Biomarkers of Intrathecal Synthesis May Be Associated with Cognitive Impairment at MS Diagnosis
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Neuropsycological Evaluation
4.3. Serum and CSF Analysis
4.4. Statistical Analysis
4.5. Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedict, R.H.B.; Amato, M.P.; DeLuca, J.; Geurts, J.J.G. Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020, 19, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, M.; Portaccio, E.; Mancini, A.; Calabresi, P. Multiple sclerosis and cognition: Synaptic failure and network dysfunction. Nat. Rev. Neurosci. 2018, 19, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Crespi, I.; Vecchio, D.; Serino, R.; Saliva, E.; Virgilio, E.; Sulas, M.G.; Bellomo, G.; Dianzani, U.; Cantello, R.; Comi, C. K Index is a Reliable Marker of Intrathecal Synthesis, and an Alternative to IgG Index in Multiple Sclerosis Diagnostic Work-Up. J. Clin. Med. 2019, 8, 446. [Google Scholar] [CrossRef]
- Freedman, M.S.; Thompson, E.J.; Deisenhammer, F.; Giovannoni, G.; Grimsley, G.; Keir, G.; Ohman, S.; Racke, M.K.; Sharief, M.; Sindic, C.J.; et al. Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: A consensus statement. Arch. Neurol. 2005, 62, 865–870. [Google Scholar] [CrossRef]
- Dobson, R.; Ramagopalan, S.; Davis, A.; Giovannoni, G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: A meta-analysis of prevalence, prognosis and effect of latitude. J. Neurol. Neurosurg. Psychiatry 2013, 84, 909–914. [Google Scholar] [CrossRef]
- McLean, B.N.; Luxton, R.W.; Thompson, E.J. A study of immunoglobulin G in the cerebrospinal fluid of 1007 patients with suspected neurological disease using isoelectric focusing and the Log IgG-Index. A comparison and diagnostic applications. Brain 1990, 113 Pt 5, 1269–1289. [Google Scholar] [CrossRef]
- Farina, G.; Magliozzi, R.; Pitteri, M.; Reynolds, R.; Rossi, S.; Gajofatto, A.; Benedetti, M.D.; Facchiano, F.; Monaco, S.; Calabrese, M. Increased cortical lesion load and intrathecal inflammation is associated with oligoclonal bands in multiple sclerosis patients: A combined CSF and MRI study. J. Neuroinflamm. 2017, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Hegen, H.; Arrambide, G.; Gnanapavan, S.; Kaplan, B.; Khalil, M.; Saadeh, R.; Teunissen, C.; Tumani, H.; Villar, L.M.; Willrich, M.A.V.; et al. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: A consensus statement. Mult. Scler. J. 2023, 29, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Hegen, H.; Walde, J.; Berek, K.; Arrambide, G.; Gnanapavan, S.; Kaplan, B.; Khalil, M.; Saadeh, R.; Teunissen, C.; Tumani, H.; et al. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. J. 2023, 29, 169–181. [Google Scholar] [CrossRef]
- Ferraro, D.; Trovati, A.; Bedin, R.; Natali, P.; Franciotta, D.; Santangelo, M.; Camera, V.; Vitetta, F.; Varani, M.; Trenti, T.; et al. Cerebrospinal fluid kappa and lambda free light chains in oligoclonal band-negative patients with suspected multiple sclerosis. Eur. J. Neurol. 2020, 27, 461–467. [Google Scholar] [CrossRef]
