Panoramic Research on Sesbania cannabina: Germplasm Resources, Phytochemical Constituents, Biological Activities, and Applications
Abstract
1. Introduction
2. Germplasm Resources
2.1. Distribution and Ecological Adaptability
2.1.1. Global and China Geographic Distribution
2.1.2. Adaptability to Abiotic Stresses Such as Salinity, Alkalinity, and Heavy Metals
2.1.3. Cultivation History and Current Status
2.2. Germplasm Types and Genetic Diversity
2.2.1. Ecological Type/Varietal Characteristics in Different Regions
2.2.2. Morphological Differences
2.2.3. Genetic Diversity Research
2.3. Collection and Conservation of Germplasm Resources
2.3.1. Current Status of Germplasm Repositories at Home and Abroad
2.3.2. Preservation Methods and Breeding Techniques
2.3.3. Progress in Introduction and Domestication
2.4. Current Status and Potential of Germplasm Utilization
2.4.1. Agricultural Utilization
2.4.2. Ecological Restoration
3. Chemical Composition
3.1. Primary Metabolite Components
3.1.1. Choline
3.1.2. Polysaccharide
3.1.3. Adenosine
3.2. Secondary Metabolite Components
3.2.1. Pyranoids
3.2.2. Phenylbutazone
3.2.3. Flavonoids
3.2.4. Saponins
3.2.5. Other Ingredients
3.3. Differences in Composition Among Different Plant Parts
3.4. Environmental Modulation of Metabolite Profiles in S. cannabina
3.5. Component Separation and Detection Methods
3.5.1. Extraction Strategy and Solvent System Selection
3.5.2. Separation and Enrichment Process
3.5.3. Chromatographic Purification and High-Purity Sample Preparation
3.5.4. Structural Identification Methods
3.5.5. Quantitative Analysis Methods
4. Pharmacological Effects
4.1. Traditional Uses—Medicinal Records in Folk or Local Literature
4.2. Pharmacological Activity Research
4.2.1. Antioxidant Effect
4.2.2. Regulating Inflammation
4.2.3. Immune Regulatory Effect
4.2.4. Regulation of Intestinal Flora
4.2.5. Hypoglycemic Effect
4.2.6. Anti-Tumor Effect
4.2.7. Neuroprotective Effect
4.2.8. Other Potential Bioactivities (Inferred from Extracted Components)
4.3. Potential Targets and Signaling Pathways
4.3.1. Activation of the Nrf2/ARE Pathway
4.3.2. Activation of the TLR/NF-κB Pathway
4.3.3. Caspase-Dependent Apoptotic Signaling
4.3.4. Gut Microbiota–Short-Chain Fatty Acid Metabolic Axis
4.4. Toxicology and Safety
4.4.1. Toxic Components
4.4.2. Toxicology and Safety Assessment
5. Current Research Status and Existing Challenges
6. Development Prospects and Application Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, T.; Wang, T.; Sun, J.; Shi, W.; Liu, Y.; Huang, F.; Zhang, J.; Zhong, J. Modulation of Fermentation Quality and Metabolome in Co-ensiling of Sesbania cannabina and Sweet Sorghum by Lactic Acid Bacterial Inoculants. Front. Microbiol. 2022, 13, 851271. [Google Scholar] [CrossRef]
- Maqbool, F.; Wang, Z.; Xu, Y.; Zhao, J.; Gao, D.; Zhao, Y.; Bhatti, Z.A.; Xing, B. Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. J. Hazard. Mater. 2012, 237–238, 262–269. [Google Scholar] [CrossRef]
- Ren, C.; Kong, C.; Yan, K.; Zhang, H.; Luo, Y.; Xie, Z. Elucidation of the molecular responses to waterlogging in Sesbania cannabina roots by transcriptome profiling. Sci. Rep. 2017, 7, 9256. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Cao, X.; Liu, C.; Huang, G.; He, K.; Wang, X.; Jiang, C.; Jia, Y. An Indel Molecular Marker Related to Salt Tolerance of Sesbania bispinosa and Its Application. CN119876447A, 25 April 2025. [Google Scholar]
- Mokhtar, F.A.; Ahmed, M.; Al Dhanhani, A.S.; Elbehairi, S.E.I.; Alfaifi, M.Y.; Shati, A.A.; Fakhry, A.M. Distribution, Phytochemical Insights, and Cytotoxic Potential of the Sesbania Genus: A Comprehensive Review of Sesbania grandiflora, Sesbania sesban, and Sesbania cannabina. Pharmaceuticals 2025, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Yang, L.; Yang, S.; Zhao, F.; Xu, L.; Yong, Q. Isolation, characterization and in vitro anticancer activity of an aqueous galactomannan from the seed of Sesbania cannabina. Int. J. Biol. Macromol. 2018, 113, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, J.; Weng, L.; Chen, X.; Chen, M. Anatomical Features of Vegetative Organs of Sesbania cannabina. Subtrop. Plant Sci. 2018, 47, 128–133. [Google Scholar]
