Extrachromosomal Circular DNA and Transposable Elements in Type 2 Diabetes
Abstract
1. Introduction
2. Extrachromosomal Circular DNAs
2.1. Extrachromosomal Circular DNA Generation and Elimination
2.2. Extrachromosomal Circular DNA Roles and Modulation
2.3. Extrachromosomal Circular DNA and Type 2 Diabetes: Direct Evidence
2.4. Extrachromosomal Circular DNA and Type 2 Diabetes: Indirect Evidence
3. Transposable Elements
3.1. Transposable Elements and Type 2 Diabetes: Direct Evidence
3.2. Transposable Elements and Type 2 Diabetes: Indirect Evidence
4. EccDNA and TEs in Organ Damage Related to T2D
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Classification of Diabetes Mellitus. Available online: https://iris.who.int/items/8fe62910-2fde-4a8d-aab3-99c5ea9ff88d (accessed on 1 October 2025).
- GBD 2021 Diabetes Collaborators. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234, Erratum in Lancet 2025, 402, 202. https://doi.org/10.1016/S0140-6736(25)00053-4. [Google Scholar] [CrossRef]
- Soriguer, F.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; Castell, C.; Catalá, M.; et al. Prevalence of Diabetes Mellitus and Impaired Glucose Regulation in Spain: The Di@bet.es Study. Diabetologia 2012, 55, 88–93. [Google Scholar] [CrossRef]
- Rojo-Martínez, G.; Valdés, S.; Soriguer, F.; Vendrell, J.; Urrutia, I.; Pérez, V.; Ortega, E.; Ocón, P.; Montanya, E.; Menéndez, E.; et al. Incidence of Diabetes Mellitus in Spain as Results of the Nation-Wide Cohort Di@bet.es Study. Sci. Rep. 2020, 10, 2765. [Google Scholar] [CrossRef] [PubMed]
- Bradley, D.; Hsueh, W. Type 2 Diabetes in the Elderly: Challenges in a Unique Patient Population. J. Geriatr. Med. Gerontol. 2016, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The Worldwide Epidemiology of Type 2 Diabetes Mellitus—Present and Future Perspectives. Nat. Rev. Endocrinol. 2011, 8, 228–236. [Google Scholar] [CrossRef]
- Grau-Perez, M.; Navas-Acien, A.; Galan-Chilet, I.; Briongos-Figuero, L.S.; Morchon-Simon, D.; Bermudez, J.D.; Crainiceanu, C.M.; de Marco, G.; Rentero-Garrido, P.; Garcia-Barrera, T.; et al. Arsenic Exposure, Diabetes-Related Genes and Diabetes Prevalence in a General Population from Spain. Environ. Pollut. 2018, 235, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Melero, R.; Quiroz-Rodríguez, M.E.; Lara-Hernández, F.; Redón, J.; Sáez, G.; Briongos-Figuero, L.S.; Abadía-Otero, J.; Martín-Escudero, J.C.; Chaves, F.J.; Ayala, G.; et al. Genetic Interaction in the Association between Oxidative Stress and Diabetes in the Spanish Population. Free Radic. Biol. Med. 2023, 205, 62–68, Erratum in Free Radic. Biol. Med. 2023, 207, 181–182. [Google Scholar] [CrossRef]
- Lara-Hernández, F.; Melero, R.; Quiroz-Rodríguez, M.E.; Moya-Valera, C.; de Jesús Gallardo-Espinoza, M.; Álvarez, L.; Valarezo-Torres, I.L.; Briongos-Figuero, L.; Abadía-Otero, J.; Mena-Martin, F.J.; et al. Genetic Interaction between Oxidative Stress and Body Mass Index in a Spanish Population. Redox Biol. 2025, 80, 103531. [Google Scholar] [CrossRef]
- Xue, A.; Wu, Y.; Zhu, Z.; Zhang, F.; Kemper, K.E.; Zheng, Z.; Yengo, L.; Lloyd-Jones, L.R.; Sidorenko, J.; Wu, Y.; et al. Genome-Wide Association Analyses Identify 143 Risk Variants and Putative Regulatory Mechanisms for Type 2 Diabetes. Nat. Commun. 2018, 9, 2941. [Google Scholar] [CrossRef]
- DeForest, N.; Majithia, A.R. Genetics of Type 2 Diabetes: Implications from Large-Scale Studies. Curr. Diabetes Rep. 2022, 22, 227–235. [Google Scholar] [CrossRef]
- Suzuki, K.; Hatzikotoulas, K.; Southam, L.; Taylor, H.J.; Yin, X.; Lorenz, K.M.; Mandla, R.; Huerta-Chagoya, A.; Melloni, G.E.M.; Kanoni, S.; et al. Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology. Nature 2024, 627, 347–357. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yue, R. Aging Adipose Tissue, Insulin Resistance, and Type 2 Diabetes. Biogerontology 2024, 25, 53–69. [Google Scholar] [CrossRef]
- Lopez-Pedrosa, J.M.; Camprubi-Robles, M.; Guzman-Rolo, G.; Lopez-Gonzalez, A.; Garcia-Almeida, J.M.; Sanz-Paris, A.; Rueda, R. The Vicious Cycle of Type 2 Diabetes Mellitus and Skeletal Muscle Atrophy: Clinical, Biochemical, and Nutritional Bases. Nutrients 2024, 16, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, S.; Zhang, F.; Wang, L. Cell-Free eccDNAs: A New Type of Nucleic Acid Component for Liquid Biopsy? Mol. Diagn. Ther. 2018, 22, 515–522. [Google Scholar] [CrossRef]
- Qiu, G.-H.; Zheng, X.; Fu, M.; Huang, C.; Yang, X. The Decreased Exclusion of Nuclear eccDNA: From Molecular and Subcellular Levels to Human Aging and Age-Related Diseases. Ageing Res. Rev. 2021, 67, 101306. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B.; Liang, H.; Han, L. Pioneering Insights of Extrachromosomal DNA (ecDNA) Generation, Action and Its Implications for Cancer Therapy. Int. J. Biol. Sci. 2022, 18, 4006–4025. [Google Scholar] [CrossRef]
