling pathways are all mechanisms impaired
by the above-mentioned isoflavonoid [21,153,154].

Gcnistcin
Sonic/Hedgehog

Wnt/B catenin /\Pdthwa‘ : JAK/STAT
CSCs /

Notch p=——————————————— PI3K/Akt/mTOR

Self-renewal capacity

/ Effects \
Spheroid formation / \

CSCs markers

Metastasis Invasion

Figure 5. Diagram showing the main repercussions of genistein in CSC behavior. Genistein treatment
affects several signaling pathways (i.e., Sonic/Hedgehog, Wnt/ 3-catenin, Notch, NF-kB JAK-STAT,
PI3K/Akt/mTOR signaling) that are involved in the maintenance of self-renewal capacity, stemness
markers, invasion and metastasis propensity, as well as in the aptitude to form spheroids. Full names
of the proteins and other abbreviations can be found in the Abbreviations section.

Specifically, these activities, together with induction of cell cycle arrest and apoptosis,
prevention of reactive oxygen species (ROS), resolution of inflammation, inhibition of
angiogenesis, EMT, regulation of steroid hormones, and specific metabolic pathways,
contribute to the anticancer properties of genistein [153,155-157].

Originally, among other effects, genistein was recognized as a key compound with
wide-ranging medicinal activities and has also been used to limit cancer invasiveness [152].
Specifically, genistein was found to reduce PC stem cells both in vitro and in xenograft mice
by inhibiting the Hedgehog pathway and interfering with CD44 expression; ectopically,
tumor growth was found to be effectively reduced [152]. As clarified above, CSCs can form
spheroids in vitro, preserving, among other stem-like properties, immortality and invasive-
ness. Thus, in the above experimental context, genistein dose-dependently significantly
inhibited tumorsphere formation (22RV1- and DU145-derived stem cell formation) [152].
Furthermore, in a study performed by Fan and co-workers, it was demonstrated that
genistein exerts multiple effects on MCF-7 BC cells, not only suppressing proliferation and
inducing apoptosis but also specifically inhibiting the CSC subpopulations with consequent
inhibition of mammosphere formation through downregulation of the Hedgehog-Glil
pathway [158]. Moreover, the phytoestrogen induced BC stem/progenitor cell differen-
tiation by interacting with ER-expressing cancer cells through a paracrine mechanism
correlated with PI3K/Akt and MEK/ERK signaling [159]. Yu et al. (2014) found that
genistein markedly reduced the Glil level, which is considered a mediator of the SHH
signaling pathway; such a mechanism involves specific CSC hallmarks of gastric cancer
(GC) including CD44 expression, stem-cell-related genes (i.e., Oct-4, Bmi, Nestin, and
adenosine triphosphate (ATP)-binding cassette efflux transporter G2(ABCG2)), spheroid
formation, as well as migration and invasion propulsion [160]. Of note, as observed by
Huang’s group, genistein treatment also alters the resistance of CSCs to chemotherapeutic
drugs such as 5-fluorouracil (5-FU) and cisplatin, and it can also reduce tumor size in
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animal models of GC cells [161]. Similarly, more recent studies demonstrate that genistein
inhibits proliferation and induces apoptosis by inhibiting the SHH signaling pathway in
CSCs derived from human renal cancer [162]. The same SHH-targeting mechanism was
found in human nasopharyngeal cancer stemness eradication, including the arrangement
of tumor spheroids [163]. In addition, many researchers agree that 7-difluoromethoxy-5',4'-
di-n-octyl genistein, a genistein analog characterized by high bioavailability, can effectively
eradicate CSCs derived from GC and ovarian cancer by multiple mechanisms, including
inactivation of Akt, ERK, and NF-kB signaling, downregulation of FOXM1, as well as the
propensity of stem-like cells to originate spheroids and suppress EMT [164-166]. Fu et al.
(2020) showed that genistein (20 and 40 uM) inhibited the sphere formation aptitude of
CSCs derived from human NSLC cells, which was associated with a decreased expression
of stem-cell-related markers such as CD133, CD44, Bmil, and Nanog. In a parallel setting,
the authors found that genistein also suppressed the migratory and invasive activities of
these specific CSCs by modulating manganese superoxide dismutase (MnSOD) and FoxM1
signaling pathways [167]. Furthermore, inhibition of PI3K/Akt signaling, coupled with
overexpression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN),
has been shown to be a relevant pathway by which CSC behavior can be controlled by
certain dietary factors, including genistein [168]. Similarly, previous studies by Montales
et al. (2012) demonstrated that genistein inhibits the formation of CSC spheres originating
from human breast tumors, showing that the lowest dose of genistein (40 nM) consistently
attenuated the formation of primary and secondary mammospheres from transformed
cell lines and primary epithelial cells isolated from BC cells (MCF-7 (expressing ERx) and
MDA-MB-231). In contrast, a supraphysiological dose of genistein (2 M) was less effective
in eliciting a similar biological outcome [168]. Additionally, for a specific MDA-MB-231
subpopulation expressing CD44 and epithelial-specific antigen (ESA) (being particularly
enriched in CSC content), both 2 uM and 40 nM doses of genistein were effective in sup-
pressing mammosphere formation. Furthermore, the inhibition of PI3K/Akt signaling,
coupled with PTEN overexpression, has been shown to be a relevant pathway by which
CSC behavior can be controlled by dietary factors, including genistein [168].

Given the potent anticancer effects of genistein, in particular targeting the CSC phe-
notype, recent clinical studies have been designed to investigate the preventive and
therapeutic efficacy of this natural compound in different human tumors, including
CRC (ClinicalTrials.gov NCT01985763 nct.gov, 2019), PC (ClinicalTrials.gov NCT01126879
nct.gov, 2019), BC (ClinicalTrials.gov NCT00290756 nct.gov, 2017), and urothelial cancer
(ClinicalTrials.gov, NCT00118040 nct.gov, 2017, NCT01489813 nct.gov, 2018).

Thus, based on the above experimental evidence, it is reasonable to ponder genistein
as a useful drug to attenuate the aggressiveness of CSCs.

9. Genistein and Cell Cycle Arrest

The cell cycle is the ordered and finely regulated sequence of events that occur in
cells that are about to divide [169,170]. Progression through each step of the cell cycle
is controlled by checkpoint proteins belonging to the cyclin-dependent kinase (CDK)
family [170,171]. Disorders that disrupt the CDK family of proteins deeply affect the rate of
cell division and are often implicated in the development of primary tumors [172]. DNA
damage causes a pause in the cell cycle to allow for repair mechanisms before the cell
is committed to the subsequent steps [169,170]. Notably, DNA damage checkpoints can
be divided into those controlled by the tumor suppressor and transcription factor p53
and those ultimately under the control of the checkpoint kinase 1 (Chk1) [170]. Several
proteins are involved in cell cycle checkpoint activation pathways induced by DNA damage
and DNA double-strand breaks, including mediator of DNA damage checkpoint protein
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1 (MDC1), ataxia telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), Chkl,
checkpoint kinase 2 (Chk2), and PLK1 [173-175]. Genistein has been shown to modulate
several cellular pathways and one of the most studied is the signaling cascade that controls
cell cycle arrest [154,176-178].

Concentrations of genistein between 5 and 200 uM have been shown to induce cell
cycle arrest in different cancer cell lines although the mechanisms are not fully under-
stood [142,179-185] as these concentrations, even if theoretically achievable, are much
higher than those found in the bloodstream after food intake [15].

The extensive research on BC and PC evidenced the cell cycle arrest induced by genis-
tein during the G2/M, G0/G1, and G1/S phases [186-190]. The analysis of differentially
expressed genes performed on MCF-7 BC cells after treatment with genistein revealed
a strong dose-dependent alteration in the expression of genes involved in cell cycle con-
trol, such as glioma pathogenesis-related protein 1 (GLIPR1), cell-division cycle protein
20 homolog (Cdc20), budding uninhibited by benzimidazole 1 (BUB1), mini-chromosome
maintenance (MCM) complex 2, and cyclin B1 (CCNBL1) [191]. Fang et al. (2016) showed
that in the human triple-negative BC (TNBC) cell line MDA-MB-231, genistein affects vari-
ous molecular processes during cell cycle progression, including DNA replication, cohesion
complex cleavage, and kinetochore formation, through regulation via phosphorylation at
332 different sites on 226 proteins [192]. Consistently, in MDA-MB-435S, MDA-MB-468,
and MCEF-7 BC cells genistein induced a concentration-dependent accumulation of cells
in the G2/M phase [193-195]. The same results were confirmed in MCF-7 and MDA-MB-
231 BC cells where the DNA damage checkpoint (pATM) was activated and the levels of
inactive pCdc25¢ and pCdc2 were upregulated, arresting cells in the G2/M phase [196].
In human BC MDA-MB-231 and SKBR3 cells, genistein exerted the same G2/M phase
arrest in a dose-dependent manner and the molecular mechanism involved the inhibition
of S-phase kinase-associated protein 2 (Skp2) and promotion of its downstream targets
p21 and p27 [197]. G2/M phase arrest was confirmed in MDA-MB-231 cells after genistein
administration in association with the downregulation of cyclin B1, Bcl-2, and Bcl-xL ex-
pression, possibly mediated by NF-«B activation via the Notch-1 signaling pathway [198].
Furthermore, genistein treatment of MDA-MB-231 BC cells resulted in G2/M cell cycle
arrest as evidenced by a strong concentration-dependent reduction in the protein levels
of cyclin B1, Cdk1, and Cdc25C; in particular, these results were mediated by a genistein-
induced stable activation of ERK1/2 in a concentration- and time-dependent manner [199].
Similarly, genistein has been shown to induce G2/M phase block in BRCA1l-impaired
human BC MDA-MB-231 and HCC1937 cells by downregulating cyclin B1 levels due to
genistein-induced suppression of seven-transmembrane receptor G protein-coupled recep-
tor 30 (GPR30) activation and Akt phosphorylation/activation [200]. A similar mechanism
involving the PI3K/ Akt pathway was found in the PC cell lines PC3 and LNCaP, where 5
or 10 pM genistein induced a significant G2/M cell cycle arrest [201]. Co-treatment with
selenite and genistein showed synergistic effects on G2/M cell cycle arrest, although the
effect in PC3 cells was less than in LNCaP cells [201]. Higher levels of p21wafl and Bax
were detected in genistein-treated PC3 and LNCaP cells, while AKT phosphorylation was
decreased only in PC3 cells with no change in total AKT protein levels [201]. Similarly, in PC
cells (PC3 cell line), cell cycle analysis revealed a G2/M phase arrest induced by genistein
treatment associated with a 1.1-fold increase in nuclear p21WAF1/Cip1 protein expression
and a 14% decrease in nuclear cyclin Bl expression [202]. The combination of genistein
and radiation had an even stronger effect on these cells than either treatment alone [202].
Furthermore, the increase in p21 detected in LNCaP and PC3 cell lines after genistein
administration is associated with delayed mitosis and has been linked to transcriptional
inhibition of PLK-1 [203]. In another human cell line, PCDU145, genistein blocked the
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cell cycle in the G2/M phase and induced the growth arrest and DNA amage-inducible
45 (GADDA45) gene thorough its promoter [189]. The Gadd45 protein is a target gene of
p53 and has been reported to play a role in cell cycle regulation [204,205]. Similarly, cell
cycle arrest in the G2 phase in response to genistein treatment has been described in BC
MCEF-7 and PC cell lines (PC3), where genistein downregulated the mouse double minute 2
(MDM2) oncoprotein at the transcriptional level by interacting with the MDM2 promoter
and at the post-transcriptional level by inducing MDM2 ubiquitination [188]. The inhibition
of MDM2 expression by genistein was confirmed in PC3 xenografts [188].