- Xiao, M. Multi-purpose Sesbania bispinosa. J. West China For. Sci. 1986, 15, 5–6. [Google Scholar] [CrossRef]
- Ma, R. Effect of an Improved Hydro Priming Techniqueon Seed Germination of Sesbania Sesban. Master’s Thesis, Lanzhou University, Lanzhou, China, 2008. [Google Scholar]
- Li, X.; Yang, H. Sesbania javanica (Fabaceae), a New Record Species from Hainan, China. Chin. J. Trop. Crops 2021, 42, 695–697. [Google Scholar]
- He, Y. Studies on the Megasporogenesis and Microsporogenesis and the Development of Their Female and Male Gametophyte in Sesbania grandiflora. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2023. [Google Scholar]
- Editorial Committee of Flora Reipublicae Popularis Sinicae, Chinese Academy of Sciences. Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1994; Volume 40, ISBN 7-03-004017-1. [Google Scholar]
- Wang, L.; Meng, Y.; Pan, D.; Cao, X.; Song, X. Cultivation Technology of Sesbania in Moderately Saline-Alkaline Soils of Heilongjiang Province. Agric. Technol. 2025, 45, 71–73. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.; Chang, S. Salt Tolerance of Sesbania and Its Amelioration Effect on Coastal Saline Soils. Jiangsu Agric. Sci. 2012, 40, 310–312. [Google Scholar] [CrossRef]
- Dong, J.; Zhu, X.; He, T.; Zhao, X.; Zhao, B.; Xing, J.; Liu, C.; Hong, L. Physiological Response of Sesbania cannabina Roots to Long-Term Flooding Stress. Hunan Agric. Sci. 2019, 7, 32–35. [Google Scholar] [CrossRef]
- Kang, Z.; Gong, M.; Li, Y.; Chen, W.; Yang, Y.; Qin, J.; Li, H. Low Cd-accumulating rice intercropping with Sesbania cannabina L. reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. Sci. Total Environ. 2021, 800, 149600. [Google Scholar] [CrossRef]
- Jian, S.; Yang, Z. The Role of Stem Nodule in The Adaptation of Sesbania Rostrata to Pb/Zn Tailings Environment II;. The Effect of Stem Nodule on Nitrogen and Heavy Metals Accumulation of Sesbania Rostrata. Chin. J. Plant Ecol. 2002, 26, 209–215. [Google Scholar]
- Kadierjiang, M.; Ma, Y.; Hong, M.; Zhao, J. Experimental Research on Soi-water and Salt Variation in Sesbania Rihizosphere under Different Irrigation Conditions. J. Water Resour. Archit. Eng. 2012, 10, 1–5. [Google Scholar]
- Li, S.; Yu, X.; Peng, Z.; Jing, H.; Liu, S.; Wang, Y.; Yin, X.; Ji, C.; Ren, C.; Xue, J.; et al. Bacillus strains from the Yellow River Delta: Isolation, identification, and assessment of growth-promoting effect on Sesbania cannabina under salt stress. Acta Microbiol. Sin. 2025, 65, 2920–2937. [Google Scholar] [CrossRef]
- Luo, T.; Ren, W.; Xie, C. Necessity and Feasibility of Biotic Improving the Saline and Alkaline Land in Xinjiang. Arid Zone Res. 2001, 18, 46–48. [Google Scholar] [CrossRef]
- Zero Distance, Aksu City. “Green Pioneer” Deciphers the Code of Saline-Alkali Land Remediation—Aksu’s Innovative “Land-Specific Cropping” Model Explores New Pathways for Soil Management. Available online: https://www.akss.gov.cn/qwfb/zwdt/20250526/i1175110.html (accessed on 22 September 2025).
- Yang, L.; Liu, X.; Xu, J.; Xie, Z.; Guo, J.; Feng, X.; Mu, J. Method for Intercropping Sweet Sorghum and Sesbania cannabina on Saline-Alkali Land. CN103222387A, 31 July 2013. [Google Scholar]
- Feng, L. Grass Planting in the ‘Alkali Barrens’. China Sci. Dly. 2024, 1. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. National Forestry and Grassland Administration Announcement (No. 13). 2024. Available online: https://www.forestry.gov.cn/search/594118 (accessed on 22 September 2025).