- Vecchio, D.; Bellomo, G.; Serino, R.; Virgilio, E.; Lamonaca, M.; Dianzani, U.; Cantello, R.; Comi, C.; Crespi, I. Intrathecal kappa free light chains as markers for multiple sclerosis. Sci. Rep. 2020, 10, 20329. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, D.; Crespi, I.; Virgilio, E.; Naldi, P.; Campisi, M.P.; Serino, R.; Dianzani, U.; Bellomo, G.; Cantello, R.; Comi, C. Kappa free light chains could predict early disease course in multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 30, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Cutellè, C.; Balducci, C.; Cereda, D.; Fusco, M.L.; Iacobucci, D.; Perugini, J.; Pirro, F.; Brivio, R.; Bernasconi, D.P.; Ferrarese, C.; et al. K index utility as diagnostic and prognostic biomarker in the assessment of patients with suspected Multiple Sclerosis. J. Neuroimmunol. 2022, 373, 577992. [Google Scholar] [CrossRef]
- Berek, K.; Bsteh, G.; Auer, M.; Di Pauli, F.; Grams, A.; Milosavljevic, D.; Poskaite, P.; Schnabl, C.; Wurth, S.; Zinganell, A.; et al. Kappa-Free Light Chains in CSF Predict Early Multiple Sclerosis Disease Activity. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1005. [Google Scholar] [CrossRef]
- Hegen, H.; Berek, K.; Bsteh, G.; Auer, M.; Altmann, P.; Di Pauli, F.; Grams, A.; Milosavljevic, D.; Ponleitner, M.; Poskaite, P.; et al. Kappa free light chain and neurofilament light independently predict early multiple sclerosis disease activity—A cohort study. EBioMedicine 2023, 91, 104573. [Google Scholar] [CrossRef] [PubMed]
- Tortosa-Carreres, J.; Cubas-Núñez, L.; Quiroga-Varela, A.; Castillo-Villalba, J.; Ramió-Torrenta, L.; Piqueras, M.; Gasqué-Rubio, R.; Quintanilla-Bordas, C.; Sanz, M.T.; Lucas, C.; et al. Predictive potential of serum and cerebrospinal fluid biomarkers for disease activity in treated multiple sclerosis patients. Mult. Scler. Relat. Disord. 2024, 88, 105734. [Google Scholar] [CrossRef]
- Salavisa, M.; Paixão, P.; Ladeira, A.F.; Mendes, A.; Correia, A.S.; Viana, J.F.; Viana-Baptista, M. Prognostic value of kappa free light chains determination in first-ever multiple sclerosis relapse. J. Neuroimmunol. 2020, 347, 577355. [Google Scholar] [CrossRef] [PubMed]
- Voortman, M.M.; Stojakovic, T.; Pirpamer, L.; Jehna, M.; Langkammer, C.; Scharnagl, H.; Reindl, M.; Ropele, S.; Seifert-Held, T.; Archelos, J.J.; et al. Prognostic value of free light chains lambda and kappa in early multiple sclerosis. Mult. Scler. J. 2017, 23, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, I.; Axelsson, M.; Novakova, L.; Rasch, S.; Blennow, K.; Zetterberg, H.; Lycke, J. High levels of kappa free light chain synthesis predict cognitive decline in relapsing-remitting multiple sclerosis. Front. Immunol. 2023, 14, 1106028. [Google Scholar] [CrossRef]
- Gaetani, L.; Salvadori, N.; Brachelente, G.; Sperandei, S.; Di Sabatino, E.; Fiacca, A.; Mancini, A.; Villa, A.; De Stefano, N.; Parnetti, L.; et al. Intrathecal B cell activation and memory impairment in multiple sclerosis. Mult. Scler. Relat. Disord. 2024, 85, 105548. [Google Scholar] [CrossRef]