Indeed, by flow cytometry analysis, genistein was confirmed to induce an accumu-
lation of cells in the G2/M phase of the cell cycle in the PC cell lines LNCaP, DU145,
and PC3 [206,207]. Gene expression analysis performed in genistein-treated cells showed
that in DU145 cells, the cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase in-
hibitor 2A (CDKN2A), and minichromosome maintenance 4 (MCM4) genes were down-
regulated while only the SERTA domain-containing 1 (SERTAD1) gene was significantly
upregulated [206]. In PC3 cells, genistein administration caused a significant decrease in
minichromosome maintenance 3 (MCM3) mRNA expression and an increase in cyclin H
(CCNH) [206]. In LNCaP cells, the baculoviral IAP repeat-containing 5 (BIRC5), cyclin
B2, Chk2, CDC28, protein kinase regulatory subunit 1B (CKS1B), GTSE1, hairy-related
5 (HERC5), minichromosome maintenance 2 (MCM2), MCM4, and proliferating cell nu-
clear antigen (PCNA) genes were downregulated while, in CDK7, cyclin-dependent kinase
inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN2B)p were up-
regulated after genistein treatment [206]. In line with this, a significant G2/M phase arrest
was described in the genistein-treated DuPro androgen-insensitive PC cell line; these cells
showed suppression of cyclins with concomitant induction of the tumor suppressor genes
p21 (WAF1/CIP1/KIP1) and p16 (INK4a) [190]. In particular, genistein has been shown
to increase active acetylated histones at p21 and p16 transcription start sites [190]. Two
different studies showed that genistein-induced G2/M phase cell cycle arrest in T47D BC
cells is mediated by the formation of 5,7,3" 4/ -tetrahydroxyisoflavone (THIF), a product
of genistein cellular metabolism [121,122]. THIF has been shown to cause cell cycle arrest
through activation of ATR, which is a consequence of intracellular oxidative stress, GSH
depletion, and increased DNA damage [119]. In addition, THIF induced inhibition of cdc2,
phosphorylation of p53 and Chk1, and deactivation of cdc25C phosphatase [121]. Moreover,
another study by Nguyen et al. (2018) attributed the effect of THIF to the phosphorylation
of p38 MAP kinase, resulting in the inhibition of cyclin Bl and cdc2 activation [208]. Ad-
ditionally, genistein and a hydantoin-derived antiandrogen—genistein conjugate caused a
significant accumulation in the S-phase of LNCaP cells [209].

Although the effect of genistein has often been described in terms of arresting the G2/S
phase of the cell cycle, some studies have shown a cell cycle arrest induced by genistein
administration in BC cell lines in a different phase. In more detail, genistein induced
a G0/G1 phase arrest in MCF-7 and MDA-MB-231 cell lines [210,211]. Lin et al. (2009)
confirmed the ability of genistein to inhibit the entry of the BC cell lines HS578T, MDA-
MB-231, and MCF-7 into the G0/G1 phase of the cell cycle [212]. Moreover, in the T47D
cell line genistein administration resulted in G0/G1 phase cell cycle arrest only when cells
reached confluence [213]. In PC LNCaP cells, genistein induced a G0/G1 cell cycle arrest
through the increased expression of histone acetyltransferases responsible for the increased
transcription of p21 and p16 suppressor genes which induce cell cycle arrest [190].

In MDA-MB-231 and MCF-7 cells, genistein induced the accumulation of cells in the
GO0/G1 phase, and co-treatment of cells with GEN and a potent steroid hormone precursor
called 1,25-dihydroxycholecalciferol (1,25(0OH)2D3) confirmed this result with a stronger
effect on the MDA-MB-231 cell line [187]. Similarly, in the ER+/HER2-overexpressing BT-
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474 human BC cell line, genistein and tamoxifen monotherapy significantly increased the
G1 phase cell population, and this G1 arrest effect was enhanced when the two molecules
were used in combination [214].

In conclusion, genistein appears to have a wide range of effects on the cell cycle,
which vary depending on the cell line and the phase of the cell cycle at the time of treat-
ment [185,215]. As a potent modulator of cell-cycle-related proteins and a regulator of
several molecular targets involved in cell cycle progression, genistein may have anti-
cancer properties by modulating the effects of deregulated cell cycle checkpoints in cancer
cells [185] (Figure 6).
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Figure 6. Genistein arrests the cell cycle of several human cancer cell lines in the G2/M or G1/S phase
through the modulation of cell-cycle-related proteins. The main targets of genistein are indicated.
Downward arrow |, decrease; Upward arrow T, increase. Full names of the proteins and other
abbreviations can be found in the Abbreviations section.

10. Programmed Cell Death

Apoptosis is a programmed cell death (PCD) mediated by multiple signaling pathways
triggered by cellular stress, DNA damage, immune surveillance, and other stressing cellular
factors [216,217]. Two distinct signaling pathways—the extrinsic and intrinsic apoptotic
pathways—trigger apoptosis in most tumor cells [217,218]. The extrinsic pathway involves
the activation of death receptors such as Fas and tumor necrosis factor receptors (TNFRs),
leading to the activation of caspase-8 and caspase-3 to induce apoptosis [218,219]. The
intrinsic pathway is associated with changes in mitochondrial permeability, leading to the
mitochonderial release of proapoptotic proteins such as B-cell lymphoma 2 (Bcl-2)-associated
X protein (Bax), cytochrome c (cyt c), and apoptosis-inducing factor (AIF) into the cyto-
plasm and activation of caspase-9 and caspase-3, ultimately triggering apoptosis [218-220].
Caspase-3 is responsible for cleaving poly (ADP-ribose) polymerase (PARP) during cell
death and is derived from both extrinsic and intrinsic pathways. Caspase-8 can cleave
BH3-interacting domain death agonist (BID), a death-inducing member of the B-cell lym-
phoma 2 (Bcl-2) family, allowing crosstalk between the extrinsic and intrinsic apoptotic
pathways [220]. The cleaved BID translocates to mitochondria and induces the release
of cyt ¢, leading to caspase-9-dependent activation [218,220,221]. The ERK and NF-«xB
pathways can inhibit this apoptotic signal [218,222].

Cancer cells tend to evade cell death by activating antiapoptotic mechanisms, so cancer
cell death can be achieved by reversing antiapoptotic processes [223-225]. Genistein has
anticarcinogenic effects; in fact, several studies have shown that this isoflavone inhibits
cell proliferation and induces death in several human cancer cells [18,108,176,183,226]. In
this section, we will examine in detail the effects of genistein on the activation of apoptotic
death in hormone-dependent cancers, such as prostate and breast cancers, which have been
extensively studied [14,16,211,215,227].
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10.1. Breast Cancer

The effects of genistein have been studied in BC MCF-7 cells through oligo microarray
technology and the expression of multiple Bcl-2 family genes, which resulted in both pro-
and antiapoptotic altered genes [228].

A study by Tophkhane et al. (2007) has shown that genistein-induced enhanced cell
death and growth inhibition in MCF-7 cells overexpressing high levels of Bcl-2. Genis-
tein administration resulted in increased levels of p85, a major subunit of cleaved PARP,
membrane permeability changes, and cyt c release, suggesting that the enhanced activa-
tion of the caspase cascade involved in Bcl-2 overexpression mediates the sensitization of
MCEF-7 cells to genistein. Furthermore, the enhanced activation of the apoptotic process
in Bcl-2-overexpressing cells is due to the isoflavone-induced accumulation of Bcl-2 and
alteration of Bax anchoring in mitochondria [229]. Similarly, in MCF-7 cells, genistein-
induced apoptosis led to a reduction in Bcl-2 expression and induction of Bax. In MCF-7
cells, both the expression of ERx and the proliferation were reduced after the adminis-
tration of genistein [230]. Furthermore, high concentrations of genistein inhibited both
normal MCF-10A and cancerous MDA-MB-231 ERx-negative breast cells, associated with
p53- and p21-dependent apoptosis activation. Genistein increased proapoptotic proteins
(phospho-p53 (p-p53) and p21) and decreased antiapoptotic proteins (Bcl-xL or cyclin B1)
in breast cells [231]. These data were confirmed by the study of Ye et al. (2018) which
showed that genistein significantly inhibited cell proliferation and induced pronounced
apoptosis in the human BC cell lines MDA-MB-231 and SKBR3. The molecular mechanism
involved downregulation and inhibition of S-phase kinase-associated protein 2 (Skp2)
and upregulation of its downstream targets p21 and p27 [197]. Genistein promoted a
p53-independent decrease in mouse double minute 2 (MDM2), which led to an increase in
the half-life of p21 since this protein is a direct target of MDM2 for proteasomal degradation.
Given that p21 is involved in genistein-induced apoptosis and G2 arrest in MCF-7 tumor
cells, and that p21 protein is stabilized by genistein, it may mediate the antitumor effects
of genistein [188]. Moreover, genistein-treated MCF-7, MCF-7-caspase-3 (MCF-7-C3), and
T47D BC cells expressed low levels of the cancerous inhibitor of protein phosphatase 2A
(CIP2A) which correlated with growth inhibition and apoptosis induction, as evidenced by
PARP cleavage and the expression of functional caspase-3 in MCF-7-C3 and T47D [232].