- Lu, B.; Xu, W.; Zhou, C. Growth Characteristics of Sesbania rostrata in the Coastal Areas of Jiangsu Province. Soil Fertil. Sci. China 1993, 3, 40–41. [Google Scholar]
- Huang, G.; Wang, X.; Liu, C.; He, K.; Hou, X.; Luo, H.; Zhang, S.; You, C.; Jia, Y.; Wang, F.; et al. Genomic Variation Underpins Genetic Divergence and Differing Salt Resilience in Sesbania bispinosa. Adv. Sci. 2025, 12, e2600. [Google Scholar] [CrossRef]
- Luo, H.; Wang, X.; You, C.; Wu, X.; Pan, D.; Lv, Z.; Li, T.; Zhang, D.; Shen, Z.; Zhang, X.; et al. Telomere-to-telomere genome of the allotetraploid legume Sesbania cannabina reveals transposon-driven subgenome divergence and mechanisms of alkaline stress tolerance. Sci. China Life Sci. 2024, 67, 149–160. [Google Scholar] [CrossRef]
- Wang, J.; Dong, M.; Kong, C.; Zhang, H. Transcriptome Analysis of Sesbania cannabina Under Salt Stress Based on RNA-Seq. J. Ludong Univ. (Nat. Sci. Ed.) 2025, 41, 1–9. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Long, Y.; Fan, L.; Ren, S.; Song, X.; Cao, X. Isolation and identification of a new species of Rhizobium from Sesbania cannabina. Acta Microbiol. Sin. 2025, 65, 3301–3316. [Google Scholar] [CrossRef]
- Saling, E.; Wolkis, D. Viability of ‘ōhai Sesbania tomentosa seeds after 3 decades of ambient conditions. Oryx 2024, 58, 502–505. [Google Scholar] [CrossRef]
- Cao, W.; Xu, C. Atlas of Major Green Manure Variety Resources in China; China Agricultural Science and Technology Press: Beijing, China, 2021; ISBN 978-7-5116-5483-0. [Google Scholar]
- Ding, H.; Zhang, X.; Kong, W.; Li, N.; Li, R.; Zhang, Y.; Yu, H.; Wang, J.; Wang, D.; Li, Z.; et al. Collection, Conservation and Utilization of Drought- and Salt-Tolerant Crop Germplasm Resources in Coastal Areas of Shandong Province; Shandong Crop Germplasm Resources Center: Jinan, China, 2014. (In Chinese) [Google Scholar]
- Gentices Society of China. Good News! Salt-Alkali Land Improvement and Utilization Innovation Team from the Institute of Genetics and Developmental Biology Awarded “Keyuan Master Craftsman” Title. Available online: http://gsc.kejie.org.cn/site-cciubsofficial/a1305.html (accessed on 22 September 2025).
- Li, T.; Liu, Z.; Cao, X.; Zhao, L.; Lu, J.; Jia, Z. A Genetic Transformation Method for Sesbania. CN115710589A, 24 February 2023. [Google Scholar]
- China Central Television News. Forage Yield Exceeds 2 Tons per Mu! New Progress in China’s Biological Improvement Technology for Saline-Alkali Land. Available online: https://news.cctv.com/2024/08/25/ARTIrTofNpO8p6CNFrcsEDK0240825.shtml (accessed on 22 September 2025).
- China News Service. Salt- and Waterlogging-Tolerant, Nitrogen-Fixing and High-Yield “Zhongke Jing No. 1” Efficiently Achieves Biological Improvement of Saline-Alkali Land. Available online: https://www.chinanews.com.cn/cj/2024/08-24/10274221.shtml (accessed on 22 September 2025).
- Jinchang Municipal Bureau of Agriculture and Rural Affairs. Sesbania Trial Project Progresses Smoothly! Jinchang Is Expected to Select New Crop Varieties with Dual Advantages in Forage and Saline-Alkali Land Improvement. Available online: https://m.thepaper.cn/baijiahao_31465056 (accessed on 22 September 2025).
- Wang, T.; Zhang, J.; Shi, W.; Sun, J.; Xia, T.; Huang, F.; Liu, Y.; Li, H.; Teng, K.; Zhong, J. Dynamic Changes in Fermentation Quality and Structure and Function of the Microbiome during Mixed Silage of Sesbania cannabina and Sweet Sorghum Grown on Saline-Alkaline Land. Microbiol. Spectr. 2022, 10, e248322. [Google Scholar] [CrossRef]
- Qin, J.; Wen, Y.; Li, J.; Xu, C.; Huang, L.; Zheng, J.; Cao, Q.; Li, H. Allelopathic Effect of Green Manure Sesbania and Its Impact on Soil Fertility. Soils 2015, 47, 524–529. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, M.; Bao, Q.; Wang, H.; Wang, Y.; Fu, H. The Effect of Intercropping with Different Leguminous Green Manures on the Soil Environment and Tea Quality in Tea Plantations. Microorganisms 2024, 12, 1721. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, M.; Zhao, X.; Hao, B.; Zhang, Y.; Cao, W.; Zheng, P. Effects of green manure rotation on soil properties and yield and quality of si lage maize in saline-alkali soils. Chin. J. Eco-Agric. 2018, 26, 856–864. [Google Scholar] [CrossRef]