- Avasarala, J.R.; Cross, A.H.; Trotter, J.L. Oligoclonal band number as a marker for prognosis in multiple sclerosis. Arch. Neurol. 2001, 58, 2044–2045. [Google Scholar] [CrossRef]
- Bergamaschi, R. Prognostic factors in multiple sclerosis. Int. Rev. Neurobiol. 2007, 79, 423–447. [Google Scholar] [CrossRef]
- Mandrioli, J.; Sola, P.; Bedin, R.; Gambini, M.; Merelli, E. A multifactorial prognostic index in multiple sclerosis. Cerebrospinal fluid IgM oligoclonal bands and clinical features to predict the evolution of the disease. J. Neurol. 2008, 255, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, I.; Axelsson, M.; Novakova, L.; Malmeström, C.; Blennow, K.; Zetterberg, H.; Lycke, J. Intrathecal kappa free light chain synthesis is associated with worse prognosis in relapsing-remitting multiple sclerosis. J. Neurol. 2023, 270, 4800–4811. [Google Scholar] [CrossRef]
- Di Filippo, M.; Gaetani, L.; Centonze, D.; Hegen, H.; Kuhle, J.; Teunissen, C.E.; Tintoré, M.; Villar, L.M.; Willemse, E.A.J.; Zetterberg, H.; et al. Fluid biomarkers in multiple sclerosis: From current to future applications. Lancet Reg. Health Eur. 2024, 44, 101009. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.L. B cells contribute to MS pathogenesis through antibody-dependent and antibody-independent mechanisms. Biol. Targets Ther. 2012, 6, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wanleenuwat, P.; Iwanowski, P. Role of B cells and antibodies in multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 36, 101416. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, T.D.; Meuth, S.G.; Wiendl, H.; Johnen, A.; Landmeyer, N.C. Molecular biomarkers and cognitive impairment in multiple sclerosis: State of the field, limitations, and future direction—A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2023, 146, 105035. [Google Scholar] [CrossRef] [PubMed]
- Virgilio, E.; Vecchio, D.; Crespi, I.; Puricelli, C.; Barbero, P.; Galli, G.; Cantello, R.; Dianzani, U.; Comi, C. Cerebrospinal fluid biomarkers and cognitive functions at multiple sclerosis diagnosis. J. Neurol. 2022, 269, 3249–3257. [Google Scholar] [CrossRef] [PubMed]
- Virgilio, E.; Vecchio, D.; Crespi, I.; Barbero, P.; Caloni, B.; Naldi, P.; Cantello, R.; Dianzani, U.; Comi, C. Serum Vitamin D as a Marker of Impaired Information Processing Speed and Early Disability in Multiple Sclerosis Patients. Brain Sci. 2021, 11, 1521. [Google Scholar] [CrossRef] [PubMed]
- Anagnostouli, M.; Christidi, F.; Zalonis, I.; Nikolaou, C.; Lyrakos, D.; Triantafyllou, N.; Evdokimidis, I.; Kilidireas, C. Clinical and cognitive implications of cerebrospinal fluid oligoclonal bands in multiple sclerosis patients. Neurol. Sci. 2015, 36, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Feki, S.; Damak, M.; Sakka, S.; Ben Ali, Y.; Mejdoub, S.; Bouattour, N.; Hachicha, H.; Mhiri, C.; Masmoudi, H. Intrathecal B cell-related markers for an optimized biological investigation of multiple sclerosis patients. Sci. Rep. 2022, 12, 16425. [Google Scholar] [CrossRef]