Genistein has been shown to induce apoptosis via an ERx-independent pathway
without the involvement of MAP kinase and Akt but associated with reduced Bcl-2/Bax
ratio in MCF-7 cells [233]. Typically, genistein has been shown to inhibit the growth of
MCEF-7 cells and promote the apoptotic pathway through the inactivation of PI3K/Akt
signaling, as evidenced by the decrease in phospho-Akt in treated cells, resulting in reduced
expression of the downstream target HOX Antisense Intergenic RNA (HOTAIR) [234], a
long ncRNA (IncRNA) implicated in cancer invasion and metastasis [235]. Furthermore,
treatment with genistein resulted in a significant decrease in PI3K and AKT protein and a
significant increase in Fas ligand, FAS-associated protein with death domain (FADD), cyt ¢
truncated Bid, caspase-9, and caspase-3 in MCF-7 cells [236,237]. Similarly, genistein has
been shown to induce the extrinsic FAS-receptor-dependent apoptosis pathway in MCE-7
cells engineered to overexpress oncogenic HER2 (MCF-7 HER2) and control vector cells
(MCEF-7 vec). Specifically, the phytoestrogen administration caused upregulation of p53
and levels of FAS receptor and cleaved caspase-8 and induced PARP cleavage, sustaining
an antiproliferative activity explained by the inhibition of NF-«B signaling; in fact, in BC
cell lysates, this compound inhibited the phosphorylation of IkBx, preventing IkBo from
forming the NF-«B heterodimer (p65 and p50) necessary for the activation of the NF-«B
axis, and inhibited the nuclear translocation of p65 (subunit of the NF-«B heterodimer)
and its phosphorylation in the nucleus, leading to the inhibition of the transactivation
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of NF-«B target genes [238]. In a similar way, genistein treatment of MDA-MB-231 cells
induced apoptosis in a dose- and time-dependent manner by inhibiting NF-«B activity
via the Notch-1 signaling pathway. Moreover, genistein administration suppressed the
expression of cyclin B1, Bcl-2, and Bcl-xL, possibly through the activation of NF-kB via
the Notch-1 signaling axis [182]. Specifically, the phytoestrogen caused a dose-dependent
reduction in the levels of mitogen-activated protein kinase 5 (MEKS), total ERK5, and
phospho-ERKS5 and a decrease in the levels of NF-kB/p65 nuclear protein, which are
associated with inhibition of MDA-MB-231 cell proliferation and induction of apoptosis.
Activation of the apoptotic process is confirmed by a dose-dependent increase in Bax
protein levels and a decrease in Bcl-2 protein levels, as well as cleavage of caspase-3
and induction of caspase-3 activity [239]. Similarly, genistein has been shown to induce
apoptotic cell death, as demonstrated by a decreased Bcl-2/Bax mRNA and protein ratio,
in the MCF-7 cell line through a mechanism involving the inactivation of the type 1 insulin-
like growth factor receptor (IGF-1R)/p-Akt signaling axis [240]. The p38-MAPK pathway
drives cell proliferation and antiapoptosis, so the inhibition of this axis represents a good
strategy for the promotion of cancer cell death [241]. In this regard, genistein induced
apoptotic MCF-7 cell death through calpain and caspase-7 activation and PARP cleavage.
In addition, administration of the phytoestrogen activated the apoptosis signaling kinase
1 (ASK1)-p38 mitogen-activated protein kinase cascades involving Ca?* release from the
endoplasmic reticulum, whereas no effect was observed for ERK1/2 [242]. Similarly, the
isoflavone induces apoptosis in MCF-7 BC cells by activating Ca?*-dependent proapoptotic
proteases, including mu-calpain and caspase-12, through the increase in intracellular Ca?*
concentration resulting from the depletion of endoplasmic reticulum Ca?* stores [243].

The MAPK and AKT pathways are often constitutively activated in solid tumors; in
contrast, the deletion of PTEN is one of the tumor suppressors often lacking in patients
with advanced cancer [244]. In this regard, genistein-treated MCF-7 cells showed increased
PTEN protein levels associated with decreased Akt phosphorylation. They increased
p27 protein levels, whereas MAPK phosphorylation and cyclin D1 levels regulated by
PTEN protein phosphatase activity were not altered, but their mRNA levels were slightly
increased in phytoestrogen-stimulated cells [245]. Consistently, at low physiologically rele-
vant concentrations, genistein inhibited cell survival and induced apoptosis in metastatic
BC cells, MDA-MB-435 and Hs578t, while not affecting the survival of non-metastatic
MCEF-7 cells. In association with decreased cell viability and increased apoptosis, genistein
decreases miR-155 and increases its proapoptotic targets including Forkhead box (Fox)
subclass O3 (FOXO3), PTEN, casein kinase, and p27 [246]. A study by Dave et al. (2005)
provided further insight into the PTEN-involving mechanism by which genistein promotes
mammary epithelial cell death in vitro and in vivo. The mammary glands of young adult fe-
male rats exposed to diets containing casein (CAS) as the sole protein source supplemented
with genistein or soy protein isolate (SPI+) showed increased apoptosis compared to rats
fed a CAS diet without genistein. Increased mammary apoptosis in genistein and SPI+ rats
was accompanied by increased PTEN expression. However, increased expression of the
proapoptotic genes p21, Bax, and Bok was only observed in genistein-fed rats. Furthermore,
genistein-induced apoptosis in MCF-7 cells was associated with increased PTEN expression
and was abolished when PTEN expression was knocked down. MCEF-7 cells treated with
serum from genistein- or SPI(+)-fed rats showed increased apoptosis and increased levels
of PTEN transcript [247].

In addition, genistein-induced apoptosis in MCF-7 cells was estrogen-independent and
associated with dysregulation of the Bax/Bcl-2 ratio, downregulation of the antiapoptotic
protein survivin, and induction of oxidative stress, as evidenced by decreased expres-
sion of the antioxidant enzymes copper—zinc superoxide dismutase (CuZnSOD), MnSOD,
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and thioredoxin reductases (TrxRs) and increased expression of glutathione peroxidase
(GPx) [248]. Similarly, in MDA-MB-231 and MDA-MB-468 cells, genistein administration
resulted in the downregulation of antiapoptotic Bcl-2, upregulation of proapoptotic Bax,
and activation of caspase-3, leading to the induction of apoptotic death involving the mobi-
lization of endogenous copper, as demonstrated by the fact that the copper-specific chelator
neocuproine was able to almost completely reverse these gemistein-induced effects, whereas
iron and zinc chelators were ineffective. Furthermore, the involvement of ROS production
in genistein-induced apoptosis was demonstrated by its inhibition by ROS scavengers [249].

As specified above, genistein, as a phytoestrogen, can compete and/or interfere with
the activity of Era, and ERf receptors can act as an estrogen agonist or antagonist in
mammals by competing or interfering. In this regard, genistein was reported to have
different effects against BC cells at different concentrations and in various cell types (ER-
positive and ER-negative cells) [91,213,250].

For example, using proteomic and transcriptomic approaches, it has been shown
that genistein has effects on gene and protein expression in T47D ER[-positive cells, even
in the presence of low levels of ER«, and that its final estrogenic effect on cells/tissues
depends on both by the phenotype of receptors and the receptor subtype ratios within
these cells/tissues. Precisely, this phenotype may be altered by exposure to genistein [251].

The necessity of ERax for estrogen-induced growth inhibition and apoptosis was
confirmed by Obiorah et al. (2014) who showed that the phytoestrogen genistein induced
endoplasmic reticulum stress, an inflammatory response leading to intrinsic and extrinsic
apoptosis in a long-term estrogen-deprived BC cell line (MCF-7:5C) through an ER«x-
mediated mechanism. Genistein induced the endoplasmic reticulum stress (ERS) marker
CHOP and the unfolded protein response (UPR) sensor inositol-requiring protein 1 alpha
(IRE1e), whereas PCD activation was evidenced by upregulation of the apoptotic genes
BCL2L11/BIM, tumor necrosis factor (INF), FAS, and FADD [252]. Similarly, genistein
at general physiological concentrations significantly reduced proliferation and increased
apoptosis in primary BC cells, as evidenced by increases in apoptosis markers such as
FADD, tBid, cyt c, caspase-8, and caspase-3. However, in the presence of E2, the ability
of genistein to induce apoptotic effects in malignant breast cells ex vivo was completely
abolished [253]. Furthermore, cellular responses have been shown to be triggered by
different signaling mechanisms depending on the concentration of genistein. Physiological
concentrations of this isoflafone (<10 pM) plus E2 induced apoptosis of MDA-MB-231
(ERB-positive/ ERx-negative) cells by dysregulating the Bax/Bcl-2 ratio and reducing the
phosphorylation of ERK1/2, sustaining the antitumoral role of genistein against ERf3-
positive/ERa-negative BC cells. At higher concentrations (10 to 100 uM), genistein reduced
cell proliferation and increased apoptosis, both in the presence and absence of E2, without
the involvement of Bax/Bcl-2 or the phosphorylation of ERK1/2 [254]. Pons et al. (2014)
demonstrated that the outcome of genistein treatment depends on the ERx/ERp ratio in
BC cells. Co-administration of genistein with E2 induced cell proliferation and inhibited
apoptosis in MCF-7 cells characterized by a high ERot/ERf ratio, whereas in T47D cells with
a low ERa/ER ratio, E2 and especially GEN exerted antiproliferative and proapoptotic
effects as indicated by a significant decrease in the P-STAT3/STAT3 ratio [213].

In addition, genistein exhibited a biphasic effect on MCF-7 BC cell growth and ER«
expression; in fact, low concentrations (<10 uM) of the phytoestrogen induced marked
increases in proliferation and ERx expression, whereas high concentrations of the isoflavone
caused inhibition of cell proliferation and apoptotic morphological features in treated cells.
Furthermore, the expression of ERx and erbB2 was dose-dependently reduced by genistein
for both SKBR3 and ZR-75-1 cells, and apoptotic changes were detected after exposure of
ZR-75-1 cells to either daidzein or genistein at a concentration of 100 M for 72 h [255].
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Similarly, the isoflavone induced apoptosis in estrogen-sensitive MCF-7 cells at 50 and
100 uM, but estrogen interfered with the apoptotic activity of genistein at 50 uM. The
estrogen-modulated increase in cyclin Bl levels was contrasted by co-treatment with
genistein (100 pM), suggesting that the antiapoptotic regulation of cells by estrogen may
involve cyclin Bl and that genistein exerted an estrogen-antagonistic action at a higher
concentration [256].