- Tahir, M.; Wang, T.; Zhang, J.; Xia, T.; Deng, X.; Cao, X.; Zhong, J. Compound lactic acid bacteria enhance the aerobic stability of Sesbania cannabina and corn mixed silage. BMC Microbiol. 2025, 25, 68. [Google Scholar] [CrossRef]
- Xia, T.; Tahir, M.; Wang, T.; Wang, Y.; Zhang, X.; Liu, S.; Teng, K.; Fu, Z.; Yun, F.; Wang, S.; et al. Lactobacillus cocktail and cellulase synergistically improve the fiber transformation rate in Sesbania cannabina and sweet sorghum mixed silage. Chem. Biol. Technol. Agric. 2024, 11, 81. [Google Scholar] [CrossRef]
- He, T.; Liu, C.; Zhu, X.; Dong, J.; Wang, K.; Hong, L.; Xing, J. Physiological Response of Sesbania cannabina to Salt Stress and Its Effect on Soil. Hunan Agric. Sci. 2021, 10, 44–46. [Google Scholar] [CrossRef]
- Wang, L.; Pan, J.; Xiao, H.; Cheng, W.; Yang, Y. Effect of Soluble Salt on Planting Salt-tolerant Plants of Coastal Saline Soil. Acta Agric. Boreali-Sin. 2014, 29, 226–231. [Google Scholar]
- Ren, C.; Kong, C.; Bian, B.; Liu, W.; Li, Y.; Luo, Y.; Xie, Z. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. Int. J. Phytorem. 2017, 19, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Kong, C.; Yan, K.; Xie, Z. Transcriptome analysis reveals the impact of arbuscular mycorrhizal symbiosis on Sesbania cannabina expose to high salinity. Sci. Rep. 2019, 9, 2780. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Xia, J.; Yang, H.; Liu, J.; Shao, P. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci. Total Environ. 2021, 756, 143801. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Mo, Q.; Li, Y.; Meng, D.; Li, H. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations. Ecotoxicol. Environ. Saf. 2023, 259, 115004. [Google Scholar] [CrossRef]
- Zheng, Y.; Cao, X.; Zhou, Y.; Li, Z.; Yang, Y.; Zhao, D.; Li, Y.; Xu, Z.; Zhang, C. Effect of planting salt-tolerant legumes on coastal saline soil nutrient availability and microbial communities. J. Environ. Manag. 2023, 345, 118574. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Zhang, L.; Chang, D. Screening of plant growth promoting and salt tolerant rhizobacteria in Sesbania cannabina. Acta Microbiol. Sin. 2020, 60, 1023–1035. [Google Scholar] [CrossRef]
- Liu, A.; Kou, W.; Zhang, H.; Xu, J.; Zhu, L.; Kuang, S.; Huang, K.; Chen, H.; Jia, Q. Quantification of Trace Organophosphorus Pesticides in Environmental Water via Enrichment by Magnetic-Zirconia Nanocomposites and Online Extractive Electrospray Ionization Mass Spectrometry. Anal. Chem. 2020, 92, 4137–4145. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, J.; Chen, Z.; An, D.; Lv, Q.; Han, M.; Wang, Y.; Salt, D.E.; Chao, D. A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis. PLoS Biol. 2017, 15, e2002978. [Google Scholar] [CrossRef]
- Bekdash, R.A. Neuroprotective Effects of Choline and Other Methyl Donors. Nutrients 2019, 11, 1995. [Google Scholar] [CrossRef]
- Qin, M.; Qian, Y.; Huang, L.; Zhong, C.; Li, M.; Yu, J.; Chen, H. Extractive electrospray ionization mass spectrometry for analytical evaluation and synthetic preparation of pharmaceutical chemicals. Front. Pharmacol. 2023, 14, 1110900. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, L.; Jiang, L.; Lyu, H.; Yuan, Q.; Wang, G.; Fu, Y.; Cui, Q. In sight the behavior of natural Bletilla striata polysaccharide hydrocolloids by molecular dynamics method. Int. J. Biol. Macromol. 2024, 266, 131245. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Batra, A. Primary Metabolite Profiling of Tinospora cordifolia. Nat. Prod. Chem. Res. 2016, 4, 4. [Google Scholar] [CrossRef]
- Chakraborty, S.; Beura, M.; Sharma, S.K.; Singh, A.; Dahuja, A.; Krishnan, V. Lentinan, β-glucan from Shiitake (Lentinula edodes): A review on structure, conformational transition, and gastro-intestinal interaction contributing towards its anti-diabetic potential. Trends Food Sci. Technol. 2023, 142, 104224. [Google Scholar] [CrossRef]
- Liang, X.; Liu, M.; Wei, Y.; Tong, L.; Guo, S.; Kang, H.; Zhang, W.; Yu, Z.; Zhang, F.; Duan, J. Structural characteristics and structure-activity relationship of four polysaccharides from Lycii fructus. Int. J. Biol. Macromol. 2023, 253, 127256. [Google Scholar] [CrossRef]
- Cui, Y.; Zhou, D.; Li, D. Progress of Study on Chemical Modification and Application of Sesbania Gum. J. Henan Univ. (Nat. Sci.) 2004, 34, 30–33. [Google Scholar] [CrossRef]
- Liu, X. Exploitation and Utilization of Sesbania cannabina Pers.-Studies of Chemical Components of S. C. Powder (II). J. Food Sci. Biotechnol. 1993, 12, 33–39. [Google Scholar]
