Spatial and Functional Roles of Syndecans in Skin Wound Healing
Abstract
1. Introduction
2. Skin Wound Healing
2.1. Regulation of Hemostasis by SDCs
2.2. Regulation of the Inflammation Phase by SDCs in Skin Wound Healing
2.3. Regulation of the Proliferation Phase by SDCs
2.4. Regulation of the Remodeling Phase by SDCs
3. Conclusions
| Phase | Key SDCs | Alterations of SDCs | Syndecans’ Functions | References |
|---|---|---|---|---|
| Hemostasis | SDC-1 SDC-4 | Cell surface clustering |
| [8] |
| [19,20] | |||
| Elevated shedding of SDCs |
| [15] | ||
| [15,16] | |||
| [21,22] | |||
| [Inflammation | SDC-1 SDC-4 | Upregulated SDC levels |
| [23] |
| [25,26,27] | |||
| [51] | |||
| [39] | |||
| [24] | |||
| Elevated shedding of SDCs |
| [29] | ||
| [15,28] | |||
| Proliferation | SDC-1 SDC-4 | Upregulated SDC levels in keratinocytes |
| [40,41] |
| [42] | |||
| [43,44] | |||
| [13] | |||
| Upregulated SDC levels in fibroblasts |
| [46,47,48] | ||
| [42] | |||
| [45] | |||
| Remodeling | SDC-1 SDC-4 SDC-2 | Upregulated SDC levels in fibroblasts |
| [42,55] |
| [53] | |||
| [50] | |||
| [53] | |||
| [49] | |||
| [51,52] | |||
| [13] | |||
| [49] | |||
| [54] | |||
| [58] | |||
| Elevated shedding of SDCs |
| [58] | ||
| [57] | |||
| [18,56] |
Author Contributions
Funding
Conflicts of Interest
References
- Tkachenko, E.; Rhodes, J.M.; Simons, M. Syndecans: New Kids on the Signaling Block. Circ. Res. 2005, 96, 488–500. [Google Scholar] [CrossRef]
- Beauvais, D.M.; Rapraeger, A.C. Syndecans in Tumor Cell Adhesion and Signaling. Reprod. Biol. Endocrinol. 2004, 2, 3. [Google Scholar] [CrossRef]
- Morgan, M.R.; Humphries, M.J.; Bass, M.D. Synergistic Control of Cell Adhesion by Integrins and Syndecans. Nat. Rev. Mol. Cell Biol. 2007, 8, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Motta, J.M.; Hassan, H.; Ibrahim, S.A. Revisiting the Syndecans: Master Signaling Regulators with Prognostic and Targetable Therapeutic Values in Breast Carcinoma. Cancers 2023, 15, 1794. [Google Scholar] [CrossRef]
- Inki, P.; Larjava, H.; Haapasalmi, K.; Miettinen, H.M.; Grenman, R.; Jalkanen, M. Expression of Syndecan-1 Is Induced by Differentiation and Suppressed by Malignant Transformation of Human Keratinocytes. Eur. J. Cell Biol. 1994, 63, 43–51. [Google Scholar]
- Koliakou, E.; Eleni, M.M.; Koumentakou, I.; Bikiaris, N.; Konstantinidou, P.; Rousselle, P.; Anestakis, D.; Lazaridou, E.; Kalloniati, E.; Miliaras, D.; et al. Altered Distribution and Expression of Syndecan-1 and -4 as an Additional Hallmark in Psoriasis. Int. J. Mol. Sci. 2022, 23, 6511. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chipman, A.; Dong, J.F.; Kozar, R.A. Fibrinogen Activates PAK1/Cofilin Signaling Pathway to Protect Endothelial Barrier Integrity. Shock 2021, 55, 660–665. [Google Scholar] [CrossRef]
- Wu, F.; Kozar, R.A. Fibrinogen Protects Against Barrier Dysfunction Through Maintaining Cell Surface Syndecan-1 In Vitro. Shock 2019, 51, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, A.R.; Giri, H. Anticoagulant and Signaling Functions of Antithrombin. J. Thromb. Haemost. 2020, 18, 3142–3153. [Google Scholar] [CrossRef]
- Arnold, K.; Xu, Y.; Liao, Y.E.; Cooley, B.C.; Pawlinski, R.; Liu, J. Synthetic Anticoagulant Heparan Sulfate Attenuates Liver Ischemia Reperfusion Injury. Sci. Rep. 2020, 10, 17187. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkolj, V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Bainbridge, P. Wound Healing and the Role of Fibroblasts. J. Wound Care 2013, 22, 407–412. [Google Scholar] [CrossRef]