- Møller, H.D.; Larsen, C.E.; Parsons, L.; Hansen, A.J.; Regenberg, B.; Mourier, T. Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces Cerevisiae. G3 (Bethesda) 2015, 6, 453–462. [Google Scholar] [CrossRef]
- Lanciano, S.; Carpentier, M.-C.; Llauro, C.; Jobet, E.; Robakowska-Hyzorek, D.; Lasserre, E.; Ghesquière, A.; Panaud, O.; Mirouze, M. Sequencing the Extrachromosomal Circular Mobilome Reveals Retrotransposon Activity in Plants. PLoS Genet. 2017, 13, e1006630. [Google Scholar] [CrossRef]
- Zhang, P.; Mbodj, A.; Soundiramourtty, A.; Llauro, C.; Ghesquière, A.; Ingouff, M.; Keith Slotkin, R.; Pontvianne, F.; Catoni, M.; Mirouze, M. Extrachromosomal Circular DNA and Structural Variants Highlight Genome Instability in Arabidopsis Epigenetic Mutants. Nat. Commun. 2023, 14, 5236. [Google Scholar] [CrossRef]
- Hotta, Y.; Bassel, A. Molecular size and circularity of DNA in cells of mammals and higher plants. Proc. Natl. Acad. Sci. USA 1965, 53, 356–362. [Google Scholar] [CrossRef]
- Kunisada, T.; Yamagishi, H.; Ogita, Z.; Kirakawa, T.; Mitsui, Y. Appearance of Extrachromosomal Circular DNAs during in Vivo and in Vitro Ageing of Mammalian Cells. Mech. Ageing Dev. 1985, 29, 89–99. [Google Scholar] [CrossRef]
- Møller, H.D.; Mohiyuddin, M.; Prada-Luengo, I.; Sailani, M.R.; Halling, J.F.; Plomgaard, P.; Maretty, L.; Hansen, A.J.; Snyder, M.P.; Pilegaard, H.; et al. Circular DNA Elements of Chromosomal Origin Are Common in Healthy Human Somatic Tissue. Nat. Commun. 2018, 9, 1069. [Google Scholar] [CrossRef] [PubMed]
- Irdianto, S.A.; Dwiranti, A.; Bowolaksono, A. Extrachromosomal Circular DNA: A Double-Edged Sword in Cancer Progression and Age-Related Diseases. Hum. Cell 2025, 38, 58. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Arrey, G.; Qin, Y.; Álvarez-González, L.; Hariprakash, J.M.; Ma, J.; Holt, S.; Han, P.; Luo, Y.; Li, H.; et al. EccDNA Atlas in Male Mice Reveals Features Protecting Genes against Transcription-Induced eccDNA Formation. Nat. Commun. 2025, 16, 1872. [Google Scholar] [CrossRef]
- Arrey, G.; Keating, S.T.; Regenberg, B. A Unifying Model for Extrachromosomal Circular DNA Load in Eukaryotic Cells. Semin. Cell Dev. Biol. 2022, 128, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jia, R.; Ge, T.; Ge, S.; Zhuang, A.; Chai, P.; Fan, X. Extrachromosomal Circular DNA: Biogenesis, Structure, Functions and Diseases. Signal Transduct. Target. Ther. 2022, 7, 342. [Google Scholar] [CrossRef]
- Wu, N.; Wei, L.; Zhu, Z.; Liu, Q.; Li, K.; Mao, F.; Qiao, J.; Zhao, X. Innovative Insights into Extrachromosomal Circular DNAs in Gynecologic Tumors and Reproduction. Protein Cell 2024, 15, 6–20. [Google Scholar] [CrossRef]
- Hull, R.M.; King, M.; Pizza, G.; Krueger, F.; Vergara, X.; Houseley, J. Transcription-Induced Formation of Extrachromosomal DNA during Yeast Ageing. PLoS Biol. 2019, 17, e3000471. [Google Scholar] [CrossRef]
- Ren, S.; Wu, D.; Shen, X.; Wu, Q.; Li, C.; Xiong, H.; Xiong, Z.; Gong, R.; Liu, Z.; Wang, W.; et al. Deciphering the Role of Extrachromosomal Circular DNA in Adipose Stem Cells from Old and Young Donors. Stem Cell Res. Ther. 2023, 14, 341. [Google Scholar] [CrossRef]
- Dillon, L.W.; Kumar, P.; Shibata, Y.; Wang, Y.-H.; Willcox, S.; Griffith, J.D.; Pommier, Y.; Takeda, S.; Dutta, A. Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Rep. 2015, 11, 1749–1759. [Google Scholar] [CrossRef]
- Gu, Y.; Song, Y.; Liu, J. Identification and Characterization of eccDNA-Driven Genes in Humans. PLoS ONE 2025, 20, e0324438. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; He, J.; Han, P.; Dai, P.; Lv, W.; Liu, N.; Liu, L.; Liu, L.; Pan, X.; Xiang, X.; et al. Plasma Extrachromosomal Circular DNA Is a Pathophysiological Hallmark of Short-Term Intensive Insulin Therapy for Type 2 Diabetes. Clin. Transl. Med. 2023, 13, e1437. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Djekidel, M.N.; Chen, H.; Liu, D.; Alt, F.W.; Zhang, Y. eccDNAs Are Apoptotic Products with High Innate Immunostimulatory Activity. Nature 2021, 599, 308–314. [Google Scholar] [CrossRef]
- Petito, V.; Di Vincenzo, F.; Putignani, L.; Abreu, M.T.; Regenberg, B.; Gasbarrini, A.; Scaldaferri, F. Extrachromosomal Circular DNA: An Emerging Potential Biomarker for Inflammatory Bowel Diseases? Genes 2024, 15, 414. [Google Scholar] [CrossRef]
- Cloonan, S.M.; Choi, A.M.K. Mitochondria: Sensors and Mediators of Innate Immune Receptor Signaling. Curr. Opin. Microbiol. 2013, 16, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Hull, R.M.; Houseley, J. The Adaptive Potential of Circular DNA Accumulation in Ageing Cells. Curr. Genet. 2020, 66, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Han, Y.; Meng, J.; Zhong, B.; Chen, J.; Zhang, H.; Qin, J.; Pang, J.; Liu, L. Small Extrachromosomal Circular DNA (eccDNA): Major Functions in Evolution and Cancer. Mol. Cancer 2021, 20, 113. [Google Scholar] [CrossRef]