- Senel, M.; Mojib-Yezdani, F.; Braisch, U.; Bachhuber, F.; Lewerenz, J.; Ludolph, A.C.; Otto, M.; Tumani, H. CSF Free Light Chains as a Marker of Intrathecal Immunoglobulin Synthesis in Multiple Sclerosis: A Blood-CSF Barrier Related Evaluation in a Large Cohort. Front. Immunol. 2019, 10, 641. [Google Scholar] [CrossRef] [PubMed]
- Libri, I.; Silvestri, C.; Caratozzolo, S.; Alberici, A.; Pilotto, A.; Archetti, S.; Trainini, L.; Borroni, B.; Padovani, A.; Benussi, A. Association of APOE genotype with blood-brain barrier permeability in neurodegenerative disorders. Neurobiol. Aging 2024, 140, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Rocca, M.A.; Bastianello, S.; Comi, G.; Gallo, P.; Gallucci, M.; Ghezzi, A.; Marrosu, M.G.; Minonzio, G.; Pantano, P.; et al. Guidelines from The Italian Neurological and Neuroradiological Societies for the use of magnetic resonance imaging in daily life clinical practice of multiple sclerosis patients. Neurol. Sci. 2013, 34, 2085–2093. [Google Scholar] [CrossRef] [PubMed]
- Cree, B.A.C.; Bowen, J.D.; Hartung, H.P.; Vermersch, P.; Hughes, B.; Damian, D.; Hyvert, Y.; Dangond, F.; Galazka, A.; Grosso, M.; et al. Subgroup analysis of clinical and MRI outcomes in participants with a first clinical demyelinating event at risk of multiple sclerosis in the ORACLE-MS study. Mult. Scler. Relat. Disord. 2021, 49, 102695. [Google Scholar] [CrossRef]
- Goretti, B.; Niccolai, C.; Hakiki, B.; Sturchio, A.; Falautano, M.; Minacapelli, E.; Martinelli, V.; Incerti, C.; Nocentini, U.; Murgia, M.; et al. The Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS): Normative values with gender, age and education corrections in the Italian population. BMC Neurol. 2014, 14, 171. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristics | |
---|---|
Age at onset (yrs); mean ± SD | 35.1 ± 9.9 |
Age at Diagnosis (yrs); mean ± SD | 37.7 ± 10.6 |
Female n, (%) | 52 (66.7%) |
Educational level (yrs) mean ± SD | 13.26 ± 3.53 |
EDSS at diagnosis; median; (range) | 1.5 (0–4) |
MS Type (n; %) | |
Relapsing MS | 71 (91%) |
Progressive MS | 7 (9%) |
MRI characteristics (n; %) | |
WMLL > 9 T2 brain lesions | 49 (63%) |
WMLL ≤ 9 T2 brain lesions | 29 (37%) |
Gd+ lesions | 30 (38.5%) |
Spinal lesions | 51 (64%) |
Biomarker (mean ± SD) | |
CSF OCB Pattern 2, n % | 65 (83.3%) |
CSF KFLC (mg/dL) | 0.61 ± 0.61 |
CSF LFLC (mg/dL) | 0.26 ± 0.64 |
Serum KFLC (mg/dL) | 1.54 ± 0.54 |
Serum LFLC (mg/dL) | 1.46 ± 0.60 |
Kappa-Index (mean ± SD) | 79.60 ± 86.52 |
Lambda-Index (mean ± SD) | 19.72 ± 24.51 |
Link Index | 0.87 ± 0.51 |
Cognitive Domain | Test | Raw Score (Mean ± SD) | T-Score (Mean ± SD) | Score < Cut-Off (n; %) |
---|---|---|---|---|
IPS VM VSM Overall cognition Cognitive Impairment 1/3 tests < cut-off 2/3 tests < cut-off 3/3 tests < cut-off | SDMT CVLT-II BVMT-R Composite T-score | 50.60 ± 13.47 52 ± 11.58 24.60 ± 8.39 NA | 46.33 ± 11.79 45.78 ± 11.65 46.83 ± 10.95 46.31 ± 9.11 | 15/78; 19% 17/78; 22% 9/78; 11% 9/78; 11% 29/78; 37% 11/78 (14%) 3/78 (4%) |
CSF KFLC | Kappa-Index | Link-Index | |||||