The proapoptotic effect of genistein has been shown to be dependent on estrogen
levels only in cultured cells, whereas in animal models estrogen levels did not affect the
results. In detail, genistein administration induced apoptosis in MCF-7 cells in the absence
of estrogen, as evidenced by DNA fragmentation, reduced levels of Bcl-2, and upregulated
Bax protein. In the presence of estrogen, p21 and p53 protein expressions were upregulated
by high concentrations of genistein. In female rats, the Bcl-2/Bax ratio was decreased by
genistein treatment in the presence or absence of estrogen. These results indicate that the
proapoptotic property of genistein may be strongly influenced by the concentration of
estrogen in vitro, but this influence by estrogen is not evident in vivo [257]. Furthermore,
the proliferation of MCF-7 cells was induced by both E2 alone and E2 plus genistein at
concentrations > 10~° mol /L while apoptotic cell death was induced by GEN monotherapy
in the same cell line [257]. The combination of genistein and E2 caused the increase in
proliferating cell nuclear antigen, PI3K, and p-Akt and the inhibition of the increase in
FADD, cyt ¢, truncated Bid, caspase-9, caspase-3, and ERf [258]. Consistently, Lucki et al.
(2011) have provided a mechanism to explain genistein’s ability to promote the proliferative
response of MCF-7 cells via an estrogen-dependent ER-binding pathway, which predicts
that genistein induces acid ceramidase (ASAH1) gene expression by activating a cell surface
receptor-coupled G-protein (GRP30)-dependent pathway leading to the phosphorylation
of ERK1/2 which in turn triggers the proliferative response of BC cells via an estrogen-
dependent pathway. Moreover, ERK1/2 activation provokes the phosphorylation of ERo
and the formation of a complex with ER«x, Sp1, and SRC1 bound to the ASAH1 promoter.
As aresult of ASAHI transcription, there is an increase in protein expression and enzymatic
activity, which in turn leads to an increase in sphingosine 1-phosphate (S1P) production. By
binding on cell surface S1P receptors, S1P can then be exported and activate proliferative
pathways; in parallel, ASAH1 controls the expression of cyclin B2, thereby promoting
mitosis and cell growth [259]. Instead, co-treatment of MCF-7 cells with different doses of
E2 and genistein (10~% M) did not result in antagonism of E2 activity and did not affect
the proliferation rate. Co-treating MCF-7 cells with E2 and GEN resulted in a significantly
increased inhibition of apoptosis, at least in combination with E2 (1010 M) [260].

Moreover, the SUM1315MO2 cell model carrying the 185delAG BRCA1 mutation was
markedly more sensitive to GEN than BRCA1 wild-type cell lines, probably due to the
expression of ERf3, which is a major mechanism of physiological action of genistein, as
already explained [261]. Genistein induced apoptosis more efficiently in BRCAl-mutant
BC cell lines (HCC1937, SUM149, and SUM1315 cells) than in the MDA-MB-231 cell line,
which harbors a functional wild-type BRCA1 gene. After genistein administration, all
cells showed increased p21 protein levels and decreased Akt signaling, consistent with
activation of the apoptotic process, except for MDA-MB-231 cells, in which mRNA and AKT
protein levels were strongly increased and p21 protein levels slightly decreased, resulting
in resistance to genistein [262].

The treatment with various concentrations of soya aglycone-rich extract (SARE) and
flaxseed aglycone-rich extract (FSARE) caused higher caspase levels in MDA-MB-231
than in MCF-7 cells. Based on the docking score and binding energy, the best-fit protein
target genistein was aldose reductase which showed a dose-dependent decrease in its
expression after SARE administration [263]. In the study by Stocco et al. (2015), an
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extract of soy biotransformed by the fungus Aspergillus awamori was administered to
estrogen-dependent (MCF-7) and non-estrogen-dependent (SKBR3) BC cell lines. The data
suggested that the components of the extract, which was implemented in terms of the
amount of isoflavones produced by the process of soy biotransformation, induced cell
death by apoptosis and necrosis, mainly in MCF-7 cells, through a process responsive to
caspase-3 activation involving, among other proapoptotic factors, Bad [264].

10.2. Prostate Cancer

In PC, similar effects were exhibited after the isoflavone administration: specifically,
genistein administration to PC3 cells induced apoptotic death by increasing caspase-3
expression and activity. Cell growth was suppressed by the reduction of the p38 mitogen-
activated protein kinase (p38MAPK) gene expression and protein level, while cell aggres-
siveness was strongly suppressed by the reduction in MMP-2 activity [265]. A similar
result has been described by Kumi-Diaka et al. (2006); specifically, genistein exposure
promoted the inhibition of cell growth through apoptotic cell death in both PC3 and LNCaP
cells [266]. A significant dose- and time-dependent inhibition of MMP-2 expression levels
in both cells was correlated with increased genistein concentrations [266]. In the study by Li
et al. (2004), the effects of GEN on PC3 cells and experimental PC3 bone tumors created by
injecting PC3 cells into human bone fragments previously implanted in severe combined
immunodeficient (SCID) mice were evaluated. It was found that the isoflavone modulated
the expression of genes involved in cell growth, apoptosis, and metastasis both in vitro
and in vivo. Genistein administration caused the suppression of MMP-2, -11, -13, -14, and
membrane-type matrix MMPs (MT-MMPs) and the upregulation of osteoprotegerin in
PC3 bone tumors. Furthermore, MMP-9 expression was inhibited in PC3 cells in vitro and
PC3 bone tumors in vivo after genistein administration [267]. Differently, the adminis-
tration of genistein to PC3 cells resulted in the downregulation of the MDM2 oncogene
mRNA, protein upregulation of p21, and induction of apoptosis. The downregulation of
MDM2 protein is achieved by genistein-induced MDM?2 ubiquitination, with the MDM?2
promoter being important for the effects of genistein. Overexpression of MDM2 abolished
genistein-induced apoptosis in vitro. These results were confirmed in vivo, as genistein
inhibited tumor growth in PC3 xenografts [188]. By contrast, the effect of genistein in
LNCaP and PC3 cancer cell lines was associated with the induction of apoptosis through
the downregulation of PLK-1 protein and the upregulation of p21 [203]. Through epigenetic
changes, genistein also affects gene expression patterns. In this regard, the modulation
effects of genistein on DNA methylation led to the inhibition of cell growth and induction
of apoptosis. In detail, the methylation profiles of 58 genes were altered by genistein
administration in DU145 and LNCaP PC cells. In addition, the methylation frequencies
of the mitotic arrest deficient 1-like protein 1 (MAD1L1), TNF receptor-associated factor 7
(TRAF7?), lysine demethylase 4B (KDM4B), and human telomerase reverse transcriptase
(hTERT) genes were remarkably modified by genistein treatment [268]. Furthermore, genis-
tein has been shown to suppress growth and induce apoptotic death in PC3, DU145, and
LNCaP cell lines in vitro by inducing the expression of aplasia Ras homology I (ARHI), a
tumor suppressor gene downregulated in various malignancies including PC. ARHI was
reported to upregulate the Hect domain and RLD5 (HERC5), CDNK1A, growth arrest,
and DNA damage-inducible alpha (GADD45A) at transcriptional and protein levels. The
effect of genistein was mediated by downregulation of miR-221 and miR-222 [269]. In
addition, miR-574-3p was significantly upregulated in genistein-treated DU145 and PC3
PC cells compared to vehicle control. The expression of miR-574-3p was significantly lower
in PC cell lines and clinical PC tissues than in normal prostate cells (RWPE-1) and adjacent
normal tissues. miR-574-3p restoration induced apoptosis through reduction of Bel-xL and
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activation of caspase-9 and caspase-3 [270]. Moreover, GEN administration modulated
epigenetics and gene expression by altering histone acetylation through increased HAT1
protein levels resulting in increased H3K9 acetylation and increased SOX7, a Wnt inhibitory
gene, and cell death promotion in PC3, DU145, ARCaP-E, ARCaP-M, and LNCaP cancer
cell lines [271]. Similarly, genistein significantly induced apoptosis of DU145 cells, but no
significant effect on apoptosis was observed in PC3 cells. IncRNA profiling showed that
genistein modulated increased HOTAIR expression in castration-resistant PC cell lines
compared to normal prostate cells. Indeed, PC cell growth and invasion were suppressed by
HOTAIR knockdown (siRNA) in association with induction of apoptosis. miR-34a was also
upregulated by GEN and directly targeted HOTAIR in both PC3 and DU145 PC cells [272].
Therefore, global gene expression patterns showed that maximal physiologically achievable
concentrations of genistein (<10 uM) had proliferative effects in PC3 cells by inducing
activation of CDKs, MAPKs and small ribosomal subunit proteins (RPSKs), whereas high
concentrations of genistein (>10 M) appeared to modulate a different signaling axis lead-
ing to apoptotic cell death, specifically downregulating TGF-f3 by specifically decreasing
SMAD 2/3, 4 in the downstream TGF-f3 signaling cascade [273]. This effect has also been
shown in LNCaP cells where the isoflavones did not alter death receptor expression but
significantly augmented TRAIL-induced disruption of mitochondrial membrane potential
causing cytotoxic and apoptotic effects [274]. The oxidative-stress-promoting effect of
GEN was confirmed in PC3 cells under 3D culture conditions, where a concentration of
480 uM of the isoflavone reduced cancer cell viability by inducing apoptosis through a
non-mitochondrial pathway; furthermore, genistein reduced the production of cellular
nitric oxide (NO) and increased catalase and glutathione production [275]. Furthermore,
genistein inhibited the growth of DU145 and LNCaP cancer cells, leading to the death of
such cells, by inducing ROS production and interfering with the expression of the two
copper transporter genes, CIR1 and ATP7A. The copper chelator neocuproine reversed
this effect, highlighting the role of copper in isoflavone-induced cytotoxicity [276].