- De Cecco, M.; Criscione, S.W.; Peterson, A.L.; Neretti, N.; Sedivy, J.M.; Kreiling, J.A. Transposable Elements Become Active and Mobile in the Genomes of Aging Mammalian Somatic Tissues. Aging 2013, 5, 867–883. [Google Scholar] [CrossRef]
- Gorbunova, V.; Seluanov, A.; Mita, P.; McKerrow, W.; Fenyö, D.; Boeke, J.D.; Linker, S.B.; Gage, F.H.; Kreiling, J.A.; Petrashen, A.P.; et al. The Role of Retrotransposable Elements in Ageing and Age-Associated Diseases. Nature 2021, 596, 43–53. [Google Scholar] [CrossRef]
- Chénais, B. Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int. J. Mol. Sci. 2022, 23, 2551. [Google Scholar] [CrossRef]
- Kumar, P.; Dillon, L.W.; Shibata, Y.; Jazaeri, A.A.; Jones, D.R.; Dutta, A. Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation. Mol. Cancer Res. 2017, 15, 1197–1205. [Google Scholar] [CrossRef]
- Yang, F.; Su, W.; Chung, O.W.; Tracy, L.; Wang, L.; Ramsden, D.A.; Zhang, Z.Z.Z. Retrotransposons Hijack Alt-EJ for DNA Replication and eccDNA Biogenesis. Nature 2023, 620, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, L.; Zhang, S.; Su, X.; Zhou, X. Extrachromosomal Circular DNA: Current Status and Future Prospects. Elife 2022, 11, e81412. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, S.; Ge, L.; Zhang, W.; Huang, J.; Sun, W. Extrachromosomal Circular DNA: Category, Biogenesis, Recognition, and Functions. Front. Vet. Sci. 2021, 8, 693641, Erratum in Front. Vet. Sci. 2021, 8, 784611. [Google Scholar] [CrossRef]
- Sin, S.T.; Deng, J.; Ji, L.; Yukawa, M.; Chan, R.W.; Volpi, S.; Vaglio, A.; Fenaroli, P.; Bocca, P.; Cheng, S.H.; et al. Effects of Nucleases on Cell-Free Extrachromosomal Circular DNA. JCI Insight 2022, 7, e156070. [Google Scholar] [CrossRef] [PubMed]
- Gerovska, D.; Araúzo-Bravo, M.J. Systemic Lupus Erythematosus Patients with DNASE1L3·Deficiency Have a Distinctive and Specific Genic Circular DNA Profile in Plasma. Cells 2023, 12, 1061. [Google Scholar] [CrossRef]
- Tusseau, M.; Lovšin, E.; Samaille, C.; Pescarmona, R.; Mathieu, A.-L.; Maggio, M.-C.; Selmanović, V.; Debeljak, M.; Dachy, A.; Novljan, G.; et al. DNASE1L3 Deficiency, New Phenotypes, and Evidence for a Transient Type I IFN Signaling. J. Clin. Immunol. 2022, 42, 1310–1320. [Google Scholar] [CrossRef]
- Ambros, I.M.; Rumpler, S.; Luegmayr, A.; Hattinger, C.M.; Strehl, S.; Kovar, H.; Gadner, H.; Ambros, P.F. Neuroblastoma Cells Can Actively Eliminate Supernumerary MYCN Gene Copies by Micronucleus Formation—Sign of Tumour Cell Revertance? Eur. J. Cancer 1997, 33, 2043–2049. [Google Scholar] [CrossRef]
- Shimizu, N.; Shimura, T.; Tanaka, T. Selective Elimination of Acentric Double Minutes from Cancer Cells through the Extrusion of Micronuclei. Mutat. Res. 2000, 448, 81–90. [Google Scholar] [CrossRef]
- Peng, Y.; Tao, H.; Wang, G.; Wu, M.; Xu, T.; Wen, C.; Zheng, X.; Dai, Y. Exploring the Role of Extrachromosomal Circular DNA in Human Diseases. Cytogenet. Genome Res. 2024, 164, 181–193. [Google Scholar] [CrossRef]
- Wu, S.; Turner, K.M.; Nguyen, N.; Raviram, R.; Erb, M.; Santini, J.; Luebeck, J.; Rajkumar, U.; Diao, Y.; Li, B.; et al. Circular ecDNA Promotes Accessible Chromatin and High Oncogene Expression. Nature 2019, 575, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Wanchai, V.; Jenjaroenpun, P.; Leangapichart, T.; Arrey, G.; Burnham, C.M.; Tümmler, M.C.; Delgado-Calle, J.; Regenberg, B.; Nookaew, I. CReSIL: Accurate Identification of Extrachromosomal Circular DNA from Long-Read Sequences. Brief Bioinform. 2022, 23, bbac422, Erratum in Brief. Bioinform. 2023, 24, bbad402. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, Y.; Wan, S.; Chu, H.; Wang, D.; Lv, K.; Kong, X.; Yao, X. Identification and Analysis of Extrachromosomal Circular DNAs in Pancreatic Islets during the Early and Late Stages of T2DM Mice. Genes Dis. 2025, 101914. [Google Scholar] [CrossRef]
- Rameh, L.E.; Deeney, J.T. Phosphoinositide Signalling in Type 2 Diabetes: A β-Cell Perspective. Biochem. Soc. Trans. 2016, 44, 293–298. [Google Scholar] [CrossRef]
- De Fano, M.; Malara, M.; Rucco, S.; Manco, M.; Fanelli, C.G.; Bolli, G.B.; Porcellati, F. A New Role for Glucagon: From Secondary Hormone to Key Player. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 104233. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Pan, X.; Han, P.; Wang, Z.; Feng, W.; Xing, X.; Wang, Q.; Qu, K.; Zeng, Y.; Zhang, C.; et al. Circle-Seq Reveals Genomic and Disease-Specific Hallmarks in Urinary Cell-Free Extrachromosomal Circular DNAs. Clin. Transl. Med. 2022, 12, e817. [Google Scholar] [CrossRef]
- Storci, G.; Bacalini, M.G.; Bonifazi, F.; Garagnani, P.; De Carolis, S.; Salvioli, S.; Olivieri, F.; Bonafè, M. Ribosomal DNA Instability: An Evolutionary Conserved Fuel for Inflammaging. Ageing Res. Rev. 2020, 58, 101018. [Google Scholar] [CrossRef]
