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Abstract: Collagen I is the most abundant type of intramuscular collagen. Lysyl oxidase
promotes collagen cross-link formation, which helps stabilize the extracellular matrix.
Furthermore, matrix metalloproteinases, responsible for collagen degradation, maintain
typical muscle structure and function through remodeling. Although it is well known that
aging leads to delayed recovery of muscle fibers, the impact of aging on the remodeling of
intramuscular collagen is not well understood. In this study, we investigated the impact
of aging on collagen remodeling during muscle injury recovery using young and old
mouse models. Muscle injury was induced in the right tibialis anterior (TA) muscle of
male C57BL/6J mice [aged 21 weeks (young) and 92 weeks (old)] using intramuscular
cardiotoxin injection, with the left TA serving as a sham with saline injection. Following a
one-week recovery period, aging was found to delay the recovery of the fiber cross-sectional
area. The intensity and area of immunoreactivity for collagen I were significantly increased
in old mice compared to young mice post-injury. Additionally, Lox expression and the
number of LOX (+) cells in the extracellular matrix significantly increased in old mice
compared to young mice post-injury. Furthermore, Mmp9 and MMP9 expression levels
after muscle injury were higher in old mice than in young mice. These results suggest that
muscle injury in old mice can lead to increased collagen I accumulation, enhanced collagen
cross-link formation, and elevated MMP9 expression compared to young mice.

Keywords: aging; muscle injury; extracellular matrix; lysyl oxidase; matrix metalloproteinase

1. Introduction
Skeletal muscle fibers are enveloped by an extracellular matrix (ECM), a complex

meshwork composed of collagen, glycoproteins, proteoglycans, and elastin [1–3]. The
ECM in skeletal muscle consists of several layers: the outermost epimysium, followed by
the perimysium, endomysium, and basement membrane [3,4]. This matrix plays crucial
roles in muscle protection, regeneration, and transmission of contractile forces of muscle
fibers [5–11]. Collagen is a predominant component of the ECM, with type I being most
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abundant in the epimysium, perimysium, and endomysium [11,12]. Collagen I provides
tensile strength and stiffness to muscle fibers [13]. In intramuscular collagen, collagen I is a
major component and plays an important role in normal muscle structure and function.

Previous studies on ECM remodeling during muscle injury recovery have highlighted
collagen expression as a crucial step [8,14,15]. Matrix metalloproteinases (MMPs), enzymes
that degrade collagen, also play significant roles in skeletal muscle ECM remodeling [16].
The expression of Mmp 2, 9, and 14 is induced during muscle recovery processes [15,16],
and an ongoing imbalance between collagen production and degradation is implicated in
pathological conditions involving excessive collagen accumulation during wound heal-
ing [16]. Therefore, collagen and MMP induction and expression in the ECM are critical for
muscle recovery post-injury.

The lysyl oxidase (LOX) family comprises five members, including LOX, lysyl oxidase-
like 1 (LOXL1), LOXL2, LOXL3, and LOXL4, among which LOX contributes to ECM
functionalization by promoting the formation of cross-links between ECM components [17].
LOX, which is involved in collagen cross-link formation, is also known to be strongly
associated with fibrosis and post-injury repair in various organs [18]. Furthermore, LOX
is reportedly involved in both the ECM and muscle differentiation [19]. Thus, it is a key
factor in intramuscular collagen remodeling and muscle recovery post-injury. In fact, LOX
expression is known to be highly expressed in the skeletal muscles of mdx mice, which
exhibit fragile muscle structures [20]. However, the effects of aging on LOX expression and
localization during the collagen remodeling process remain unresolved. To this end, in this
study, we examined the effects of aging on collagen remodeling and the expression and
localization of LOX during recovery from muscle injury using old and young mouse models.

2. Results
2.1. Muscle Function

Prior to the experiment, a grip strength test was performed to determine the differences
in muscle function between young and old mice (Figure 1). No difference in body weight
was noted between young and old mice (Figure 1a). Aging decreased the grip strength and
grip strength normalized by body weight (Figure 1b,c). The grip strength of mice has been
reported to decrease with age [21]. These results confirmed that muscle function in the old
mice used in this study declined with age.
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Figure 1. Differences in body weight (a), grip strength (b), and grip strength normalized by body 
weight (c) between young and old mice before the experiment. Data are expressed as mean ± stand-
ard deviation. Statistical significance was determined using Student’s t-test (a–c). Individual data 
points are shown as circles on the graph for each group (n = 5 per group). Differences between 
groups were considered significant when p < 0.05. ** p < 0.001, n.s. indicates no statistically 