In an animal model study by Nakamura et al. (2011), genistein has been shown to
promote metastatic activity in a patient-derived PC (LTL163a) xenograft NOD-SCID mouse
model, where increased lymph node and secondary organ metastases were demonstrated
in genistein-treated mice compared to controls. More proliferating and fewer apoptotic
cancer cells were found in paraffin sections from genistein-treated groups compared to the
untreated group. Immunoblotting data showed that the activities of tyrosine kinases, EGFR
and its downstream mediator Src, were increased in the genistein-treated groups [106].
Furthermore, 18 months of consumption of 19.2 g/day of whole soy protein isolate con-
taining 24 mg genistein by middle-aged to older males reduced circulating testosterone
and sex-hormone-binding globulin (SHBG) but not free testosterone SHBG compared with
the casein-based placebo. Indeed, serum concentrations of estradiol, VEGF, insulin growth
factor-1 (IGF-1), insulin-like growth-factor-binding protein-3 (IGFBP-3), IGF-1/1GFBP-3
ratio, soluble Fas, Fas-ligand, and sFas/Fas-ligand ratio were not affected, and the apop-
totic process was not induced [277]. Similar effects have been described using natural
mixtures of isoflavones with high genistein content as analyzed below. For example, an
isoflavone mixture (83.3% genistein, 14.6% daidzein, and 0.26% glycitein) inhibited the
phosphorylation of Akt and FOXO3a, regulated the phosphorylation of Src, and increased
the expression of glycogen synthase kinase-3(3 (GSK-3f3), leading to the downregulation
of androgen receptor (AR) and its target gene prostate-specific antigen (PSA) with the
result of induction of apoptosis in both androgen-sensitive and -insensitive PC cells [278].
Furthermore, in LNCaP and PC3 cells, soy extract was shown to be more effective than soy
isoflavones, inducing cell cycle arrest and apoptosis. Soybean extract induced cell cycle
arrest, activated caspases, and increased Bax via NF-«kB-independent routes [279]. Genistein
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combined polysaccharide (GCP), a dietary supplement containing the isoflavones genistein,
daidzein, and glycitein, mediated growth inhibition and apoptosis of PC cells by multiple
mechanisms, including molecular mimicry of androgen ablation (via AR downregulation)
and by an AR-independent proapoptotic signal (mTOR inhibition) [280]. Furthermore,
GCP and perifosine were able to induce growth arrest in LNCaP (androgen sensitive),
LNCaP-R273H, C4-2, Cdsl, and PC3 (androgen insensitive) PC cell lines, associated with
increased inhibition of Akt activity and induction of p21 expression. Only LNCaP cells
showed increased apoptosis, further enhanced after AR knockdown [281]. Similarly, GCP
potentiated the activity of the AR antagonist bicalutamide, the antimicrotubule taxane doc-
etaxel, and the Src kinase inhibitor pp2 in LNCaP, CWR22Rv1, PC3, and LNCaP-R273H cell
lines, causing growth inhibition and increased apoptosis. In more detail, the combination of
GCP and bicalutamide had enhanced activity in both the LNCaP and LNCaP-R273H lines
whereas LNCaP cells exhibited increased apoptosis when docetaxel administration was
followed by GCP [282]. Similar results were reported by Bemis et al. (2004), demonstrating
that GCP inhibited LNCaP and PC3 cell growth by inducing apoptosis in LNCaP cells but
not in PC3 cells. GCP induced p27 and p53 protein expression only in LNCaP cells and
suppressed phosphorylated Akt in both cell lines. Furthermore, a 2% GCP-supplemented
diet delayed tumor growth and increased apoptosis in LNCaP xenograft tumor-bearing
immunodeficient mice [283]. A clinical trial in PC patients showed that lycopene and soy
isoflavones delayed the progression of both hormone-refractory and hormone-sensitive
PC; however, no additive effect between the two compounds was demonstrated [284]. The
main targets of genistein in the activation of apoptotic death in prostate cancer and BC are
summarized in Table 2.

Table 2. Cell death induced by genistein in breast and prostate cancers.

Genistein-Treated Cells/Animals Molecular Pathway/Protein Effect Ref.
MCEF-7 overexpressing Bcl-2 1 Bcl-2; 1 p85; 1 cytc 1 apoptosis [229]
MCE-7 1 Bcl-2; T Bax; ERx 1 apoptosis [230]
MDA-MB-231 1 p-p53; 1 p21; | Bal-xL; | cyclin Bl 1 apoptosis [231]
MCE-7 J Bcl-2/Bax 1 apoptosis [233]
MDA-MB-231 and SKBR3 1Skp2; 1 p21; 1 p27 1 apoptosis [197]
MCEF-7 1 MDM2; 1 p21 1 apoptosis [188]
MCE-7 1 p-Akt; | HOTAIR 1 apoptosis [234]
53 MCF-7-caspase-3 and T47D | CIP2A; 1 caspase-3; 1 c-PARP 1 apoptosis [232]
=
S 1 PI3K; | Akt; 1 Fas; T FADD; 1 cyt ¢; .
§ MCE-7 1 t-Bid; 1 caspase-9; 1 caspase-3; T apoptosis [236]
]
& : . 1 p53; 1 Fas receptor; 1 ¢-PARP; 1 .
MCF-7 overexpressing HER2 caspase-9; | p-IkBeg; | NF-kB 1 apoptosis [238]
MR J NF-kB; | Notch-1; | cyclin B1, | .
MDA-MB-231 Bel-2; | Bel-xL, 1 apoptosis [198]
1 MEKS; | ERKS5; | p-ERKS5; |
MDA-MB-231 NEF-kB/p65; 1T Bax; | Bcl-2; 1 1 apoptosis [199]
caspase-3
MCE-7 1 Bcl-2/Bax; | IGF-1R/p-Akt 1 apoptosis [240]
MCE-7 1 calpain; T Ca™; 1 caspase-7; 1 + apoptosis [242]

c-PARP; T ASK1-p38 MAPK
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Genistein-Treated Cells/Animals Molecular Pathway/Protein Effect Ref.
MCE-7 1 Ca**; T mu-calpain; 1 caspase-12 1 apoptosis [243]
MCE-7 T PTEN; | p-Akt; T p27 1 apoptosis [245]
R J miR-155; 1 FOXQO3; 1 PTEN; 1 .
MDA-MB-435 and Hs578t casein kinase; T p27 1 apoptosis [246]
Rats 1 PTEN; 1 p21; 1 Bax; 1 Bok; T apoptosis [247]
MCEF-7 1T PTEN 1 apoptosis
) J Bcl-2/Bax; | survivin; | CuZnSOD; 1 apoptosis
MCE-7 | MnSOD; | TrxR; 1 GPx [248]
MDA-MB-231 and MDA-MB-468 ¥ Bel-% T Baxit Ccazp ase-3; T ROS; T T apoptosis [249]
1 IREle;; T CHOP; 1 Bim; T TNF; T apoptosis
T47D FAS; 1 FADD [252]
Primary breast cancer cells 1 FADD; 1 tBid; 1 cyt ¢; T caspase-8; 1 1 apoptosis
caspase-3 | apoptosis [253]
+17p-estradiol pop
MDA-MB-231
GEN (<10 uM) + 17 -estradiol J Bax/Bcl-2; | p-ERK1/2 1 apoptosis [254]
= GEN (10-100 uM) =+ 173-estradiol 1 apoptosis
% MCEF-7 + 17 -estradiol 1 proliferation [213]
o T47D + 17 -estradiol | p-STAT3/STAT3 1 apoptosis
n
3 MCF-7 SK; BR 3 and ZR-75-1
m GEN (<10 uM) 1T ERo 1 proliferation [255]
GEN (10-100 uM) J ERa and erbB2 1 apoptosis
MCE-7
GEN (50 uM) + 17 -estradiol 1 Cyclin Bl | apoptosis [256]
GEN (100 uM) + 173 -estradiol 1 Cyclin Bl 1 apoptosis
MCE-7 1 Bcl-2; 1 Bax; T apoptosis
+17 (3-estradiol 1T p21; T p53 No apoptosis [257]
Female rats 417 (-estradiol J Bdl-2; 1 Bax; | tumor growth
MCE-7 71 cell nuclear antigen; 1 PI3K; 1
117 -estradiol p-Akt; | FADD; | cytc; | tBid; | J apoptosis [258]
caspase-9; | caspase-3; | ERB
MCE-7 1T ASAHI; T GRP30; T p-ERK1/2; 1 . .
20 nm GEN or 5 nm E, p-Ere; 1 S1P T proliferation [259]
MCE-7 .
+17 -estradiol [10~10 M] | apoptosis [260]
SUM1315MO2 (185delAG BRCA1) J ERp 1 apoptosis [261]
HCC1937, SUM149, SUM1315 Tp21; | Akt 1 apoptosis [262]
MDA-MB-231 T Akt; | p21 J apoptosis
: PC3 T caspase-3; | p38MAPK; | MMP-2 1 apoptosis [265]
e PC3 and LNCaP 1 MMP-2 1 apoptosis [266]
©
o
by J MMP-2; | MMP-11; | MMP-13; | .
:-'f PC3 MMP-14; | MT-MMP; 1 1 apoptosis -
E PC3-SCID mouse osteoprotegerin T apoptosis

| MMP-9n




Int. J. Mol. Sci. 2025, 26, 1114 24 of 47
Table 2. Cont.
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PC3 ) 1 apoptosis
PC3 xenograft + MMP-2; 1 p21 | tumor growth [188]
LNCaP and PC3 L PLK-1; 1 p21 1 apoptosis [203]
1 ARHI; T HERCS5; T CDNK1A; .
PC3, DU145 and LNCap GADD45A; | miR.221; | miR-222 1 apoptosis [269]
DU145 and PC3 T miR-574-3p; | Bel-xL; Treaspase-9; T 10 oo [270]
caspase-3
g PC3, DU145, ARCaP-E, ARCaP-M, ) . .
% and LNCaP 1T HAT1; 1 H3K9 acetylation; 1 SOX7 1 apoptosis [281]
% DU145 T HOTAIR; T miR-34a 1 apoptosis [272]
“g’ PC3 1 HOTAIR; T miR-34a no change
< PC3
GEN (<10 uM) 1 CDKs, T MAPKSs; 1 RPSKs, | TGF-p; 1 proliferation [273]
GEN (>10 uM) JSMAD2/34 1 apoptosis
LNCaP 1T TRAIL; | MMP 1 apoptosis [274]
3D culture PC3 4 NO; 1 catalase; T GSH 1 apoptosis [275]
DU145 and LNCaP 1 ROS; 1+ CTR1; T ATP7A 1 apoptosis [276]
LTL163a) xenograft NOD-SCID 1 tyrosine kinases; 1 EGFR; 1 Src 1 proliferation [106]