- Kong, X.; Wan, S.-J.; Chen, T.-B.; Jiang, L.; Xing, Y.-J.; Bai, Y.-P.; Hua, Q.; Yao, X.-M.; Zhao, Y.-L.; Zhang, H.-M.; et al. Increased Serum Extrachromosomal Circular DNA SORBS1circle Level Is Associated with Insulin Resistance in Patients with Newly Diagnosed Type 2 Diabetes Mellitus. Cell. Mol. Biol. Lett. 2024, 29, 12. [Google Scholar] [CrossRef]
- Wang, J.; Huang, P.; Hou, F.; Hao, D.; Li, W.; Jin, H. Predicting Gestational Diabetes Mellitus Risk at 11–13 Weeks’ Gestation: The Role of Extrachromosomal Circular DNA. Cardiovasc. Diabetol. 2024, 23, 289. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, Q.; Wang, R.; Yang, S.; Yu, X.; Cui, D.; Su, Z. Novel Association of SNP Rs2297828 in PRDM16 Gene with Predisposition to Type 2 Diabetes. Gene 2023, 849, 146916. [Google Scholar] [CrossRef]
- Chang, T.-J.; Wang, W.-C.; Hsiung, C.A.; He, C.-T.; Lin, M.-W.; Sheu, W.H.-H.; Chang, Y.-C.; Quertermous, T.; Chen, Y.-D.I.; Rotter, J.I.; et al. Genetic Variation of SORBS1 Gene Is Associated with Glucose Homeostasis and Age at Onset of Diabetes: A SAPPHIRe Cohort Study. Sci. Rep. 2018, 8, 10574. [Google Scholar] [CrossRef] [PubMed]
- Baumann, C.A.; Ribon, V.; Kanzaki, M.; Thurmond, D.C.; Mora, S.; Shigematsu, S.; Bickel, P.E.; Pessin, J.E.; Saltiel, A.R. CAP Defines a Second Signalling Pathway Required for Insulin-Stimulated Glucose Transport. Nature 2000, 407, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Lesniewski, L.A.; Hosch, S.E.; Neels, J.G.; de Luca, C.; Pashmforoush, M.; Lumeng, C.N.; Chiang, S.-H.; Scadeng, M.; Saltiel, A.R.; Olefsky, J.M. Bone Marrow-Specific Cap Gene Deletion Protects against High-Fat Diet-Induced Insulin Resistance. Nat. Med. 2007, 13, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Aye, C.-C.; Hammond, D.E.; Rodriguez-Cuenca, S.; Doherty, M.K.; Whitfield, P.D.; Phelan, M.M.; Yang, C.; Perez-Perez, R.; Li, X.; Diaz-Ramos, A.; et al. CBL/CAP Is Essential for Mitochondria Respiration Complex I Assembly and Bioenergetics Efficiency in Muscle Cells. Int. J. Mol. Sci. 2023, 24, 3399. [Google Scholar] [CrossRef]
- Hou, W.-L.; Yin, J.; Alimujiang, M.; Yu, X.-Y.; Ai, L.-G.; Bao, Y.-Q.; Liu, F.; Jia, W.-P. Inhibition of Mitochondrial Complex I Improves Glucose Metabolism Independently of AMPK Activation. J. Cell. Mol. Med. 2018, 22, 1316–1328. [Google Scholar] [CrossRef]
- Wu, J.; Luo, X.; Thangthaeng, N.; Sumien, N.; Chen, Z.; Rutledge, M.A.; Jing, S.; Forster, M.J.; Yan, L.-J. Pancreatic Mitochondrial Complex I Exhibits Aberrant Hyperactivity in Diabetes. Biochem. Biophys. Rep. 2017, 11, 119–129. [Google Scholar] [CrossRef]
- Lorenzi, M.; Montisano, D.F.; Toledo, S.; Wong, H.C. Increased Single Strand Breaks in DNA of Lymphocytes from Diabetic Subjects. J. Clin. Investig. 1987, 79, 653–656. [Google Scholar] [CrossRef]
- Blasiak, J.; Arabski, M.; Krupa, R.; Wozniak, K.; Zadrozny, M.; Kasznicki, J.; Zurawska, M.; Drzewoski, J. DNA Damage and Repair in Type 2 Diabetes Mellitus. Mutat. Res. 2004, 554, 297–304. [Google Scholar] [CrossRef]
- Gerovska, D.; Araúzo-Bravo, M.J. Skeletal Muscles of Sedentary and Physically Active Aged People Have Distinctive Genic Extrachromosomal Circular DNA Profiles. Int. J. Mol. Sci. 2023, 24, 2736. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; Zhang, W.; ShangGuan, Y.; Xie, T.; Wang, K.; Qiu, J.; Pu, W.; Hu, B.; Zhang, X.; et al. The Characteristics of Extrachromosomal Circular DNA in Patients with End-Stage Renal Disease. Eur. J. Med. Res. 2023, 28, 134. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Yamazaki, S.; Takashima, S.; Liu, W.; Okuda, H.; Yan, J.; Fujii, Y.; Hitomi, T.; Harada, K.H.; Habu, T.; et al. Ablation of Rnf213 Retards Progression of Diabetes in the Akita Mouse. Biochem. Biophys. Res. Commun. 2013, 432, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Santulli, G.; Pagano, G.; Sardu, C.; Xie, W.; Reiken, S.; D’Ascia, S.L.; Cannone, M.; Marziliano, N.; Trimarco, B.; Guise, T.A.; et al. Calcium Release Channel RyR2 Regulates Insulin Release and Glucose Homeostasis. J. Clin. Investig. 2015, 125, 1968–1978, Erratum in 2015, 125, 4316. https://doi.org/10.1172/JCI84937. [Google Scholar] [CrossRef] [PubMed]
- Amoasii, L.; Holland, W.; Sanchez-Ortiz, E.; Baskin, K.K.; Pearson, M.; Burgess, S.C.; Nelson, B.R.; Bassel-Duby, R.; Olson, E.N. A MED13-Dependent Skeletal Muscle Gene Program Controls Systemic Glucose Homeostasis and Hepatic Metabolism. Genes Dev. 2016, 30, 434–446. [Google Scholar] [CrossRef]
- Hivert, M.-F.; Briggs, C.M.; Cardenas, A.; Perron, P.; Bouchard, L. Placental DNA Methylation of miR-548 and WWTR1 Genes Influence Insulin Sensitivity during Pregnancy. Diabetes 2018, 67, 120-OR. [Google Scholar] [CrossRef]