Mean | p-Value | Mean | p-Value | Mean | p-Value | ||
IPS | Impaired (N: 15) Not impaired (N: 63) | 0.61 ± 0.57 0.61 ± 0.62 | 0.8 | 84.88 ± 92.06 78.34 ± 85.88 | 0.8 | 0.93 ± 0.58 1.21 ± 2.88 | 0.7 |
VM | Impaired (N17) Not impaired (N61) | 0.98 ± 0.63 0.50 ± 0.57 | 0.0003 | 109.10 ± 82.53 71.39 ± 86.47 | 0.01 | 1.03 ± 0.52 1.2 ± 2.9 | 0.08 |
VSM | Impaired (N: 9) Not impaired (N: 69) | 0.65 ± 0.56 0.60 ± 0.62 | 0.7 | 69.27 ± 69.73 80.95 ± 88.82 | 0.8 | 0.87 ± 0.51 1.20 ± 2.75 | 0.9 |
CI (≥1 test ≠) | Impaired (N: 29) Not impaired (N: 49) | 0.79 ± 0.62 0.50 ± 0.58 | 0.01 | 96.09 ± 89.34 69.84 ± 84.22 | 0.09 | 0.98 ± 0.56 1.27 ± 3.26 | 0.2 |
Overall Composite | Impaired (N: 9) Not Impaired (N: 69) | 1.11 ± 0.68 0.54 ± 0.57 | 0.003 | 121.6 ± 86.53 74.12 ± 85.63 | 0.02 | 1.04 ± 0.48 1.17 ± 2.75 | 0.1 |
GD lesion | Present (N: 30) Absent (N: 48) | 0.73 ± 0.70 0.40 ± 0.37 | 0.03 | 97.95 ± 98.49 50.23 ± 52.03 | 0.01 | 1.6 ± 4.1 0.8 ± 0.5 | 0.8 |
Spinal | Present (N: 51) Absent (N: 27) | 0.64 ± 0.66 0.54 ± 0.50 | 0.6 | 83.51 ± 95.44 72.21 ± 67.59 | 0.9 | 0.89 ± 0.57 1.66 ± 4.31 | 0.4 |
WMLL | High (N: 49) Low (N: 29) | 0.62 ± 0.56 0.58 ± 0.69 | 0.3 | 74.38 ± 66.77 88.41 ± 113.20 | 0.5 | 1.33 ± 3.22 0.85 ± 0.56 | 0.3 |
Serum KFLC | Serum LFLC | CSF LFLC | |||||
Mean | p-Value | Mean | p-Value | Mean | p-Value | ||
IPS | Impaired (N: 15) Not impaired (N: 63) | 1.38 ± 0.43 1.57 ± 0.55 | 0.4 | 1.36 ± 0.55 1.48 ± 0.61 | 0.8 | 25.11 ± 40.12 18.47 ± 19.66 | 0.4 |
VM | Impaired (N17) Not impaired (N61) | 1.53 ± 0.36 1.53 ± 0.57 | 0.6 | 1.58 ± 0.42 1.43 ± 0.64 | 0.1 | 16.33 ± 21.55 20.58 ± 25.33 | 0.9 |
VSM | Impaired (N: 9) Not impaired (N: 69) | 1.47 ± 0.29 1.54 ± 0.56 | 0.8 | 1.42 ± 0.48 1.46 ± 0.61 | 0.6 | 6.49 ± 4.0 21.09 ± 25.34 | 0.5 |
CI (≥1 test ≠) | Impaired (N: 29) Not impaired (N: 49) | 1.41 ± 0.39 1.60 ± 0.59 | 0.3 | 1.40 ± 0.47 1.49 ± 0.66 | 0.8 | 22.72 ± 32.08 18.03 ± 19.28 | 0.9 |
Overall Composite | Impaired (N: 9) Not Impaired (N: 69) | 1.49 ± 0.40 1.54 ± 0.55 | 0.7 | 1.57 ± 0.44 1.45 ± 0.61 | 0.4 | 2.87 ± 1.23 21.46 ± 25.12 | 0.04 |
GD lesion | Present (N: 30) Absent (N: 48) | 1.55 ± 0.49 1.52 ± 0.56 | 0.9 | 1.53 ± 0.75 1.41 ± 0.48 | 0.8 | 21.63 ± 20.91 18.49 ± 26.75 | 0.3 |
Spinal | Present (N: 51) Absent (N: 27) | 1.48 ± 0.42 1.64 ± 0.70 | 0.4 | 1.41 ± 0.41 1.56 ± 0.87 | 0.7 | 20.02 ± 26.80 19.10 ± 19.56 | 0.2 |
WMLL | High (N: 49) Low (N: 29) | 1.49 ± 0.46 1.61 ± 0.64 | 0.5 | 1.39 ± 0.43 1.55 ± 0.77 | 0.3 | 18.05 ± 19.52 22.01 ± 30.31 | 0.4 |
Lambda-Index | |||||||
Mean | p-Value | ||||||
IPS | Impaired (N: 15) Not impaired (N: 63) | 25.11 ± 40.12 18.47 ± 19.66 | 0.5 | ||||
VM | Impaired (N17) Not impaired (N61) | 16.33 ± 21.55 20.58 ± 25.33 | 0.3 | ||||
VSM | Impaired (N: 9) Not impaired (N: 69) | 6.49 ± 4.0 21.09 ± 25.34 | 0.2 | ||||
CI (≥1 test ≠) | Impaired (N: 29) Not impaired (N: 49) | 22.72 ± 32.08 18.03 ± 19.28 | 0.9 | ||||
Overall Composite | Impaired (N: 9) Not Impaired (N: 69) | 2.87 ± 1.23 21.46 ± 25.12 | 0.001 | ||||
GD lesion | Present (N: 30) Absent (N: 48) | 21.63 ± 20.91 18.49 ± 26.75 | 0.2 | ||||