mouse

} apoptosis

Akt/PKB, phospho-protein kinase B; ARHI/DIRAS3, Aplasia Ras Homology I; ASAH1, N-Acylsphingosine
Amidohydrolase 1; ASK1, Apoptosis signal-regulating kinase 1; ATP7A, ATPase Copper Transporting Alpha;
Bax, BCL2 Associated X; Bcl-2, B-cell lymphoma-2; Bcl-xL, B-cell lymphoma extra-large; Bid, BH3-interacting-
domain death agonist; Bim, Bcl-2 Interacting Mediator of cell death; Bok, Bcl-2-related ovarian killer; CDK,
cyclin-dependent kinase; CDNK1A, cyclin-dependent kinase inhibitor 1A; CHOP, C/EBP homologous protein;
CIP2A, Cellular Inhibitor Of PP2A; Cyt ¢, cytochrome c; c-PARP, cleaved-Poly-ADP ribose polymerase; CTR1, High
affinity copper uptake protein 1; EGFR, epidermal growth factor receptor; ERc, estrogen receptor o; ER3, estrogen
receptor f3; ErbB2, c-Neu or human EGF receptor 2; ERK, extracellular signal-regulated protein kinases; FADD,
FAS-associated protein with death domain; Fas, apoptosis stimulating fragment; FOXO3, forkhead box O3; GPx,
Glutathione peroxidase; GSH, glutathione; GADD45A, growth arrest and DNA damage-inducible, alpha; GRP30,
G protein-coupled receptor 30; HAT1, histone acetyltransferase 1, HERC5, Hect domain and RLD5; HOTAIR,
HOX Antisense Intergenic RNA; IREle, Inositol-requiring transmembrane kinase/endoribonuclease 1&; MAPK,
mitogen-activated protein kinase; MDM2, Mouse Double Minute 2; MMP- Metalloprotease-; NF-kB, nuclear
factor kappa-B; NO, nitric oxide; p-Akt, phospho-protein kinase B; PARP, Poly-ADP ribose polymerase; p-ERK,
phospho-extracellular signal-regulated protein kinases; PI3K, phosphoinositide 3-kinase; p-IkBx, phosphor-
nuclear factor of kappa light polypeptide gen enhancer in B-cells inhibitor alpha; PLK-1, polo-like kinase 1,PP2A,
Protein phosphatase 2; p-STAT, phospho-signal transducer and activator of transcription PTEN, Phosphatase and
tensin homolog; ROS, reactive oxygen species; RPSK, Small ribosomal subunit protein uS11SMAD, Suppressor
of Mothers against Decapentaplegic; Skp2, S-Phase Kinase Associated Protein 2; Src, Proto-Oncogene Tyrosine-
Protein Kinase; STAT, signal transducer and activator of transcription SOD, superoxide dismutase; SOX7, SRY-Box
Transcription Factor 7; S1P, Sphingosine 1-phosphate; t-Bid, truncated Bid; TGF-f Transforming growth factor-beta;
TNEF-«, tumor necrosis factor alpha; TRAIL, TNF-related apoptosis-inducing ligand; Trx, thioredoxin; 1 = increase;
1 = decrease.

While the aforementioned studies focus on genistein’s antitumor activity in hormone-
dependent tumors, particularly PC and BC, evidence also suggests that isoflavones may
exhibit antitumor activity in other solid tumors [215,285,286]. Furthermore, the antitumor
activity of genistein against various hematological tumors has also been confirmed by
several studies [287-289].

10.3. Combinatorial Strategy

Combinations of genistein agents with different molecular mechanisms of action are
promising, as they may be more effective and have fewer systemic toxicities. More specifi-
cally, synergism and the interaction of the isoflavone with different types of chemotherapeu-
tics or natural bioactive have been studied. Genistein, administered alone or in combination
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with doxorubicin, induced apoptotic death in the resistant derivative cell line MCF-7/Adr
by downregulating Her2/neu mRNA expression in a dose-dependent manner, but had no
effect on multidrug resistance 1 (mdr-1) mRNA expression. Her2, a member of the EGFR
family, is a membrane tyrosine kinase (TK) that is overexpressed in several types of cancer,
where it leads to the activation of downstream oncogenic cascades such as the Ras/MAPK
and PI3K/Akt pathways [290]. Furthermore, pretreatment of PC3 and MDA-MB-231
with genistein in vitro and in vivo inactivates NF-kB, thereby sensitizing cancer cells to
chemotherapeutic growth inhibition and apoptosis. Genistein at 15 to 30 pM in combination
with 100 to 500 nM of cisplatin, 0.5 to 2 nM of docetaxel, or 50 ng/mL of doxorubicin re-
sulted in a significantly greater inhibition of PC3 (PC), MDA-MB-231 (BC) cell growth, and
induction of apoptosis compared to any of these agents alone. In addition, NF-«B activity
was significantly increased within 2 h of treatment with cisplatin and docetaxel, and the
NF-«B-inducing activity of these agents was completely abolished in cells pretreated with
genistein [291]. These results were further confirmed by animal experiments performed
in vivo in PC3 tumors established in SCID mice treated with doxacetal, which demon-
strated that a specific target (NF-kB) was affected in vivo [291]. Consistently, genistein was
shown to enhance the antitumor effects of cisplatin via mitochondria-mediated apoptosis
in ERx-deficient MDA-MB-231 cells (ERx— /ER+) but not in normal MDA-MB-231 cells.
Indeed, Bax/Bcl-2 and p21 expression ratios appeared even more sensitive to cisplatin or
genistein + cisplatin treatment, suggesting that p53-independent regulation of Bax/Bcl-2
and p21 may play a role in cisplatin’s antitumor effects and genistein’s procisplatin bioac-
tivity [292]. Conversely, a study by Hu et al. (2014) showed that genistein counteracted
the antitumor potential of cisplatin only in the absence of E2 through the modulation of
apoptosis and proliferation of MCE-7 cells. Through a mechanism mediated by ER«, the
presence of E2 allowed abolition of the anticisplatin effect of genistein as shown by the
increase in Bax/Bcl-xL [293]. These results were confirmed in vivo where oral administra-
tion of genistein inhibited the antitumor effects of cisplatin treatment in ovariectomized BC
EMT6 xenograft tumor mouse models. At the molecular level, the Bax/Bcl-2-associated
mitochondria-dependent apoptosis was blocked by genistein [294]. Moreover, in cells
with a high ERa/ERp ratio (MCF-7), genistein affects the efficacy of chemotherapeutic
agents by reducing ROS production and apoptosis induction (in cells treated with cisplatin)
or autophagic cell death (in cells treated with tamoxifen), whereas in cells with a low
ERo/ERp ratio (T47D and MCE-7 + ERp), the effect of genistein administration is less
pronounced [295].

Whole-genome expression analysis showed that the combination of genistein and
the histone deacetylase inhibitor vorinostat induced apoptotic cell death by decreasing
baculoviral IAP repeat-containing protein 7 (BIRC7/Livin), transforming growth factor
beta-1-induced transcript 1 protein (TGFB1I1/ARAS55), hairy and enhancer of split-1 (HES1),
and Snail family transcriptional repressor 2 (SLUG), which are involved in the TNF-NF-«B
and androgen signaling pathways in PC3, DU145, ARCaP-E, ARCaP-M, and LNCaP cancer
cell lines [271].

A mechanism opposing the action of specific drugs has been shown for genistein in
several cancer cell lines; in fact, the isoflavone counteracted the induction of apoptosis by
the chemotherapeutic tubulin-binding compounds paclitaxel or vincristine by reducing
Bcl-2 phosphorylation and suppressing cyclin Bl and CDC2 kinase expression without
altering Bax protein expression in MCF-7 and MDA-MB-231 cells [296].

Conversely, genistein enhanced the effect of the chemotherapeutic cabazitaxel by
promoting both the upregulation of the proapoptotic protein Bax and the activation of
apoptotic signaling in mCRPC cells. In a PC3 luciferase xenograft model, the combined
treatment significantly delayed mCRPC growth compared to vehicle control or monother-
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apy. Tissue staining confirmed the in vivo effect of genistein on Bax induction and apoptosis
activation [297]. In addition, both genistein and topotecan induce cell death in LNCaP
cells, with the combination of genistein and topotecan being significantly more effective
in reducing the viability of LNCaP cells than either genistein or topotecan alone. Cell
death was primarily apoptotic via activation of caspase-3 and -9, which are involved in the
intrinsic pathway, and associated with increased ROS generation with genistein-topotecan
combination treatment [298].

Genistein may affect estrogen-modulated pathways by antagonizing or agonizing the
action of estrogen pathway modulators. The combination of tamoxifen, a drug used for
the initial treatment and prevention of estrogen-receptor-positive (ER+) breast tumors, and
genistein synergized in vitro inhibition of the growth of ER+/HER2-overexpressing BT-474
human BC cells. Co-administration of genistein and tamoxifen induced apoptotic cell death
as evidenced by an increase in DNA fragmentation and downregulation of mRNA and
protein expression of survivin, one of the apoptotic effectors, and downregulation of EGFR,
HER?2, and ER expression [214]. Moreover, the combination of genistein and centchroman
(CQ), a selective ER modulator used as a non-steroidal oral contraceptive, caused a ROS-
dependent induction of apoptosis in MCF-7 and MDA-MB-231 cells, as evidenced by
increased Bax/Bcl-2 ratio, activation of caspases-3, -7, and -9, and PARP cleavage. The
PCD is at least partly achieved by strong suppression of the PI3K/Akt/NF-«kB pathway
after genistein and CC administration, as shown by decreased phosphorylation of PI3K
and Akt and decreased levels of NF-«kB in both cell lines and decreased phosphorylated
mTOR found only in MCF-7 cells. These data were confirmed by in vivo evidence, where
the combination therapy of CC and genistein was well tolerated and induced a significant
reduction in tumor growth in comparison to the single therapies in the mouse 4Ti breast
tumor model [299]. The co-administration of the steroid hormone precursor 1,25(0OH)2D3
and the phytoestrogen genistein exerted a synergistic effect on apoptosis of MCF-7 and
MDA-MB-231 BC cells as evidenced by an increase in BAX and CASP3 gene expression and
downregulation of the BCL-2 gene compared to the single treatment [187]. Similarly, the
sensitivity of PC DU145 cells to the growth inhibitory effects of 1alpha-25-dihydroxyvitamin
D3 (1,25(0OH)2D3) is increased by co-treatment with genistein. The mechanism underlying
the effect of genistein is a direct non-competitive inhibition of mitochondrial CYP24 enzyme
activity. Genistein potentiated the action of 1,25(OH)2D3 by directly inhibiting CYP24
enzyme activity and prolonging the half-life of 1,25(OH)2D3 with upregulation of the
vitamin D receptor (VDR) both at the mRNA and protein levels [300].