- Koshiba, S.; Motoike, I.N.; Saigusa, D.; Inoue, J.; Aoki, Y.; Tadaka, S.; Shirota, M.; Katsuoka, F.; Tamiya, G.; Minegishi, N.; et al. Identification of Critical Genetic Variants Associated with Metabolic Phenotypes of the Japanese Population. Commun. Biol. 2020, 3, 662. [Google Scholar] [CrossRef]
- Ziegler, D.V.; Vindrieux, D.; Goehrig, D.; Jaber, S.; Collin, G.; Griveau, A.; Wiel, C.; Bendridi, N.; Djebali, S.; Farfariello, V.; et al. Calcium Channel ITPR2 and Mitochondria-ER Contacts Promote Cellular Senescence and Aging. Nat. Commun. 2021, 12, 720. [Google Scholar] [CrossRef]
- Assaf, J.; Khurana, I.; Abou Zaki, R.; Tam, C.H.T.; Correa, I.; Maxwell, S.; Kinnberg, J.; Christiansen, M.; Frørup, C.; Lee, H.M.; et al. DNA Methylation Biomarkers Predict Offspring Metabolic Risk From Mothers with Hyperglycemia in Pregnancy. Diabetes 2025, 74, 1695–1707. [Google Scholar] [CrossRef]
- Donath, M.Y.; Shoelson, S.E. Type 2 Diabetes as an Inflammatory Disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, R.A.; Jenjaroenpun, P.; Sjøstrøm, I.B.; Jensen, K.R.; Prada-Luengo, I.; Wongsurawat, T.; Nookaew, I.; Regenberg, B. Circular DNA in the Human Germline and Its Association with Recombination. Mol. Cell 2022, 82, 209–217.e7. [Google Scholar] [CrossRef]
- Evans, M.; Rajachandran, S.; Zhang, X.; Zhang, Y.; Saner, K.; Xu, L.; Orwig, K.E.; Bukulmez, O.; Chen, H. Functional and Clinical Implications of Extrachromosomal Circular DNA in the Human Germline. bioRxiv 2024. [Google Scholar] [CrossRef]
- Siefert, J.L. Defining the Mobilome. Methods Mol. Biol. 2009, 532, 13–27. [Google Scholar] [CrossRef]
- Finnegan, D.J. Eukaryotic Transposable Elements and Genome Evolution. Trends Genet. 1989, 5, 103–107. [Google Scholar] [CrossRef]
- Makałowska, I.; Rogozin, I.B.; Makałowski, W. Genome Evolution. Adv. Bioinform. 2010, 2010, 643701. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.N.; Feschotte, C. A Field Guide to Eukaryotic Transposable Elements. Annu. Rev. Genet. 2020, 54, 539–561. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, N. Transposable Elements in Health and Disease: Molecular Basis and Clinical Implications. Chin. Med. J. 2025, 138, 2220–2233. [Google Scholar] [CrossRef]
- Loreto, E.L.S.; de Melo, E.S.; Wallau, G.L.; Gomes, T.M.F.F. The Good, the Bad and the Ugly of Transposable Elements Annotation Tools. Genet. Mol. Biol. 2024, 46, e20230138. [Google Scholar] [CrossRef]
- McClintock, B. The Origin and Behavior of Mutable Loci in Maize. Proc. Natl. Acad. Sci. USA 1950, 36, 344–355. [Google Scholar] [CrossRef]
- Waring, M.; Britten, R.J. Nucleotide Sequence Repetition: A Rapidly Reassociating Fraction of Mouse DNA. Science 1966, 154, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Malamy, M.H.; Fiandt, M.; Szybalski, W. Electron Microscopy of Polar Insertions in the Lac Operon of Escherichia coli. Mol. Gen. Genet. 1972, 119, 207–222. [Google Scholar] [CrossRef]
- Huang, C.R.L.; Burns, K.H.; Boeke, J.D. Active Transposition in Genomes. Annu. Rev. Genet. 2012, 46, 651–675. [Google Scholar] [CrossRef]
- Lanciano, S.; Cristofari, G. Measuring and Interpreting Transposable Element Expression. Nat. Rev. Genet. 2020, 21, 721–736. [Google Scholar] [CrossRef]
- DiRusso, J.A.; Clark, A.T. Transposable Elements in Early Human Embryo Development and Embryo Models. Curr. Opin. Genet. Dev. 2023, 81, 102086. [Google Scholar] [CrossRef]
- Burns, K.H. Our Conflict with Transposable Elements and Its Implications for Human Disease. Annu. Rev. Pathol. 2020, 15, 51–70. [Google Scholar] [CrossRef]
- Moon, S.; Namkoong, S. Ribonucleoprotein Granules: Between Stress and Transposable Elements. Biomolecules 2023, 13, 1027. [Google Scholar] [CrossRef] [PubMed]
- Warkocki, Z. An Update on Post-Transcriptional Regulation of Retrotransposons. FEBS Lett. 2023, 597, 380–406. [Google Scholar] [CrossRef]
- Cao, X.; Jin, X.; Liu, B. The Involvement of Stress Granules in Aging and Aging-Associated Diseases. Aging Cell 2020, 19, e13136. [Google Scholar] [CrossRef]
- Gázquez-Gutiérrez, A.; Witteveldt, J.; Heras, S.R.; Macias, S. Sensing of Transposable Elements by the Antiviral Innate Immune System. RNA 2021, 27, 735–752. [Google Scholar] [CrossRef] [PubMed]
- Ambati, J.; Magagnoli, J.; Leung, H.; Wang, S.-B.; Andrews, C.A.; Fu, D.; Pandey, A.; Sahu, S.; Narendran, S.; Hirahara, S.; et al. Repurposing Anti-Inflammasome NRTIs for Improving Insulin Sensitivity and Reducing Type 2 Diabetes Development. Nat. Commun. 2020, 11, 4737. [Google Scholar] [CrossRef] [PubMed]
- Lahouassa, H.; Daddacha, W.; Hofmann, H.; Ayinde, D.; Logue, E.C.; Dragin, L.; Bloch, N.; Maudet, C.; Bertrand, M.; Gramberg, T.; et al. SAMHD1 Restricts the Replication of Human Immunodeficiency Virus Type 1 by Depleting the Intracellular Pool of Deoxynucleoside Triphosphates. Nat. Immunol. 2012, 13, 223–228, Erratum in Nat. Immunol. 2013, 14, 877. [Google Scholar] [CrossRef]