Figure 1. Differences in body weight (a), grip strength (b), and grip strength normalized by
body weight (c) between young and old mice before the experiment. Data are expressed as
mean ± standard deviation. Statistical significance was determined using Student’s t-test (a–c).
Individual data points are shown as circles on the graph for each group (n = 5 per group). Differences
between groups were considered significant when p < 0.05. ** p < 0.001, n.s. indicates no statistically
significant difference. One week before the induction of muscle injury, grip strength and body weight
were measured using five 20-week-old young mice and five 90-week-old old mice.
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2.2. Body and Muscle Weight

To investigate the impact of aging and muscle injury on the tibialis anterior (TA),
we measured body and muscle weight (Figure 2). There was no significant difference in
body weight between young and old mice (Figure 2a). Muscle weight decreased following
muscle injury in both young and old age groups (Figure 2b). Muscle weight loss associated
with muscle injury has been reported by a previous study [22]. Changes in muscle weight
in the muscle injury model were confirmed in this study, allowing for subsequent analysis.
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Figure 2. Differences in body weight (a) and tibialis anterior muscle weight (b) between young
and old mice. Data are expressed as mean ± standard deviation, with n = 6 animals per group. To
compare the effects of aging between young and old mice, statistical significance was determined
using the Student’s t-test (a). The statistical interaction between age and muscle injury was evaluated
using a two-way analysis of variance, which allows for the assessment of both main effects (age
and injury) and their statistical interaction (b). Individual data points are shown as circles on the
graph for each group. Differences between groups were considered significant when p < 0.05 unless
otherwise indicated. n.s.: Denotes no statistically significant difference. CTX: cardiotoxin. The right
tibialis anterior muscle of young mice is designated as Young + CTX, and the left tibialis anterior
muscle is designated as Young + Saline. The right tibialis anterior muscle of old mice is designated as
Old + CTX, and the left tibialis anterior muscle is designated as Old + Saline.

2.3. Muscle Injury

To confirm the muscle injury caused by cardiotoxin (CTX) injection, the injured areas
having fibers with central nuclei or necrotic fibers were observed 1 week after muscle
injection in hematoxylin and eosin (HE)-stained transverse sections at the muscle belly
level of the tibialis anterior muscle (within the black lines in Figure 3a,b). In both young
and old mice, the average percentage of the injured area in the entire transverse section was
more than 95% and did not differ by age (Figure 3e). Thus, drug-induced muscle injury
was extensive in both young and old mice, allowing for further investigation. In addition,
the effect of saline injection was confirmed (Figure 3c,d). Both young and old mice had
an average injured area of less than 1%, with no age-related differences (Figure 3f). It was
confirmed that CTX induces muscle injury in this study.
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Figure 3. Hematoxylin and eosin staining of tibialis anterior muscles and injured areas. Representative
cross-sections of the tibialis anterior muscle are shown (a–d). The scale bar represents 500 µm. Injured
areas where fibers with central nuclei or necrotic fibers were measured in the images (within the black
lines in (a,b)). Data are presented as the mean ± standard deviation (n = 6 per group). Significant
differences between young and old mice were determined using Mann–Whitney U test (e) and
Student’s t-test (f). n.s.: not significant. All data are represented as circles in the graph. CTX:
cardiotoxin. The right tibialis anterior muscle of young mice is designated as Young + CTX, and the
left tibialis anterior muscle is designated as Young + Saline. The right tibialis anterior muscle of old
mice is designated as Old + CTX and the left tibialis anterior muscle is designated as Old + Saline.

2.4. Fiber Cross-Sectional Area

To assess the effects of aging and muscle injury on TA muscle fibers, we measured the
fiber cross-sectional area (FCSA; Figure 4a–e). Due to a significant statistical interaction
between age and injury for FCSA (Figure 4e), multiple comparisons were conducted across
all groups. FCSAs in the Young + CTX and Old + CTX groups were significantly lower than
those in the Young + Saline and Old + Saline groups (Figure 4e). Additionally, FCSA in the
Old + CTX group was significantly lower than that in the Young + CTX group (Figure 4e).
These findings suggest that aging may delay the recovery of the FCSA following muscle
injury. In a previous study, the FCSA in regenerating muscle of old mice was also reported
to have delayed recovery compared to young mice [22]. These results of the previous
study and the present study suggest that aging may delay the recovery of the FCSA after
muscle injury.
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quantified from the images. The data are expressed as mean ± standard deviation, with n = 6 per
group. A two-way analysis of variance was performed to examine the statistical interaction between
aging and muscle injury (e). Post hoc comparisons between all groups were conducted using Tukey’s
honestly significant difference test (e). Statistical significance is indicated by *** p < 0.0001. Individual
data points are represented as circles in the graph. CTX: cardiotoxin. The right tibialis anterior muscle
of young mice is designated as Young + CTX, and the left tibialis anterior muscle is designated as
Young + Saline. The right tibialis anterior muscle of old mice is designated as Old + CTX, and the left
tibialis anterior muscle is designated as Old + Saline.