The combination of genistein and the cholesterol-lowering agent 2-hydroxypropyl-
beta-cyclodextrin (HPCD) resulted in greater inhibition of LNCaP PC cell growth compared
to genistein treatment alone. Apoptosis induction was demonstrated by PARP cleavage
and caspase-3 activation. In addition, the EGFR-mediated phosphorylation cascade of
Akt, GSK-3beta, and p70S6k was significantly inhibited by the combination treatment, and
downregulation of AR was detected in the lipid raft microdomain [301]. A non-toxic dose
of terazosin synergized the antitumor activity of genistein on DU145 human PC cells. The
combination of genistein and terazosin caused a more significant decrease in Bcl-XL levels
in DU145 cells compared to genistein treatment alone [302].

A mechanism of increased cell killing by combined genistein and radiation treatment
has been proposed to be triggered by inhibition of NF-«B, leading to altered transcription of
cell cycle regulatory proteins such as cyclin B and/or p21WAF1/Cip1, thereby promoting
apoptotic cell death. Increased apoptotic cell death was confirmed by observing signifi-
cantly increased expression levels of cleaved PARP protein in cells treated with genistein
and irradiation compared to each modality alone, demonstrating increased apoptotic cell
death [202]. The sensitivity of MCF-7 and MDA-MB-231 cells to genistein increased after
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cell X-ray irradiation leading to cell apoptotic death as evidenced by upregulation of Bax
and protein 73 (p73) protein levels and downregulation of Bcl-2 protein expression. Of note,
P73 is a tumor suppressor protein related to the tumor protein p53 [196]. Compared to GEN
or radiation alone, the combination of genistein and radiation produced an increase in giant
cells, apoptosis, inflammatory cells, and fibrosis with decreased tumor cell proliferation
consistent with increased tumor cell destruction. Genistein alone increased the size of
heavily infiltrated lymph nodes and prostate tumors were larger and had more necrotic
cells, apoptotic cells, and giant cells than control tumors observed after radiation and
GEN treatment [303]. The combination of genistein and ionizing radiation (IR) induced
apoptosis, prolonged cell cycle arrest, and disrupted damage repair in DU145 PC cells [304].

The combination of genistein and photodynamic therapy with hypericin was effective
in inducing apoptosis in MCF-7 and MDA-MB-231 breast adenocarcinoma cells in particular.
This process was associated with the increment in Bax/Bcl-2 ratio in both cell lines and
suppression of Akt and Erk1/2 phosphorylation induced by photoactivated hypericin
in MCF-7 cells, whereas Akt and Erk1/2 phosphorylation, which was not stimulated by
photodynamic therapy with hypericin in MDA-MB-231 cells, was effectively suppressed in
combinatory treatment [305].

A synergistic effect has been described between genistein and specific inhibitors of
enzymes involved in important cellular pathways as described below. Treatment with
genistein alone or in combination with the TK inhibitor (tyrphostin) AG1024 increased
the radiosensitivity of PC cells (DU145) to X-irradiation by cell cycle arrest and induc-
tion of apoptosis [306]. Although genistein hurt the efficacy of the aromatase inhibitors
letrozole (Let) and anastrozole (Ana), its combination with the aromatase inhibitor Exe
potentiated the antiproliferative and apoptotic effect of the single treatment in sensitive
(MCF-7-aro) and resistant (LTEDaro) BC cells evidenced by the increase in the ratio of
cleaved PARP/PARP [307]. Co-administration of genistein and the kinesin spindle protein
(KSP) inhibitor SB715992 resulted in significantly greater inhibition of PC3 cell growth and
induction of apoptosis compared to the effects of either agent alone [308].

The ability of genistein to epigenetically modulate aberrant gene expression patterns
in BC cells was confirmed by Lubecka et al. (2018) who showed that exposure of MCF-
7 and MDA-MB-231 cells to the combination of genistein and clofarabine (2-chloro-2’-
fluoro-2'-deoxyarabinosyladenine, CIF), a second-generation 2’-deoxyadenosine analog
capable of regulating epigenetic processes, resulted in strong upregulation and activation of
DNA-methylation-silenced tumor suppressors, including PTEN, retinoic acid receptor beta
(RARB), and CDKN1A, and consequent activation of apoptosis [309]. Another proposed
strategy has combined genistein and CD36 siRNA-loaded self-assembled DNA nanoprisms
(NP-siCD36) as a treatment for TNBC cells (MDA-MB-231). CD36 is a glycoprotein involved
in the transport of fatty acids. Both genistein and NP-siCD36 have a more potent effect
on CD36 and phospho-p38 suppression compared to the individual monotherapies [310].
Genistein mediates apoptosis via the caspase-3 cascade in DU145 cells. Combined treatment
with survivin RNA interference (RNAi) and varying concentrations of genistein showed a
stronger inducible apoptotic effect on DU145 prostate cells [311].

Administration of genistein and the ortho-naphthoquinone beta-lapachone (bLap)
promoted apoptosis in PC3 cells by targeting mainly caspase-3 (CPP32) and NAD(P)H
quinone oxidoreductase (NQO1), respectively [312].

Several natural bioactive agents have been shown to exert a synergistic antitumoral
effect with genistein. For example, daidzein and genistein showed a synergistic effect in
inhibiting cell proliferation and inducing apoptosis in early-stage androgen-dependent PC
cells (LNCaP) and bone-metastatic LNCaP-derived PC cells (C4-2B cells). In more detail, 25
or 50 uM daidzein/50 uM genistein significantly increased the apoptotic effects on C4-2B
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cells, although they had no effect when used alone [313]. Furthermore, apoptosis induction
was achieved by the combination of genistein and equol, a metabolite of daidzein, in MCF-7
cells but not in SK-BR-3 cells, as evidenced by the increase in the Bax/Bcl-xL expression
ratio, without affecting the activities of Akt and mTOR [314]. In addition, genistein-induced
apoptosis in MCF-7 BC cells, and combined treatment with genistein and pomegranate
extracts enhanced apoptosis compared to a single treatment [315]. Moreover, the combina-
tion of genistein and sulforaphane, a natural compound found in cruciferous vegetables,
exerted synergistic effects in reducing the cellular viability of MDA-MB-231 and MCEF-7 BC
cell lines. The mechanism involved the downregulation of Kriippel-like factor 4 (KLF4), an
oncogene-acting gene in BC, and HDAC2 and HDAC3 activity, whose inhibitor-mediated
inhibition is dependent on KLF4. In addition, hTERT, which is also overactivated by KLF4
in BC, was downregulated by the combination of genistein and sulforaphane [316]. In
another study, the combination of sulforaphane, sodium butyrate, a short-chain fatty acid,
and genistein exerted a synergistic induction of the apoptotic pathway in MDA-MB-231
and MCEF-7 BC cells compared to the compounds administered alone. The tri-combinatorial
treatment caused genome-wide epigenetic modification through the downregulation of
DNA methyltransferases, histone deacetylases, and histone methylases and the upregu-
lation of histone acetyltransferases [317]. Selenite and genistein have shown synergistic
effects on apoptosis, cell cycle arrest, and associated signaling pathways in p53-expressing
LNCaP and p53-null PC3 PC cells. Selenite or genistein treatment alone increased p53
protein levels only in LNCaP cells, whereas p21(wafl) and Bax were upregulated in both
cell lines. In addition, only genistein inhibited AKT phosphorylation [201].

The target pathways hit by the combinatory treatments with genistein in breast and
prostate cancers are summarized in Table 3.

Table 3. Combinatory treatment with genistein in breast and prostate cancers.

Genistein-Treated

Combination with Molecular

Cells/Animals Genistein Pathway/Protein Effect Ref.
MCEF-7/Adr doxorubicin J Her2/neu 1 apoptosis [290]
PC3 and MDA-MB-231 cisplatin, docetaxel, 1 apoptosis
or doxorubicin J NF-kB [291]
PC3 SCID mice docetaxel 1 growth inhibition
ERo- MDA-MB-231 cisplatin 1 Bcl-2/Bax; 1 p21 1 apoptosis [292]
i cisplatin ) .
MCEF-7s (-17p-estradiol) 1 Bax/Bcl-xl } apoptosis [293]
EMT6 xenograft mice Cisplatin 1 Bcl-2/Bax J apoptosis [294]
MCE-7 (high ERa/Erb) | apoptosis
T47D (low ERa/Erb) cisplatin J ROS 1 apoptosis [295]
MCF7 + ERf 1 apoptosis
: J BIRC?7/Livin; |
L Lo, ARG L vorinostat TGFB1I1/ARA55; | 1 apoptosis [271]
’ HES]; | SLUG
: MR paclitaxel or 4 p-Bcl-2; | cyclin B1; | .
MCEF-7 and MDA-MB-231 vincristine CDC2 } apoptosis [296]
mCRPC cabazitaxel 1 Bax 1 apoptosis [297]
LNCaP topotecan T caspase-3; 1 caspase-9; 1 apoptosis [298]

1T ROS
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Genistein-Treated Combination with Molecular Effect Ref
Cells/Animals Genistein Pathway/Protein )

BT-474-overexpressing . J survivin; | EGFR; | .
ER+/HER2 tamoxifen Her2; | ERx 1 apoptosis [214]

1 ROS; 1 Bax/Bcl-2; 1
. vy caspase-3; 1 caspase-7; T
Mn(f:uZ:Z{d"il\lfrIe)aAs tll/ﬂinzoil centchroman caspase-9; T c-PARP; | 1 apoptosis [299]
p-PI3K; | p-Akt; |
NF-«kB
MCF-7 and MDA-MB-231 1,25(0H),D5 T Bax a“dBTngSp ase-3; | 1 apoptosis [187]
DU145 1,25(0OH), D3 4 CYP24; 1 VDR 1 growth inhibition [300]
c-PARP; caspase-3; |
LNCaP HPCD EGFR-Akt-GSK-3beta- 1 apoptosis [301]
p70S6k

DU145 terazosin J Bel-x1 1 apoptosis [302]

. 1 NF-kB; | cyclin B .
PC3 radiation and/or 1 p21; 1 c-PARP 1 apoptosis [202]
MCEF-7 and MDA-MB-231 X-ray irradiation 1 Bax; T p73; | Bcl-2 1 apoptosis [196]
prostate C?E;ZZIO rthotopic radiation 1 apoptosis [303]
DU145 ionizing radiation J damage repair 1 apoptosis [304]
MCEF-7 and MDA-MB-231 hypericin +Bel-2; 1 Bax; | p-Akt ¢ 1 apoptosis [305]

p-Erk1/2

tyrphostin AG1024 .
bU145 Zn% X-irradiation T apoptosis [306]
MCF7-aro and LTEDaro Exe Exemestane 1 c-PARP/PARP 1 apoptosis [307]
PC3 KSSI];;IE;bggor 1 apoptosis [308]
MCF7 and MDA-MB-231 clofarabine T PT]éll\)kIgl\IT{liRB’. T 1 apoptosis [309]
MDA-MB-231 NP-siCD36 1 p-p38 1 growth inhibition [310]
DU145 survivin RNAi 1 caspase-3 1 apoptosis [311]
PC3 betaELaE:;)}l one J caspase-3; T NQO1 T apoptosis [312]
LNCaP; C4-2B daidzein 1 apoptosis [313]

pop
MCEF-7 cells equol 1 Bax/Bcl-x1 1 apoptosis [314]
MCE-7 omegranate extracts 1 apoptosis [315]
pomeg pop