- Li, H.; Du, Y.; Ji, H.; Yang, Y.; Xu, C.; Li, Q.; Ran, L.; Wu, C.; Zhou, Q.; Wu, S. Adenosine-rich extract of Ganoderma lucidum: A safe and effective lipid-lowering substance. iScience 2022, 25, 105214. [Google Scholar] [CrossRef]
- Watson, K.M. A novel molecular switch in plant growth: How adenosine kinase activity modulates plant development and growth pathways. J. Exp. Bot. 2025, 76, 3263–3266. [Google Scholar] [CrossRef]
- Fu, X.; Yi, J.; Yang, J.; Lin, X.; Huang, W.; Zhou, X. Bioactive 2-arylbenzofurans derivatives from Sesbania cannabina. Phytochem. Lett. 2021, 41, 106–108. [Google Scholar] [CrossRef]
- Liu, X. Exploitation and Utilization of Sesbania cannabina Pers.-Studies of Chemical Components of S. C. Powder (I). J. Food Sci. Biotechnol. 1992, 11, 229–238. [Google Scholar]
- Wang, L.; Jiang, Y.; Cao, X.; Han, B.; Bu, D.; Deng, X.; Zhao, Q.; Yu, J.; You, C.; Zhang, X.; et al. Study on Nutritional Value, Molecular Structure Characteristics and in Vitro Rumen Degradation Rate in Different Parts of Sesbania cannabina. Chin. J. Anim. Nutr. 2024, 36, 3386–3400. [Google Scholar]
- Li, Y.; Yao, L.; Guo, X.; Zhao, X.; Huang, L.; Wang, D.; Zhang, X.; Xiao, Q.; Yang, R.; Guo, Y. Chemical compositions of cuticular waxes on stems and leaves of three legume green manure crops. Acta Agron. Sin. 2020, 46, 131–139. [Google Scholar]
- Zhang, Q.; Xu, F.; Lian, Z.; Li, X.; Yong, Q. Analysis of Monosaccharide in Sesbania cannabina Seed Enzymatic Hydrolysate by Pre-column Derivatization Reversed-phase High Performance Liquid Chromatography. Chem. Ind. For. Prod. 2020, 40, 31–38. [Google Scholar]
- He, T.; Sun, G.; He, S.; Zhang, Z.; Dong, J.; Zhu, X.; Dai, J.; Wang, K.; Xing, J. Full-Length Transcriptome Analysis of Sesbania cannabina Stem Response to Waterlogging Stress. Agronomy 2025, 15, 1197. [Google Scholar] [CrossRef]
- Li, R.; Tang, N.; Jia, X.; Nirasawa, S.; Bian, X.; Zhang, P.; Cheng, Y. Isolation, physical, structural characterization and in vitro prebiotic activity of a galactomannan extracted from endosperm splits of Chinese Sesbania cannabina seeds. Int. J. Biol. Macromol. 2020, 162, 1217–1226. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, T.; Lai, C.; Ling, Z.; Zhou, Y.; Yong, Q. The in vitro and in vivo Antioxidant and Immunomodulatory Activity of Incomplete Degradation Products of Hemicellulosic Polysaccharide (Galactomannan) from Sesbania cannabina. Front. Bioeng. Biotechnol. 2021, 9, 679558. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Z.; Du, Z.; Zhou, B.; Yu, M. Optimization of Extraction Process for Leaf Proteins from Sesbania cannabina (Retz.) Poir by Orthogonal Experimental Design Method. Food Res. Dev. 2018, 39, 30–34. [Google Scholar]
- Yin, K.; Liang, B.; Wang, J.; Zhao, Z. Extraction Technology Optimization and Antioxidant Activity of Polyphenols from Sesbania Natto. Food Res. Dev. 2024, 45, 156–162. [Google Scholar]
- Wang, Z.; Zhao, G.; Zhang, G.; Sun, D. Study on Molecular Weight and Its Distribution of Hydroxypropyl Sesbania Gum, Sesbania Gum and Guar Gum. Chin. J. Chromatogr. 1995, 13, 205–207. [Google Scholar] [CrossRef]
- Song, X.; Zhao, X.; Zhao, M.; Deng, X.; Jia, Y.; Luo, H.; Wang, F.; Cao, X. Method for Rapid Field Evaluation of Lignin in Sesbania cannabina. CN119534441A, 28 February 2025. [Google Scholar]
- Quanzhou Committee of the Chinese People’s Political Consultative Conference. New Compilation of Quanzhou Materia Medica; Fujian Science and Technology Publishing House: Fuzhou, China, 2020; ISBN 978-7-5335-5972-4.
- Fujian Institute of Medical Sciences. Fujian Medicinal Flora; Fujian People’s Publishing House: Fuzhou, China, 1979; Volume 1. [Google Scholar]
- Wang, G. National Compilation of Chinese Herbal Medicine; People’s Medical Publishing House: Beijing, China, 2014; Volume 1, ISBN 978-7-117-18035-1. [Google Scholar]
- National Administration of Traditional Chinese Medicine. Chinese Materia Medica; Shanghai Scientific and Technical Publishers: Shanghai, China, 1999; ISBN 7-5323-5106-8.
- Biggs, N.; Hanum, I.F.; van der Maesen, L.J.G. Plant Resources of South East Asia No. 11: Auxiliary Plants. Kew Bull. 1998, 53, 504. [Google Scholar] [CrossRef]
- Healing Plants of Peninsular India; CABI Publishing: New York, NY, USA, 2001; p. 917. ISBN 00060894.