2.5. Collagen-Related Factors

To examine the influence of aging and muscle injury on collagen-related factors, we
measured the expression of Col1a1, Col3a1, Mmp2, Mmp9, Lox, Loxl1, Loxl2, Loxl3, and
Loxl4 using quantitative PCR (Figure 5a–i). Muscle injury increased the expression of these
genes other than Loxl3 and Loxl4, and significant statistical interactions between age and
injury were observed for these genes other than Loxl2, Loxl3, and Loxl4, prompting multiple
comparisons among all groups. Col1a1, Col1a3, Mmp2, Mmp9, Lox, and Loxl1 expression
levels were significantly higher in the Old + CTX group compared to those in the Old +
Saline group (Figure 5a–f), and the Col1a1, Mmp2, Mmp9, and Lox expression levels in the
Old + CTX group were also higher than those in the Young + CTX group (Figure 5a,c,d,e).
These results suggest two possibilities. The first is that aging may promote the expression
of Col1a1, Col1a3, Mmp2, Mmp9, and Lox mRNAs after muscle injury. The second is that aging
tends to reduce steady-state levels of Col1a1, Col1a3, Mmp2, Mmp9, and Lox mRNAs, indicating
that the ability to induce genes associated with muscle injury may have been maintained.
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muscles. Expression levels were normalized to 18S ribosomal RNA (Rn18s). Data are expressed as
mean ± standard deviation, with n = 6 per group. A two-way analysis of variance was performed to
assess the statistical interaction between aging and muscle injury across panels (a–i). When significant
statistical interaction were detected, Tukey’s honestly significant difference test was used for post
hoc comparisons between all groups (a–f). Statistical significance is indicated as *** p < 0.0001,
** p < 0.001, * p < 0.05, and n.s. indicates no significant difference. Individual data points are shown as
circles in the graph. CTX: cardiotoxin. The right tibialis anterior muscle of young mice is designated
as Young + CTX, and the left tibialis anterior muscle is designated as Young + Saline. The right
tibialis anterior muscle of old mice is designated as Old + CTX, and the left tibialis anterior muscle is
designated as Old + Saline.

2.6. Collagen I Localization

Since collagen I is the most abundant collagen in muscle [11,12], and since Col1α1
expression was markedly elevated in the injured senile muscle in this study, we observed
TA cross-sections using immunohistochemistry (IHC) with an anti-collagen I antibody
(Figure 6a–h). Collagen I-immunoreactivity (IR) was predominantly observed in the en-
domysium and perimysium of the TA in all groups (arrow and arrowhead in Figure 6e–h).
The intensity and area of collagen I-IR were measured using stained images. A significant
statistical interaction between age and injury influenced collagen I-IR intensity and area
(Figure 6i,j), prompting multiple group comparisons. Collagen I-IR intensity and area in
the Old + CTX group was higher than that in the Old + Saline and Young + CTX groups. In
a previous study, it was reported that the positive areas of collagen I in the muscles of old
mice are enlarged after muscle injury compared to those in young mice [22]. The results of
both the previous study and the present study suggest that aging may enhance collagen I
accumulation following muscle injury in the ECM region.
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Figure 6. Collagen I localization. Cross-sections of tibialis anterior muscles were stained with anti-
collagen I (a–h) antibody. Hematoxylin was used for counterstaining (a–h). (e–h) Magnified views
of the rectangular regions outlined in panels (a–d) provide a closer examination of the selected
areas. Arrows and arrowheads indicate representative localization of collagen I (e–h). Collagen
I-immunoreactivity (IR) was predominantly observed in the endomysium (arrow) and perimysium
(arrowhead) in all groups (e–h). Scale bar = 50 µm. The intensity and area of collagen I-IR were
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quantified (i,j). Data are expressed as the mean ± standard deviation, with n = 6 per group. A
two-way analysis of variance was performed to evaluate the statistical interaction between age and
injury (i,j). A significant statistical interaction between age and injury influenced collagen I-IR intensity
and area, prompting multiple group comparisons by Tukey’s honestly significant difference test (i,j).
Statistical significance is indicated by *** p < 0.0001, * p < 0.05. Individual data points are shown as
circles in the graph. CTX: cardiotoxin. The right tibialis anterior muscle of young mice is designated
as Young + CTX, and the left tibialis anterior muscle is designated as Young + Saline. The right
tibialis anterior muscle of old mice is designated as Old + CTX, and the left tibialis anterior muscle is
designated as Old + Saline.