- Maldonado, H.; Savage, B.D.; Barker, H.R.; May, U.; Vähätupa, M.; Badiani, R.K.; Wolanska, K.I.; Turner, C.M.J.; Pemmari, T.; Ketomäki, T.; et al. Systemically Administered Wound-Homing Peptide Accelerates Wound Healing by Modulating Syndecan-4 Function. Nat. Commun. 2023, 14, 8069. [Google Scholar] [CrossRef]
- Pérez, L.A.; Leyton, L.; Valdivia, A. Thy-1 (CD90), Integrins and Syndecan 4 Are Key Regulators of Skin Wound Healing. Front. Cell Dev. Biol. 2022, 10, 810474. [Google Scholar] [CrossRef]
- Subramanian, S.V.; Fitzgerald, M.L.; Bernfield, M. Regulated Shedding of Syndecan-1 and -4 Ectodomains by Thrombin and Growth Factor Receptor Activation. J. Biol. Chem. 1997, 272, 14713–14720. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.L.; Wang, Z.; Park, P.W.; Murphy, G.; Bernfield, M. Shedding of Syndecan-1 and -4 Ectodomains Is Regulated by Multiple Signaling Pathways and Mediated by a TIMP-3-Sensitive Metalloproteinase. J. Cell Biol. 2000, 148, 811–824. [Google Scholar] [CrossRef]
- Elenius, K.; Määttä, A.; Salmivirta, M.; Jalkanen, M. Growth Factors Induce 3T3 Cells to Express bFGF-Binding Syndecan. J. Biol. Chem. 1992, 267, 6435–6441. [Google Scholar] [CrossRef]
- Elenius, V.; Götte, M.; Reizes, O.; Elenius, K.; Bernfield, M. Inhibition by the Soluble Syndecan-1 Ectodomains Delays Wound Repair in Mice Overexpressing Syndecan-1. J. Biol. Chem. 2004, 279, 41928–41935. [Google Scholar] [CrossRef] [PubMed]
- Kaneider, N.C.; Reinisch, C.M.; Dunzendorfer, S.; Römisch, J.; Wiedermann, C.J. Syndecan-4 Mediates Antithrombin-Induced Chemotaxis of Human Peripheral Blood Lymphocytes and Monocytes. J. Cell Sci. 2002, 115, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Roemisch, J.; Gray, E.; Hoffmann, J.N.; Wiedermann, C.J. Antithrombin: A New Look at the Actions of a Serine Protease Inhibitor. Blood Coagul. Fibrinolysis 2002, 13, 657–670. [Google Scholar] [CrossRef]
- Kozar, R.A.; Pati, S. Syndecan-1 Restitution by Plasma after Hemorrhagic Shock. J. Trauma Acute Care Surg. 2015, 78 (Suppl. 1), S83–S86. [Google Scholar] [CrossRef]
- Rahbar, E.; Cardenas, J.C.; Baimukanova, G.; Usadi, B.; Bruhn, R.; Pati, S.; Ostrowski, S.R.; Johansson, P.I.; Holcomb, J.B.; Wade, C.E. Endothelial Glycocalyx Shedding and Vascular Permeability in Severely Injured Trauma Patients. J. Transl. Med. 2015, 13, 117. [Google Scholar] [CrossRef]
- Kharabi Masouleh, B.; Ten Dam, G.B.; Wild, M.K.; Seelige, R.; van der Vlag, J.; Rops, A.L.; Echtermeyer, F.G.; Vestweber, D.; van Kuppevelt, T.H.; Kiesel, L.; et al. Role of the Heparan Sulfate Proteoglycan Syndecan-1 (CD138) in Delayed-Type Hypersensitivity. J. Immunol. 2009, 182, 4985–4993. [Google Scholar] [CrossRef] [PubMed]
- Feistritzer, C.; Kaneider, N.C.; Sturn, D.H.; Wiedermann, C.J. Syndecan-4-Dependent Migration of Human Eosinophils. Clin. Exp. Allergy 2004, 34, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Gimbrone, M.A., Jr.; Obin, M.S.; Brock, A.F.; Luis, E.A.; Hass, P.E.; Hébert, C.A.; Yip, Y.K.; Leung, D.W.; Lowe, D.G.; Kohr, W.J. Endothelial Interleukin-8: A Novel Inhibitor of Leukocyte-Endothelial Interactions. Science 1989, 246, 1601–1603. [Google Scholar] [CrossRef]