- Smyth, D.J.; Cooper, J.D.; Bailey, R.; Field, S.; Burren, O.; Smink, L.J.; Guja, C.; Ionescu-Tirgoviste, C.; Widmer, B.; Dunger, D.B.; et al. A Genome-Wide Association Study of Nonsynonymous SNPs Identifies a Type 1 Diabetes Locus in the Interferon-Induced Helicase (IFIH1) Region. Nat. Genet. 2006, 38, 617–619. [Google Scholar] [CrossRef]
- Wongpaiboonwattana, W.; Tosukhowong, P.; Dissayabutra, T.; Mutirangura, A.; Boonla, C. Oxidative Stress Induces Hypomethylation of LINE-1 and Hypermethylation of the RUNX3 Promoter in a Bladder Cancer Cell Line. Asian Pac. J. Cancer Prev. 2013, 14, 3773–3778. [Google Scholar] [CrossRef]
- de Oliveira, D.S.; Rosa, M.T.; Vieira, C.; Loreto, E.L.S. Oxidative and Radiation Stress Induces Transposable Element Transcription in Drosophila melanogaster. J. Evol. Biol. 2021, 34, 628–638. [Google Scholar] [CrossRef]
- Saleh, A.; Macia, A.; Muotri, A.R. Transposable Elements, Inflammation, and Neurological Disease. Front. Neurol. 2019, 10, 894. [Google Scholar] [CrossRef]
- Guio, L.; Barrón, M.G.; González, J. The Transposable Element Bari-Jheh Mediates Oxidative Stress Response in Drosophila. Mol. Ecol. 2014, 23, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Piconi, L.; Quagliaro, L.; Ceriello, A. Oxidative Stress in Diabetes. Clin. Chem. Lab. Med. 2003, 41, 1144–1149. [Google Scholar] [CrossRef]
- Davegårdh, C.; García-Calzón, S.; Bacos, K.; Ling, C. DNA Methylation in the Pathogenesis of Type 2 Diabetes in Humans. Mol. Metab. 2018, 14, 12–25. [Google Scholar] [CrossRef]
- Raciti, G.A.; Desiderio, A.; Longo, M.; Leone, A.; Zatterale, F.; Prevenzano, I.; Miele, C.; Napoli, R.; Beguinot, F. DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment? Int. J. Mol. Sci. 2021, 22, 11652. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Gadd, D.A.; Gieger, C.; Monterrubio-Gómez, K.; Zhang, Y.; Berta, I.; Stam, M.J.; Szlachetka, N.; Lobzaev, E.; Wrobel, N.; et al. Development and Validation of DNA Methylation Scores in Two European Cohorts Augment 10-Year Risk Prediction of Type 2 Diabetes. Nat. Aging 2023, 3, 450–458. [Google Scholar] [CrossRef]
- Katsanou, A.; Kostoulas, C.; Liberopoulos, E.; Tsatsoulis, A.; Georgiou, I.; Tigas, S. Retrotransposons and Diabetes Mellitus. Epigenomes 2024, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Chimezie, J.; Agbonifo, W.O.; Francis, H.O.; Awoleye, M.O.; Adedeji, T.G. High Carbohydrate Diet Programs Metabolic Enzyme Gene Expression Modification in F2 Generation Wistar Rat Males. Curr. Res. Physiol. 2025, 8, 100154. [Google Scholar] [CrossRef]
- Waterland, R.A.; Jirtle, R.L. Transposable Elements: Targets for Early Nutritional Effects on Epigenetic Gene Regulation. Mol. Cell. Biol. 2003, 23, 5293–5300. [Google Scholar] [CrossRef]
- Martín-Núñez, G.M.; Rubio-Martín, E.; Cabrera-Mulero, R.; Rojo-Martínez, G.; Olveira, G.; Valdés, S.; Soriguer, F.; Castaño, L.; Morcillo, S. Type 2 Diabetes Mellitus in Relation to Global LINE-1 DNA Methylation in Peripheral Blood: A Cohort Study. Epigenetics 2014, 9, 1322–1328. [Google Scholar] [CrossRef]
- Colombo, A.R.; Elias, H.K.; Ramsingh, G. Senescence Induction Universally Activates Transposable Element Expression. Cell Cycle 2018, 17, 1846–1857. [Google Scholar] [CrossRef] [PubMed]
- Rahmoon, M.A.; Elghaish, R.A.; Ibrahim, A.A.; Alaswad, Z.; Gad, M.Z.; El-Khamisy, S.F.; Elserafy, M. High Glucose Increases DNA Damage and Elevates the Expression of Multiple DDR Genes. Genes 2023, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Thongsroy, J.; Mutirangura, A. Decreased Alu Methylation in Type 2 Diabetes Mellitus Patients Increases HbA1c Levels. J. Clin. Lab. Anal. 2023, 37, e24966. [Google Scholar] [CrossRef]
- Thongsroy, J.; Patchsung, M.; Mutirangura, A. The Association between Alu Hypomethylation and Severity of Type 2 Diabetes Mellitus. Clin. Epigenetics 2017, 9, 93. [Google Scholar] [CrossRef]
- Lopes, L.L.; Bressan, J.; Peluzio, M.D.C.G.; Hermsdorff, H.H.M. LINE-1 in Obesity and Cardiometabolic Diseases: A Systematic Review. J. Am. Coll. Nutr. 2019, 38, 478–484. [Google Scholar] [CrossRef]
- Maandi, S.C.; Maandi, M.T.; Patel, A.; Manville, R.W.; Mabley, J.G. Divergent Effects of HIV Reverse Transcriptase Inhibitors on Pancreatic Beta-Cell Function and Survival: Potential Role of Oxidative Stress and Mitochondrial Dysfunction. Life Sci. 2022, 294, 120329. [Google Scholar] [CrossRef]
- Ferguson, L.B.; Zhang, L.; Wang, S.; Bridges, C.; Harris, R.A.; Ponomarev, I. Peroxisome Proliferator Activated Receptor Agonists Modulate Transposable Element Expression in Brain and Liver. Front. Mol. Neurosci. 2018, 11, 331. [Google Scholar] [CrossRef]
- Valenti, L.; Bugianesi, E.; Pajvani, U.; Targher, G. Nonalcoholic Fatty Liver Disease: Cause or Consequence of Type 2 Diabetes? Liver Int. 2016, 36, 1563–1579. [Google Scholar] [CrossRef]