MDA-MB-231; MCF-7 sulforaphane VRLEL LHDACZ L o th inhibition [316]

HDAC3
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Genistein-Treated Combination with Molecular Effect Ref
Cells/Animals Genistein Pathway/Protein )
L DNMT; | HDAG; |
sulforaphane, HMT,; T HAT .
MDA-MB-231 and MCF-7 sodium butyrate methyltransferases and T apoptosis [317]
histone methylases
LNCaP and p53-null PC3 selenite T p21; 1 Bax 1 apoptosis [201]

Bax, BCL2 Associated X; Bcl-2, B-cell lymphoma-2; BIRC7/livin, Baculoviral IAP repeat-containing 7; CDC2,
Cyclin Dependent Kinase 2; CDNK1A, cyclin-dependent kinase inhibitor 1A; c-PARP, cleaved-Poly-ADP ribose
polymerase; CYP24, Cytochrome P450 Family 24; DNMT, DNA methyltransferase; EGFR, epidermal growth
factor receptor; ER«, estrogen receptor «; ERK, extracellular signal-regulated protein kinases; GSK-33, glycogen
synthase kinase-3 beta; HAT, histone acetyltransferase; HDAC, histone deacetylases; Her2/neu, human epidermal
growth factor receptor 2; HES1, hairy and enhancer of split-1, HMT, histone methylase; HPCD, 2-hydroxypropyl-
beta--hydroxypropyl-beta-cyclodextrin; KLF4, Kriippel-like factor 4; KSP, kinesin spindle protein; NF-«B, nuclear
factor kappa-B; NQO1, NAD(P)H quinone oxidoreductase 1; p-Akt, phospho-protein kinase B; PARP, Poly-ADP
ribose polymerase; p-Bcl-2, phospho B-cell lymphoma-2; PI3K, phosphoinositide 3-kinase; PTEN, Phosphatase
and tensin homolog; p70S6K, p70 ribosomal S6 kinase; RARB, retinoic acid receptor beta; ROS, reactive oxygen
species; SLUG/SNAI2,Snail Family Transcriptional Repressor 2; TGFB1I1/ARAS5S5, transforming growth factor
beta-1-induced transcript 1 protein; VDR, vitamin D receptor; 1 = increase; | = decrease.

10.4. Autophagy and Ferroptosis

Genistein has been shown to induce other types of PCD (i.e., autophagy and ferropto-
sis). In MCEF-7 cells, genistein has been shown to trigger apoptosis and autophagy through
the induction of oxidative stress, as evidenced by the reduction of antioxidant enzymes
and upregulation of GPx expression. Autophagy was demonstrated by the presence of
LC3-positive puncta characteristic of autophagosome formation in treated cells [248].

The combination of genistein and daidzein induced ferroptotic death only in MDA-MB-
231 cells, whereas this mechanism was not responsible for genistein- or daidzein-induced
cell death in MCF-7 cells. Furthermore, both phytochemicals induced biochemical markers
of ferroptosis, including lipid peroxidation and iron ion levels, and decreased GSH/GSSG
levels. The mRNA expression levels of the most important antiferroptosis genes, Gpx4 and
Fsp-1, were reduced by treatment with both phytochemicals. Pretreatment of MDA-MB-231
cells with ferrostatin-1 reversed the viability of these cells, confirming the activation of the
ferroptotic process [318].

Taken together, this experimental evidence provides pivotal details about the prodeath
action of genistein on cancer in both in vitro and in vivo circumstances.

11. Conclusions and Future Perspectives

Cancer is nowadays a major public health problem affecting an increasing number of
people and is still the second leading cause of death worldwide [319]. Over the last 10 years,
considerable evidence has confirmed that several natural compounds found in many
edible plants have chemopreventive and antitumoral properties, with fewer side effects
than current pharmacological strategies, which are often expensive, unspecific, and even
significantly toxic [320-323]. In addition, a healthy and vegetable-rich diet is a valuable tool
in the prevention, management, and treatment of many chronic and degenerative diseases,
including cancer [324,325]. Consistently, several epidemiological studies have shown an
association between a soy-rich diet and cancer prevention, attributed to the presence of
genistein, a biologically active isoflavone [215,326-328]. Genistein has been shown to
modulate a wide range of signaling pathways commonly altered in cancer, acting mainly
by inhibiting angiogenesis and metastasis, affecting both EMT and the invasive potential
of CSCs and altering the cell cycle and programmed cell death. The antioxidant and anti-
inflammatory activities of this isoflavone are also known [19]. This review summarizes the
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antitumor activities of genistein in vitro and in vivo, emphasizing, in detail, the currently
known mechanism of action. Isoflavones show structural similarity and biological activity
to estrogen hormones and are also known as phytoestrogens. They are therefore able to
compete with E2 for binding to the ERs and exert agonistic or antagonistic activity. In
hormone-dependent tumors such as breast and prostate cancers, the effects of genistein
can be either antiapoptotic and proliferative or proapoptotic and inhibitory to cell growth,
depending on the concentration of phytoestrogen and the target cell type. The same
synergistic or agonistic effect has been shown in studies in which genistein has been
administered with different types of chemotherapeutic agents and natural compounds
with known antitumor activity. In this case, again, the outcome of the combination was
dependent on the concentration of the bioactive compound and the characteristics of the
target cells. Chemically, the highly hydrophobic nature of genistein, and consequently its
poor bioavailability, limits its biological applications. For this reason, current research tends
to investigate and identify new methods and approaches to increase the bioavailability
of genistein and its delivery to specific cells via nanovectors such as nanovesicles and
liposomes [329-333]. Therefore, further long-term prospective studies and clinical trials are
needed to fully understand the mechanism of action of this isoflavone in different cellular
and pathological conditions, with a perspective of a possible wider use of genistein in
cancer management.
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Abbreviations

AIF apoptosis-inducing factor

Akt protein kinase B

AMPK AMP-activated protein kinase
ARHI/DIRAS3  Aplasia Ras Homology I

ART ataxia telangiectasia and Rad3-related kinase
ASK1 apoptosis signaling kinase 1

Bax BCL2-associated X, apoptosis regulator
Bcl-2 B-cell lymphoma 2

Bim Bcl-2 Interacting Mediator of cell death
CCNH cyclin H

CD cluster of differentiation

cdc cell division cycle

CDK cyclin-dependent kinase

CDKN2A cyclin-dependent kinase inhibitor 2A
CHEK2 checkpoint kinase 2

CHOP C/EBP homologous protein

CRC colorectal cancer

CSCs cancer stem cells
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CuZnSOD
CXCL16
DNA
DNA-PKcs
ECM
EGFR
EMT
ERs
ERK
ESA
FADD
FAKs
FGF
FOXM1
FSARE
5-FU
Glil
GPR30
GPX
GSK-3p3
HAT1
HCC
HeLa
HERC5
HIF-1x
HOTAIR
HPCD
ICAM1
IGF-IR
JAK
JNK
KCNK9
MAPK
MCM
MEK
miRNAs
MMPs
MnSOD
mRNA
mTOR
ncRNAs
NFAT1
NF-kB
Notch
NSCLC
Oct
OPN
PAI-1
PARP
PC

PCD
PCNA
PDGF

copper—zinc superoxide dismutase
C-X-C Motif Chemokine Ligand 16
deoxyribonucleic acid

DNA kinase catalytic subunit
extracellular matrix

epidermal growth factor receptor
epithelial-mesenchymal transition
estrogen receptors

extracellular signal-related kinase
epithelial-specific antigen
FAS-associated protein with death domain
focal adhesion kinases

fibroblast growth factor

Forkhead box protein M1

flaxseed aglycone-rich extract FTH1 ferritin heavy chain 1
5-fluorouracil

GLI Family Zinc Finger 1

G protein-coupled receptor 30
glutathione peroxidase

glycogen synthase kinase 3-beta
histone acetyl transferase 1
hepatocellular carcinoma

human cervical carcinoma cell

Hect domain and RLD5
hypoxia-inducible factor 1ot

HOX Antisense Intergenic RNA
2-hydroxpropyl-beta-cyclodextrin
intercellular adhesion molecules-1
type I insulin growth factor receptor
Janus kinase

Jun N-terminal kinase

potassium channel proteins containing two pore-forming P domains

mitogen-activated protein kinase
minichromosome maintenance
MAP kinase-ERK kinase
microRNA

metalloproteases

manganese muperoxide dismutase
messenger ribonucleic acid
mammalian target of rapamycin
non-coding RNAs

nuclear factor of activated T cells 1
nuclear factor-kappa B

signal transducer and activator of transcription
non-small cell lung carcinoma
octamer-binding transcription factor
osteopontin

plasminogen activator inhibitor-1
poly-ADP ribose polymerase
prostate cancer

programmed cell death
proliferating cell nuclear antigen
platelet-derived growth factor
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PI3K phosphatidylinositol-3-kinase
PLK-1 polo-like kinase 1
PTEN phosphatase and tensin homolog
ROS reactive oxygen species
SARE soya aglycone-rich extract
SIRT1 sirtuin 1
Snail Snail homolog 1/2 of drosophila
SHH Sonic Hedgehog
Sox2 SEX-determining region (SRY) homology box 2
SPI soy protein isolate
STAT signal transducer and activator of transcription
TAZ PDZ-binding motif
TGF-p transforming growth factor-beta
TNF tumor necrosis factor
TNFR tumor necrosis factor receptor
TRAIL TNF-related apoptosis-inducing ligand
TPA tetradecanoylphorbol-13-acetate
TSA trichostatin A
TIMP-1 tissue inhibitor of metalloproteinases 1
Trx thioredoxin
TSP-1 thrombospondin-1
TWIST Twist family bHLH transcription factor
ULK1 kinase UNCS51-like kinase-1
uPA urokinase-type plasminogen activator
VEGF vascular endothelial growth factor
YAP Hippo-Yes-associated protein
ZEB1/2 zinc finger E-box binding homeobox 1/2
Z0-1 zonula occludens-1
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