- Marshall, L.J.; Ramdin, L.S.; Brooks, T.; DPhil, P.C.; Shute, J.K. Plasminogen Activator Inhibitor-1 Supports IL-8-Mediated Neutrophil Transendothelial Migration by Inhibition of the Constitutive Shedding of Endothelial IL-8/Heparan Sulfate/Syndecan-1 Complexes. J. Immunol. 2003, 171, 2057–2065. [Google Scholar] [CrossRef]
- Huber, A.R.; Kunkel, S.L.; Todd, R.F., 3rd; Weiss, S.J. Regulation of Transendothelial Neutrophil Migration by Endogenous Interleukin-8. Science 1991, 254, 99–102. [Google Scholar] [CrossRef]
- Götte, M.; Echtermeyer, F. Syndecan-1 as a Regulator of Chemokine Function. Sci. World J. 2003, 3, 1327–1331. [Google Scholar] [CrossRef]
- Turner, C.T.; Zeglinski, M.R.; Boivin, W.; Zhao, H.; Pawluk, M.A.; Richardson, K.C.; Chandrabalan, A.; Bird, P.; Ramachandran, R.; Sehmi, R.; et al. Granzyme K Contributes to Endothelial Microvascular Damage and Leakage during Skin Inflammation. Br. J. Dermatol. 2023, 189, 279–291. [Google Scholar] [CrossRef]
- Werner, S.; Grose, R. Regulation of Wound Healing by Growth Factors and Cytokines. Physiol. Rev. 2003, 83, 835–870. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.E.; Wilgus, T.A. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv. Wound Care 2014, 3, 647–661. [Google Scholar] [CrossRef]
- Eming, S.A.; Medalie, D.A.; Tompkins, R.G.; Yarmush, M.L.; Morgan, J.R. Genetically Modified Human Keratinocytes Overexpressing PDGF-A Enhance the Performance of a Composite Skin Graft. Hum. Gene Ther. 1998, 9, 529–539. [Google Scholar] [CrossRef]
- Liechty, K.W.; Nesbit, M.; Herlyn, M.; Radu, A.; Adzick, N.S.; Crombleholme, T.M. Adenoviral-Mediated Overexpression of Platelet-Derived Growth Factor-B Corrects Ischemic Impaired Wound Healing. J. Investig. Dermatol. 1999, 113, 375–383. [Google Scholar] [CrossRef]
- Brown, G.L.; Nanney, L.B.; Griffen, J.; Cramer, A.B.; Yancey, J.M.; Curtsinger, L.J., 3rd; Holtzin, L.; Schultz, G.S.; Jurkiewicz, M.J.; Lynch, J.B. Enhancement of Wound Healing by Topical Treatment with Epidermal Growth Factor. N. Engl. J. Med. 1989, 321, 76–79. [Google Scholar] [CrossRef]
- Werner, S.; Smola, H.; Liao, X.; Longaker, M.T.; Krieg, T.; Hofschneider, P.H.; Williams, L.T. The Function of KGF in Morphogenesis of Epithelium and Reepithelialization of Wounds. Science 1994, 266, 819–822. [Google Scholar] [CrossRef]
- Stoscheck, C.M.; Nanney, L.B.; King, L.E., Jr. Quantitative Determination of EGF-R during Epidermal Wound Healing. J. Investig. Dermatol. 1992, 99, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Seiki, M. The Cell Surface: The Stage for Matrix Metalloproteinase Regulation of Migration. Curr. Opin. Cell Biol. 2002, 14, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Hattori, N.; Mochizuki, S.; Kishi, K.; Nakajima, T.; Takaishi, H.; D’Armiento, J.; Okada, Y. MMP-13 Plays a Role in Keratinocyte Migration, Angiogenesis, and Contraction in Mouse Skin Wound Healing. Am. J. Pathol. 2009, 175, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Elenius, K.; Vainio, S.; Laato, M.; Salmivirta, M.; Thesleff, I.; Jalkanen, M. Induced Expression of Syndecan in Healing Wounds. J. Cell Biol. 1991, 114, 585–595. [Google Scholar] [CrossRef]
- Stepp, M.A.; Gibson, H.E.; Gala, P.H.; Iglesia, D.D.; Pajoohesh-Ganji, A.; Pal-Ghosh, S.; Brown, M.; Aquino, C.; Schwartz, A.M.; Goldberger, O.; et al. Defects in Keratinocyte Activation during Wound Healing in the Syndecan-1-Deficient Mouse. J. Cell Sci. 2002, 115, 4517–4531. [Google Scholar] [CrossRef]