- Youngson, N.A.; Tourna, A.; Chalmers, T.; Prates, K.V.; Argemi, J.; Bataller, R.; Haghighi, K.S.; Wu, L.E.; Chokshi, S.; Starkel, P.; et al. Multi-Cohort Exploration of Repetitive Element Transcription and DNA Methylation in Human Steatotic Liver Disease. Int. J. Mol. Sci. 2025, 26, 5494. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Leung, A.; Trac, C.; Lee, M.; Parks, B.W.; Lusis, A.J.; Natarajan, R.; Schones, D.E. Chromatin Variation Associated with Liver Metabolism Is Mediated by Transposable Elements. Epigenet. Chromatin 2016, 9, 28. [Google Scholar] [CrossRef]
- Payer, L.M.; Steranka, J.P.; Yang, W.R.; Kryatova, M.; Medabalimi, S.; Ardeljan, D.; Liu, C.; Boeke, J.D.; Avramopoulos, D.; Burns, K.H. Structural Variants Caused by Alu Insertions Are Associated with Risks for Many Human Diseases. Proc. Natl. Acad. Sci. USA 2017, 114, E3984–E3992. [Google Scholar] [CrossRef] [PubMed]
- Mittra, I.; Khare, N.K.; Raghuram, G.V.; Chaubal, R.; Khambatti, F.; Gupta, D.; Gaikwad, A.; Prasannan, P.; Singh, A.; Iyer, A.; et al. Circulating Nucleic Acids Damage DNA of Healthy Cells by Integrating into Their Genomes. J. Biosci. 2015, 40, 91–111. [Google Scholar] [CrossRef]
- Gebrie, A. Transposable Elements as Essential Elements in the Control of Gene Expression. Mob. DNA 2023, 14, 9. [Google Scholar] [CrossRef]
- Schmidleithner, L.; Stüve, P.; Feuerer, M. Transposable Elements as Instructors of the Immune System. Nat. Rev. Immunol. 2025, 25, 696–706. [Google Scholar] [CrossRef]
- Thomson, S.J.P.; Goh, F.G.; Banks, H.; Krausgruber, T.; Kotenko, S.V.; Foxwell, B.M.J.; Udalova, I.A. The Role of Transposable Elements in the Regulation of IFN-Lambda1 Gene Expression. Proc. Natl. Acad. Sci. USA 2009, 106, 11564–11569. [Google Scholar] [CrossRef]
- Marasca, F.; Gasparotto, E.; Polimeni, B.; Vadalà, R.; Ranzani, V.; Bodega, B. The Sophisticated Transcriptional Response Governed by Transposable Elements in Human Health and Disease. Int. J. Mol. Sci. 2020, 21, 3201. [Google Scholar] [CrossRef]
- Osipovich, A.B.; Dudek, K.D.; Trinh, L.T.; Kim, L.H.; Shrestha, S.; Cartailler, J.-P.; Magnuson, M.A. ZFP92, a KRAB Domain Zinc Finger Protein Enriched in Pancreatic Islets, Binds to B1/Alu SINE Transposable Elements and Regulates Retroelements and Genes. PLoS Genet. 2023, 19, e1010729. [Google Scholar] [CrossRef]
- Henaoui, I.S.; Jacovetti, C.; Guerra Mollet, I.; Guay, C.; Sobel, J.; Eliasson, L.; Regazzi, R. PIWI-Interacting RNAs as Novel Regulators of Pancreatic Beta Cell Function. Diabetologia 2017, 60, 1977–1986. [Google Scholar] [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Sami, A.; Javed, A.; Ozsahin, D.U.; Ozsahin, I.; Muhammad, K.; Waheed, Y. Genetics of Diabetes and Its Complications: A Comprehensive Review. Diabetol. Metab. Syndr. 2025, 17, 185. [Google Scholar] [CrossRef]
- Yang, T.; Qi, F.; Guo, F.; Shao, M.; Song, Y.; Ren, G.; Linlin, Z.; Qin, G.; Zhao, Y. An Update on Chronic Complications of Diabetes Mellitus: From Molecular Mechanisms to Therapeutic Strategies with a Focus on Metabolic Memory. Mol. Med. 2024, 30, 71. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Florez, J.C. Genetics of Diabetes Mellitus and Diabetes Complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Mannar, V.; Boro, H.; Patel, D.; Agstam, S.; Dalvi, M.; Bundela, V. Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus. touchREV. Endocrinol. 2023, 19, 46–53. [Google Scholar] [CrossRef]
- Ahmadi, A.; De Toma, I.; Vilor-Tejedor, N.; Eftekhariyan Ghamsari, M.R.; Sadeghi, I. Transposable Elements in Brain Health and Disease. Ageing Res. Rev. 2020, 64, 101153. [Google Scholar] [CrossRef]
- Sae-Lee, C.; Biasi, J.D.; Robinson, N.; Barrow, T.M.; Mathers, J.C.; Koutsidis, G.; Byun, H.-M. DNA Methylation Patterns of LINE-1 and Alu for Pre-Symptomatic Dementia in Type 2 Diabetes. PLoS ONE 2020, 15, e0234578. [Google Scholar] [CrossRef]
- Dhillon, P.; Mulholland, K.A.; Hu, H.; Park, J.; Sheng, X.; Abedini, A.; Liu, H.; Vassalotti, A.; Wu, J.; Susztak, K. Increased Levels of Endogenous Retroviruses Trigger Fibroinflammation and Play a Role in Kidney Disease Development. Nat. Commun. 2023, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- Zeinali Nia, E.; Najjar Sadeghi, R.; Ebadi, M.; Faghihi, M. ERK1/2 Gene Expression and Hypomethylation of Alu and LINE1 Elements in Patients with Type 2 Diabetes with and without Cataract: Impact of Hyperglycemia-Induced Oxidative Stress. J. Diabetes Investig. 2025, 16, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Sabbatinelli, J.; Giuliani, A.; Kwiatkowska, K.M.; Matacchione, G.; Belloni, A.; Ramini, D.; Prattichizzo, F.; Pellegrini, V.; Piacenza, F.; Tortato, E.; et al. DNA Methylation-Derived Biological Age and Long-Term Mortality Risk in Subjects with Type 2 Diabetes. Cardiovasc. Diabetol. 2024, 23, 250. [Google Scholar] [CrossRef] [PubMed]