Spinal | Present (N: 51) Absent (N: 27) | 20.02 ± 26.80 19.10 ± 19.56 | 0.4 | ||||
WMLL | High (N: 49) Low (N: 29) | 18.05 ± 19.52 22.01 ± 30.31 | 0.6 |
Biomarker | Test | R | p Value |
---|---|---|---|
CSF KFLC mg/dL | SDMT Raw Scores | −0.19 | 0.09 |
SDMT T-Scores | −0.16 | 0.1 | |
CVLT2 Raw Scores | −0.28 | 0.01 | |
CVLT2 T-Scores | −0.37 | 0.001 | |
BVMTR Raw Scores | −0.30 | 0.007 | |
BVMTR T-Scores | −0.23 | 0.044 | |
Composite T-Score | −0.30 | 0.007 | |
Kappa-Index | SDMT Raw Scores | −0.14 | 0.2 |
SDMT T-Scores | −0.20 | 0.08 | |
CVLT2 Raw Scores | −0.12 | 0.2 | |
CVLT2 T-Scores | −0.25 | 0.02 | |
BVMTR Raw Scores | −0.19 | 0.09 | |
BVMTR T-Scores | −0.15 | 0.1 | |
Composite T-Score | −0.23 | 0.044 | |
Link Index | SDMT Raw Scores | −0.1 | 0.3 |
SDMT T-Scores | −0.16 | 0.1 | |
CVLT2 Raw Scores | −0.15 | 0.1 | |
CVLT2 T-Scores | −0.30 | 0.007 | |
BVMTR Raw Scores | −0.21 | 0.07 | |
BVMTR T-Scores | −0.21 | 0.06 | |
Composite T-Score | −0.21 | 0.048 | |
serum KFLC mg/dL | SDMT Raw Scores | No correlation | ns |
SDMT T-Scores | |||
CVLT2 Raw Scores | |||
CVLT2 T-Scores | |||
BVMTR Raw Scores | |||
BVMTR T-Scores | |||
Composite T-Score | |||
CSF LFLC mg/dL | SDMT Raw Scores | No correlation | ns |
SDMT T-Scores | |||
CVLT2 Raw Scores | |||
CVLT2 T-Scores | |||
BVMTR Raw Scores | |||
BVMTR T-Scores | |||
Composite T-Score | |||
serum LFLC mg/dL | SDMT Raw Scores | No correlation | ns |
SDMT T-Scores | |||
CVLT2 Raw Scores | |||
CVLT2 T-Scores | |||
BVMTR Raw Scores | |||
BVMTR T-Scores | |||
Composite T-Score | |||
Lambda-Index | SDMT Raw Scores | No correlation | ns |
SDMT T-Scores | |||
CVLT2 Raw Scores | |||
CVLT2 T-Scores | |||
BVMTR Raw Scores | |||
BVMTR T-Scores | |||
Composite T-Score |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Virgilio, E.; Ciampana, V.; Puricelli, C.; Naldi, P.; Bianchi, A.; Dianzani, U.; Vecchio, D.; Comi, C. Biomarkers of Intrathecal Synthesis May Be Associated with Cognitive Impairment at MS Diagnosis. Int. J. Mol. Sci. 2025, 26, 826. https://doi.org/10.3390/ijms26020826
Virgilio E, Ciampana V, Puricelli C, Naldi P, Bianchi A, Dianzani U, Vecchio D, Comi C. Biomarkers of Intrathecal Synthesis May Be Associated with Cognitive Impairment at MS Diagnosis. International Journal of Molecular Sciences. 2025; 26(2):826. https://doi.org/10.3390/ijms26020826
Chicago/Turabian StyleVirgilio, Eleonora, Valentina Ciampana, Chiara Puricelli, Paola Naldi, Angelo Bianchi, Umberto Dianzani, Domizia Vecchio, and Cristoforo Comi. 2025. "Biomarkers of Intrathecal Synthesis May Be Associated with Cognitive Impairment at MS Diagnosis" International Journal of Molecular Sciences 26, no. 2: 826. https://doi.org/10.3390/ijms26020826
APA StyleVirgilio, E., Ciampana, V., Puricelli, C., Naldi, P., Bianchi, A., Dianzani, U., Vecchio, D., & Comi, C. (2025). Biomarkers of Intrathecal Synthesis May Be Associated with Cognitive Impairment at MS Diagnosis. International Journal of Molecular Sciences, 26(2), 826. https://doi.org/10.3390/ijms26020826