- Ojeh, N.; Hiilesvuo, K.; Wärri, A.; Salmivirta, M.; Henttinen, T.; Määttä, A. Ectopic Expression of Syndecan-1 in Basal Epidermis Affects Keratinocyte Proliferation and Wound Re-Epithelialization. J. Investig. Dermatol. 2008, 128, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Jurjus, R.A.; Liu, Y.; Pal-Ghosh, S.; Tadvalkar, G.; Stepp, M.A. Primary Dermal Fibroblasts Derived from Sdc-1 Deficient Mice Migrate Faster and Have Altered Alphav Integrin Function. Wound Repair Regen. 2008, 16, 649–660. [Google Scholar] [CrossRef]
- Michopoulou, A.; Montmasson, M.; Garnier, C.; Lambert, E.; Dayan, G.; Rousselle, P. A Novel Mechanism in Wound Healing: Laminin 332 Drives MMP9/14 Activity by Recruiting Syndecan-1 and CD44. Matrix Biol. 2020, 94, 1–17. [Google Scholar] [CrossRef]
- Rousselle, P.; Beck, K. Laminin 332 Processing Impacts Cellular Behavior. Cell Adhes. Migr. 2013, 7, 122–134. [Google Scholar] [CrossRef]
- Lin, F.; Ren, X.D.; Doris, G.; Clark, R.A. Three-Dimensional Migration of Human Adult Dermal Fibroblasts from Collagen Lattices into Fibrin/Fibronectin Gels Requires Syndecan-4 Proteoglycan. J. Investig. Dermatol. 2005, 124, 906–913. [Google Scholar] [CrossRef]
- Mali, M.; Elenius, K.; Miettinen, H.M.; Jalkanen, M. Inhibition of Basic Fibroblast Growth Factor-Induced Growth Promotion by Overexpression of Syndecan-1. J. Biol. Chem. 1993, 268, 24215–24222. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, P.; Vihinen, T.; Määttä, A.; Jalkanen, M. Activation of an Enhancer on the Syndecan-1 Gene Is Restricted to Fibroblast Growth Factor Family Members in Mesenchymal Cells. Mol. Cell. Biol. 1997, 17, 3210–3219. [Google Scholar] [CrossRef]
- Lee, P.H.; Trowbridge, J.M.; Taylor, K.R.; Morhenn, V.B.; Gallo, R.L. Dermatan Sulfate Proteoglycan and Glycosaminoglycan Synthesis Is Induced in Fibroblasts by Transfer to a Three-Dimensional Extracellular Environment. J. Biol. Chem. 2004, 279, 48640–48646. [Google Scholar] [CrossRef]
- Chen, Y.; Shi-Wen, X.; van Beek, J.; Kennedy, L.; McLeod, M.; Renzoni, E.A.; Bou-Gharios, G.; Wilcox-Adelman, S.; Goetinck, P.F.; Eastwood, M.; et al. Matrix Contraction by Dermal Fibroblasts Requires Transforming Growth Factor-Beta/Activin-Linked Kinase 5, Heparan Sulfate-Containing Proteoglycans, and MEK/ERK: Insights into Pathological Scarring in Chronic Fibrotic Disease. Am. J. Pathol. 2005, 167, 1699–1711. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.; Wei, X.; Lei, M.L.; Cid, F.C.; Roper, J.A.; Williamson, R.C.; Bass, M.D. Inhibition of EphA2 by Syndecan-4 in Wounded Skin Regulates Clustering of Fibroblasts. J. Mol. Cell Biol. 2025, 17, mjae054. [Google Scholar] [CrossRef]
- Echtermeyer, F.; Streit, M.; Wilcox-Adelman, S.; Saoncella, S.; Denhez, F.; Detmar, M.; Goetinck, P. Delayed Wound Repair and Impaired Angiogenesis in Mice Lacking Syndecan-4. J. Clin. Investig. 2001, 107, R9–R14. [Google Scholar] [CrossRef] [PubMed]
- Midwood, K.S.; Valenick, L.V.; Hsia, H.C.; Schwarzbauer, J.E. Coregulation of Fibronectin Signaling and Matrix Contraction by Tenascin-C and Syndecan-4. Mol. Biol. Cell 2004, 15, 5670–5677. [Google Scholar] [CrossRef]
- Chen, Y.; Abraham, D.J.; Shi-Wen, X.; Pearson, J.D.; Black, C.M.; Lyons, K.M.; Leask, A. CCN2 (Connective Tissue Growth Factor) Promotes Fibroblast Adhesion to Fibronectin. Mol. Biol. Cell 2004, 15, 5635–5646. [Google Scholar] [CrossRef]