| Described Association | Cited in |
|---|---|
| EccDNAs activate inflammatory response in specific tissues and in whole organisms: affect mitochondrial function; increase levels of OS, apoptosis, and DNA damage; and accelerate aging and associated diseases, including T2D. | [35,36,37,38] |
| EccDNAs regulate mRNA levels in different tissues including those related to T2D. | [27,44] |
| EccDNA generation can facilitate the movement of TEs. | [45] |
| The high abundance of eccDNAs in somatic cells suggests their influence on cellular phenotypes. | [25,29] |
| EccDNAs contribute to cell adaptation and clonal selection including roles in cellular development, aging, adaptive evolution, signalling pathways, telomere length regulation, genome plasticity, sequestration of transcription factors, and gene amplification. | [17,29,47] |
| Large eccDNAs can modulate transcription by increasing chromatin accessibility. Small eccDNAs may regulate transcription by sequestering transcription factors. EccDNA contributes to genome instability and plays a role in the generation of chromosomal rearrangements. | [54] |
| Cell type-specific eccDNAs can be related to T2D development and pro-gression as they can modulate gene expression in tissues related to insulin signaling, such as adipose tissues, liver, kidney and pancreas. | [27,32,44,55] |
| Small eccDNAs originating from apoptotic processes may exert notable effects on inflammation by stimulating IFNB and interferon responses. | [18,36] |
| Newly diagnosed T2D patients display enrichment of multiple eccDNAs, including specific molecules such as SORBS1circle. | [58] |
| EccDNA production is different in women who develop gestational diabetes compared with those with normal glucose metabolism. | [59] |
| EccDNAs show changes linked to T2D risk factors such as sedentarism or aging and T2D complications. | [43,56,69,70] |
| EccDNA activates the innate immune response and the production of different pro-inflammatory cytokines. | [36,53,79] |
| EccDNA production is increased in male germline cells of diabetic patients. | [80,81] |
| Described Association | Cited in |
|---|---|
| TE activation in aging: increase in RNA levels from TEs | [41,42,114] |
| T2D and a high-fat diet increase Alu element expression and reduce DICER1 levels | [99,115] |
| TEs present in cfDNA can integrate randomly into the genome: cellular damage, stress, and apoptosis | [125] |
| TEs present in cfDNA can integrate randomly into the genome: TE activation in a cell or organ can induce cellular damage in other cells and organs | [125] |
| Increased levels of TE activity activate the proinflammatory system | [42,98,99] |
| TEs have a relevant role in transcriptional regulatory functions: regulation of cellular plasticity and adaptability to environmental cues | [126] |
| TEs are involved in immune system development, activation, over-activation and response to different factors | [127,128,129] |
| Polymorphic TEs have been related to complex diseases, metabolic alterations and response to environmental factors related to T2D development | [43,124] |
| TEs are involved in fatty liver disease and other liver alterations related to T2D | [122,123] |
| ZFP92 transcription factor binds to TEs in pancreatic beta cells, muscle and adipocytes, repressing them and activating specific genes involved in their development and metabolic regulation. | [130] |
| NRTIs protect against T2D and improve IR by reducing Alu copies and DICER1 activity normalization: retrotransposon movement reduction | [42,99] |
| Alu and LINE1 methylation is associated with the metabolic status of T2D patients. | [113,116,117] |
| Agonists of PPARs can modify TE expression | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moya-Valera, C.; Arita, A.F.; Lara-Hernández, F.; García-García, A.-B.; Chaves, F.J. Extrachromosomal Circular DNA and Transposable Elements in Type 2 Diabetes. Int. J. Mol. Sci. 2025, 26, 11516. https://doi.org/10.3390/ijms262311516
Moya-Valera C, Arita AF, Lara-Hernández F, García-García A-B, Chaves FJ. Extrachromosomal Circular DNA and Transposable Elements in Type 2 Diabetes. International Journal of Molecular Sciences. 2025; 26(23):11516. https://doi.org/10.3390/ijms262311516
Chicago/Turabian StyleMoya-Valera, Celeste, Alex Fernando Arita, Francisco Lara-Hernández, Ana-Bárbara García-García, and Felipe Javier Chaves. 2025. "Extrachromosomal Circular DNA and Transposable Elements in Type 2 Diabetes" International Journal of Molecular Sciences 26, no. 23: 11516. https://doi.org/10.3390/ijms262311516
APA StyleMoya-Valera, C., Arita, A. F., Lara-Hernández, F., García-García, A.-B., & Chaves, F. J. (2025). Extrachromosomal Circular DNA and Transposable Elements in Type 2 Diabetes. International Journal of Molecular Sciences, 26(23), 11516. https://doi.org/10.3390/ijms262311516