- Li, R.; Zhu, C.; Bian, X.; Jia, X.; Tang, N.; Cheng, Y. An antioxidative galactomannan extracted from Chinese Sesbania cannabina enhances immune activation of macrophage cells. Food Funct. 2020, 11, 10635–10644. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, T.; Huang, C.; Lai, C.; Ling, Z.; Yong, Q. Effects of seleno-Sesbania canabina galactomannan on anti-oxidative and immune function of macrophage. Carbohydr. Polym. 2021, 261, 117833. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Deng, J.; Gu, J.; Tao, Y.; Huang, C.; Lai, C.; Yong, Q. Comparison of structure and neuroprotective ability of low molecular weight galactomannans from Sesbania cannabina obtained by different extraction technologies. Food Chem. 2023, 427, 136642. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Ma, J.; Huang, C.; Lai, C.; Ling, Z.; Yong, Q. The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights. Int. J. Biol. Macromol. 2022, 205, 530–538. [Google Scholar] [CrossRef]
- Zhou, M.; Tao, Y.; Wang, T.; Wang, R.; Yong, Q. Comparing the in vitro saliva-gastrointestinal digestion and fecal fermentation of galactomannan fractions with different molecular weights derived from Sesbania cannabina. LWT 2025, 215, 117309. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, T.; Huang, C.; Lai, C.; Ling, Z.; Zhou, Y.; Yong, Q. Incomplete degradation products of galactomannan from Sesbania cannabina modulated the cecal microbial community of laying hens. J. Anim. Sci. 2022, 100, skac087. [Google Scholar] [CrossRef]
- Li, R.; Tang, N.; Jia, X.; Xu, Y.; Cheng, Y. Antidiabetic activity of galactomannan from Chinese Sesbania cannabina and its correlation of regulating intestinal microbiota. J. Funct. Foods 2021, 83, 104530. [Google Scholar] [CrossRef]
- Mishra, A.; Kuchhal, P.; Nasim, M.; Sharma, U.C. Extraction and Characterization of Sesbania cannabina (Retz.) Pers. (Dhaincha) Seed Oil for Potential Engineering Applications. J. Oleo Sci. 2021, 70, 777–785. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Jin, Q.; Wang, X. Effects of Dietary Linoleic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis of 40 Randomized Controlled Trials. Foods 2023, 12, 2129. [Google Scholar] [CrossRef]
- Jackson, K.H.; Harris, W.S.; Belury, M.A.; Kris-Etherton, P.M.; Calder, P.C. Beneficial effects of linoleic acid on cardiometabolic health: An update. Lipids Health Dis. 2024, 23, 296. [Google Scholar] [CrossRef]
- Powell, R.G.; Plattner, R.D.; Suffness, M. Occurrence of Sesbanimide in Seeds of Toxic Sesbania Species. Weed Sci. 1990, 38, 148–152. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Chen, F.H.; Yuan, H.G.; Zheng, Z.W.; Wong, M.H. Responses of Sesbania Rostrata and S. cannabina to Pb, Zn, Cu and Cd Toxicities. J. Environ. Sci. 2004, 16, 670–673. [Google Scholar]
- Li, X.L.; Xu, E.Y.; Xu, G.C.; Shang, R.M.; Wang, Y.M.; Chen, J.; Huang, F.C. Safety evaluation studies of SGF gum--a potential food additive from the seed of Sesbania cannabina. Food. Chem. Toxicol. 1988, 26, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Kaur, R.; Kumar, S.; Saini, R.K.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A concise review on food related aspects, applications and health implications. Food Chem. Adv. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Netala, V.R.; Hou, T.; Devarapogu, R.; Bethu, M.S.; Zhang, Z.; Vijaya, T. Exploring the therapeutic potential of triterpenoid saponins from Gymnema sylvestre: Mechanistic insights into hepatoprotection, immunomodulation, anticancer activities, molecular docking, and pharmacokinetics. Heliyon 2024, 10, e40850. [Google Scholar] [CrossRef]
- Ozogul, Y.; Ucar, Y.; Tadesse, E.E.; Rathod, N.; Kulawik, P.; Trif, M.; Esatbeyoglu, T.; Ozogul, F. Tannins for food preservation and human health: A review of current knowledge. Appl. Food Res. 2025, 5, 100738. [Google Scholar] [CrossRef]
- Lin, D.; Wang, L.; Yan, Z.; Ye, J.; Hu, A.; Liao, H.; Liu, J.; Peng, J. Semi-synthesis, structural modification and biological evaluation of 5-arylbenzofuran neolignans. RSC Adv. 2018, 8, 34331–34342. [Google Scholar] [CrossRef]
- Layland, J.; Carrick, D.; Lee, M.; Oldroyd, K.; Berry, C. Adenosine: Physiology, pharmacology, and clinical applications. JACC Cardiovasc. Interv. 2014, 7, 581–591. [Google Scholar] [CrossRef]