- Cui, J.; Jin, S.; Jin, C.; Jin, Z. Syndecan-1 Regulates Extracellular Matrix Expression in Keloid Fibroblasts via TGF-β1/Smad and MAPK Signaling Pathways. Life Sci. 2020, 254, 117326. [Google Scholar] [CrossRef] [PubMed]
- Stepp, M.A.; Pal-Ghosh, S.; Tadvalkar, G.; Rajjoub, L.; Jurjus, R.A.; Gerdes, M.; Ryscavage, A.; Cataisson, C.; Shukla, A.; Yuspa, S.H. Loss of Syndecan-1 Is Associated with Malignant Conversion in Skin Carcinogenesis. Mol. Carcinog. 2010, 49, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Tomas, D.; Vucić, M.; Situm, M.; Kruslin, B. The Expression of Syndecan-1 in Psoriatic Epidermis. Arch. Dermatol. Res. 2008, 300, 393–395. [Google Scholar] [CrossRef]
- Kainulainen, V.; Wang, H.; Schick, C.; Bernfield, M. Syndecans, Heparan Sulfate Proteoglycans, Maintain the Proteolytic Balance of Acute Wound Fluids. J. Biol. Chem. 1998, 273, 11563–11569. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Wong, M.Y.; Chan, S.Y.; Do, D.V.; Khoo, A.; Ong, C.T.; Cheong, H.H.; Lim, I.J.; Phan, T.T. Syndecan-2 and Decorin: Proteoglycans with a Difference—Implications in Keloid Pathogenesis. J. Trauma 2010, 68, 999–1008. [Google Scholar] [CrossRef]
- De Rossi, G.; Vähätupa, M.; Cristante, E.; Arokiasamy, S.; Liyanage, S.E.; May, U.; Pellinen, L.; Uusitalo-Järvinen, H.; Bainbridge, J.W.; Järvinen, T.A.H.; et al. Pathological Angiogenesis Requires Syndecan-4 for Efficient VEGFA-Induced VE-Cadherin Internalization. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1374–1389. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Zhi, L.; Yu, L.; Hu, X.; Shen, Y.; Du, W. SDC4 Protein Action and Related Key Genes in Nonhealing Diabetic Foot Ulcers Based on Bioinformatics Analysis and Machine Learning. Int. J. Biol. Macromol. 2024, 283, 137789. [Google Scholar] [CrossRef]
- Bass, M.D.; Williamson, R.C.; Nunan, R.D.; Humphries, J.D.; Byron, A.; Morgan, M.R.; Martin, P.; Humphries, M.J. A Syndecan-4 Hair Trigger Initiates Wound Healing through Caveolin- and RhoG-Regulated Integrin Endocytosis. Dev. Cell 2011, 21, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.R.; Hamidi, H.; Bass, M.D.; Warwood, S.; Ballestrem, C.; Humphries, M.J. Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling. Dev. Cell 2013, 24, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Corti, F.; Wang, Y.; Rhodes, J.M.; Atri, D.; Archer-Hartmann, S.; Zhang, J.; Zhuang, Z.W.; Chen, D.; Wang, T.; Wang, Z.; et al. N-Terminal Syndecan-2 Domain Selectively Enhances 6-O Heparan Sulfate Chain Sulfation and Promotes VEGFA165-Dependent Neovascularization. Nat. Commun. 2019, 10, 1562. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.; Kim, H.-g.; Un, Y.; Oh, E.-S. Spatial and Functional Roles of Syndecans in Skin Wound Healing. Int. J. Mol. Sci. 2025, 26, 10571. https://doi.org/10.3390/ijms262110571
Park E, Kim H-g, Un Y, Oh E-S. Spatial and Functional Roles of Syndecans in Skin Wound Healing. International Journal of Molecular Sciences. 2025; 26(21):10571. https://doi.org/10.3390/ijms262110571
Chicago/Turabian StylePark, Eunhye, Han-gyeol Kim, Yowon Un, and Eok-Soo Oh. 2025. "Spatial and Functional Roles of Syndecans in Skin Wound Healing" International Journal of Molecular Sciences 26, no. 21: 10571. https://doi.org/10.3390/ijms262110571
APA StylePark, E., Kim, H.-g., Un, Y., & Oh, E.-S. (2025). Spatial and Functional Roles of Syndecans in Skin Wound Healing. International Journal of Molecular Sciences, 26(21), 10571. https://doi.org/10.3390/ijms262110571