- Zhang, H.; Chingin, K.; Zhu, L.; Chen, H. Molecular Characterization of Ongoing Enzymatic Reactions in Raw Garlic Cloves Using Extractive Electrospray Ionization Mass Spectrometry. Anal. Chem. 2015, 87, 2878–2883. [Google Scholar] [CrossRef]




| Biological Species | Sesbania cannabina | Sesbania bispinosa | Sesbania sesban | Sesbania javanica | Sesbania grandiflora |
|---|---|---|---|---|---|
| Distribution | Iraq, India, Indochina Peninsula, Malaysia, Papua New Guinea, New Caledonia, Australia, Ghana, Mauritania; Hainan, Jiangsu, Zhejiang, Jiangxi, Fujian, Guangxi, Yunnan | Iran, Pakistan, India, Sri Lanka, the Indochinese Peninsula, the Malay Peninsula; Guangdong, Guangxi, Yunnan, and Sichuan (southwestern regions) | Tropical Africa, Southern Africa, the Arabian Peninsula, and the Indian subcontinent; cultivated in Taiwan (Taipei, Changhua, Penghu) and Hainan | Australia, Indonesia, Malaysia, Bangladesh, Myanmar, Thailand, Cambodia, Laos, Vietnam; Taiwan, Hainan (cultivated) | Pakistan, India, Bangladesh, Indochina Peninsula, Philippines, Mauritius; Taiwan, Guangdong, Guangxi, Yunnan |
| Plant Height (a) | 2–3.5 m | 1–3 m | 2–4 m | 2–4 m | 4–10 m |
| Stem (b) | Green, sometimes tinged with reddish-brown, slightly covered with white powder | Rachises and peduncles sparsely covered with small prickles | Pubescent when young, becoming glabrous later; nodes prominently swollen | Pith white, young branches sparsely pubescent | With distinct leaf scars and stipule scars |
| Number of Leaflets (c) | 20–40 pairs | 20–40 pairs | 10–20 pairs | 10–30 pairs | 10–30 pairs |
| Leaflet Size (d) | 0.8–4 cm in length, 2.5–7 mm in width | 1–1.6 cm in length, 2–3 mm in width | 1.3–2.5 cm in length, 3–4 (−6) mm in width | 10–40 mm in length, 2–7 mm in width | 2–5 cm in length, 0.8–1.6 cm in width |
| Seed Characteristics (e) | Greenish-brown, glossy, short cylindrical, hilum orbicular, slightly eccentric | Subcylindrical, hilum orbicular, located at the middle | Subcylindrical, slightly compressed, hilum orbicular, concave | Greenish-brown to dark brown, glossy, subglobose | Reddish-brown, slightly glossy, elliptic to subreniform, swollen and slightly compressed, hilum orbicular, slightly concave |
| Plant Part | Chemical Composition Category | Primary Compounds | Approximate Content/Characteristics |
|---|---|---|---|
| Root | Fibrous substances | Neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) | relatively high content [66] |
| Stem | Stratum corneum wax | Fatty acids, primary alcohols, aldehydes, alkanes, alkyl esters, diols, terpenes, and sterols (eight compound classes in total), with primary alcohols as the predominant constituents | The total stem wax content was 6.45 μg cm−2, with primary alcohols accounting for 30.12% of the total stem wax content [67] |
| Identified diol compounds (1,18-tridecanediol, 1,16-tridecanediol) [67] | |||
| 2-Arylbenzofuran derivatives | sesbcanfuran A sesbcanfuran B sesbagrandiflorain E 2-(4-hydroxy-2-methoxyphenyl)-6-methoxy-3-benzuofur ancarboxylic acid methyl ester spinosan A 2-(2′-methoxy, 4′-hydroxy)-aryl-3-methyl-6-hy droxy-benzuofuran sesbagrandiflorain A sesbagrandiflorain B | ||
| Leaf | Protein | High in protein content [66] | |
| Stratum corneum wax | Fatty acids, primary alcohols, aldehydes, alkanes, alkyl esters, diols, terpenes, and sterols (8 compound categories total), with primary alcohols being the predominant component | Primary alcohols account for 71.21% of the total leaf wax content [67] | |
| Seed | Polysaccharides (primary source of Sesbania Gum) | Galactomannan | Composed of D-galactose and D-mannose [60] |
| Xylan and Arabinan [6] | |||
| Monosaccharide (Seed hydrolysate) | Mannose, Galactose, Glucose, and Xylose | Determined by HPLC-PMP method [68] | |
| Alkaloids | 2-Hydroxy-3-methyl-γ-pyrone and 6-armino-9-β-D-ribofuranosyl purine |
| Part | Target Components | Forensic Technology | Key Parameters | Results | References |
|---|---|---|---|---|---|
| Seed | Galactomannan | FT-IR | KBr Tablet | 815 cm−1 (α-Galp), 870 cm−1 (β-Manp) | [6] |
| Seed | Galactomannan | 1H/13C-NMR, HSQC | D2O, 600 MHz | δH 5.02 ppm (α-Gal H-1); The main chain consists of β-1,4-mannose, with α-1,6-galactose side chains randomly attached at the C-6 position | [6] |
| Stem | 2-Arylbenzofuran derivatives | HR-ESI-MS | Negative Ion Mode | [M–H]− 329.0064 (sesbcanfuran A); 345.0618 (sesbcanfuran B) | [64] |
| Stem | 2-Arylbenzofuran derivatives | 1D/2D-NMR | 400 MHz (1H), 100 MHz (13C) | HMBC confirms the 7-OH position (H-5/C-7 and related) | [64] |
| S. C. powder | 2-Hydroxy-3-methyl-γ-pyrone | EI-MS, EA, UV, IR, 1H-NMR | Mr 126; UV 276 nm; IR 1660, 1620 cm−1 | New pyranone compound | [61] |
| S. C. powder | 6-Armino-9-β-D-ribofuranosyl purine | EI-MS, EA, UV, IR, 1H-NMR, [α] | Mr 267; UV 258 nm; IR 1665, 1605 cm−1 | The structure was confirmed as adenosine, isolated for the first time from the genus Sesbania. | [61] |
| Leaf | Protein secondary structure | FT-IR | Amide Zone I, Amide Zone II | The area under the β-sheet peak is 0.37 | [66] |
| Stem/Leaf | Stratum corneum wax | GC-MS | DM-5 chromatography column; Programmed temperature | A total of 8 classes of compounds were identified; 1,18-tridecanediol, 1,16-tridecanediol were identified in the stems | [67] |
| Part | Analysis Items | Quantitative Methods | Test Conditions | Linearity/Detection Limit | Results | References |
|---|---|---|---|---|---|---|
| Seed | Galactomannan content | HPAEC-PAD | Detection of monosaccharides after acid hydrolysis | — | 95.07% (GalM purity) | [6] |
| Seed | Galactomannan molecular weight | HPGPC-RI | Waters Ultrahydrogel Series Columns, Pure Water | — | M_w 1.42 × 106 Da (GalM) | [6] |
| Seed | Monosaccharide composition | PMP pre-column derivatization RP-HPLC-UV | C18 column; acetonitrile-phosphate buffer (pH 6.5) gradient elution; detection wavelength 250 nm | 5–2500 mg/L, R2 > 0.9994, LOD 0.455–1.224 mg/L | Man:Glc:Gal:Xyl = 1:0.44:1.92:0.53 (Molar ratio) | [68] |
| Seed | Galactomannan molecular weight | GPC-RI | Waters μ-Bondagel Series Columns, Pure Water | — | M_w 2.3 × 105 (SG) | [74] |
| S. C. powder | Total alkaloids, total flavonoids, total saponins | Weight method | — | — |
Total alkaloids: 1.64%
Total flavonoids: 0.40% Total saponins: 2.28% | [65] |
| S. C. powder | Tannin | Coordinate titration method | — | — | 1.86% DW | [65] |
| Leaf | Total Protein | C.I. 250,000 | BSA Standard, measured at 595 nm | 0.01–0.1 mg/mL, R2 = 0.9914 | 40.02 mg/g (DW) | [72] |
| Natto | Total polyphenols | Folin–Ciocalteu | Gallic acid standard, measured at 765 nm | 10–50 μg/mL, R2 = 0.9995 | 119.24 mg/g (DW) | [73] |
| Stem | Lignin content | Hydrochloric acid-resorcinol semi-quantitative colorimetric method | Cross-section staining in the field | — | Color intensity is used for quick comparison | [75] |
| Stem/Leaf | Wax content and composition of the stratum corneum | GC-FID/GC-MS | Chloroform extraction, BSTFA derivatization, DM-5 column temperature programming analysis | — | Total stem wax content: 6.45 μg cm−2 (primary alcohols accounted for 30.12%); Total leaf wax content: 15.3 μg cm−2 (primary alcohols accounted for 71.21%) | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Meng, J.; Wang, Q.; Liu, C.; Cao, D.; Hu, K.; Cao, X.; Chen, H. Panoramic Research on Sesbania cannabina: Germplasm Resources, Phytochemical Constituents, Biological Activities, and Applications. Int. J. Mol. Sci. 2025, 26, 12129. https://doi.org/10.3390/ijms262412129
Zhang N, Meng J, Wang Q, Liu C, Cao D, Hu K, Cao X, Chen H. Panoramic Research on Sesbania cannabina: Germplasm Resources, Phytochemical Constituents, Biological Activities, and Applications. International Journal of Molecular Sciences. 2025; 26(24):12129. https://doi.org/10.3390/ijms262412129
Chicago/Turabian StyleZhang, Ni, Junhua Meng, Qianqian Wang, Cuiping Liu, Duanrui Cao, Keping Hu, Xiaofeng Cao, and Huanwen Chen. 2025. "Panoramic Research on Sesbania cannabina: Germplasm Resources, Phytochemical Constituents, Biological Activities, and Applications" International Journal of Molecular Sciences 26, no. 24: 12129. https://doi.org/10.3390/ijms262412129
APA StyleZhang, N., Meng, J., Wang, Q., Liu, C., Cao, D., Hu, K., Cao, X., & Chen, H. (2025). Panoramic Research on Sesbania cannabina: Germplasm Resources, Phytochemical Constituents, Biological Activities, and Applications. International Journal of Molecular Sciences, 26(24), 12129. https://doi.org/10.3390/ijms262412129