2.7. MMP2 and MMP9 Expression Levels

To confirm the expression of MMP2 and MMP9, enzymes involved in collagen degra-
dation, in the TA after muscle injury, their expression levels were assessed using WB
(Figure 7a). MMP2 expression increased following muscle injury (Figure 7b). Age signifi-
cantly interacted with injury in MMP9 expression levels (Figure 7c), prompting multiple
comparisons across all groups. MMP9 expression in the Young + CTX group was signifi-
cantly higher than that in the Young + Saline group (Figure 7c). Additionally, MMP9 ex-
pression in the Old + CTX group was significantly higher than that in both the Old + Saline
and Young + CTX groups (Figure 7c). These findings indicate that MMP9 expression
post-muscle injury can be exacerbated by aging.
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Figure 7. Matrix metalloproteinase (MMP) 2 and MMP9 expression levels. Representative western
blot (a) and protein expression levels of MMP2 (b) and MMP9 (c) in the tibialis anterior muscle.
Data are expressed as mean ± standard deviation, with n = 6 per group. A two-way analysis of
variance was performed to assess the statistical interaction between aging and muscle injury (b,c).
Tukey’s honestly significant difference test was used for post hoc comparisons between all groups
(c). Statistical significance is indicated by *** p < 0.0001, ** p < 0.001, and n.s. denotes no significant
difference. Individual data points are represented as circles in the graph. CTX: cardiotoxin. The right
tibialis anterior muscle of young mice is designated as Young + CTX, and the left tibialis anterior
muscle is designated as Young + Saline. The right tibialis anterior muscle of old mice is designated as
Old + CTX, and the left tibialis anterior muscle is designated as Old + Saline.
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2.8. LOX Expression

The expression of LOX was measured using western blotting (WB; Figure 8a). It
was not detected in saline-injected muscle in both young and old mice but was detected
in CTX-injected injured muscle in both young and old mice. No age differences were
observed in the detected LOX expression levels (Figure 8b). These findings suggest that
LOX expression can increase after injury in both young and old mice.
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Figure 8. Levels of lysyl oxidase (LOX). The levels were determined using western blotting with
an anti-LOX antibody. Representative western blot (a) and levels of LOX in the tibialis anterior
muscle (b). Data are presented as the mean ± standard deviation, n = 6 per group. It was not detected
in saline-injected muscle. The detected LOX expression data in the post-injury muscle of young and
old mice were compared using the Student’s t-test. (b). n.s.: not significant. Data are represented as
circles in the graph. CTX: cardiotoxin. The right tibialis anterior muscle of young mice is designated
as Young + CTX, and the left tibialis anterior muscle is designated as Young + Saline. The right
tibialis anterior muscle of old mice is designated as Old + CTX, and the left tibialis anterior muscle is
designated as Old + Saline.

2.9. LOX Localization

LOX localization in TA cross-sections was observed using IHC with an anti-LOX
antibody (Figure 9a–h); LOX-IR in muscle fibers was observed in nuclei and cytoplasm and
was also identified as punctures in the ECM region in all groups (arrowheads and arrows
in Figure 9e–h). In previous studies, LOX is produced by fibroblasts, endothelial cells,
and muscle fibers and is known to localize to the ECM and muscle fibers [20], and similar
results were observed in the present study. After muscle injury, LOX (+) muscle fibers and
LOX (+) cells in the ECM were highly expressed in the regenerating muscle of both young
and old mice (arrowheads and arrows in Figure 9f,h). The number of LOX (+) muscle fibers
increased after muscle injury in both young and old mice (Figure 9i). In addition, cells
in which LOX and hematoxylin co-localized in the ECM region were counted as LOX (+)
cells (Figure 9j). The results showed significant interactions between age and injury, and
multi-group comparisons were made. The number of LOX (+) cells in the ECM of the Old
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+ CTX group was higher than that of the Old + Saline and Young + CTX groups. These
results suggest that the number of LOX (+) muscle fibers increases after muscle injury in
both young and old mice, but aging may enhance the increase in the number of LOX (+)
cells in the ECM region.
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Figure 9. Localization of lysyl oxidase (LOX). Cross-sections of the tibialis anterior muscle
were stained with an anti-LOX antibody (a–h). Hematoxylin was used for counterstaining (a–h).
(e–h) Enlarged views of the rectangular region outlined in panels (a–d). Arrows and arrowheads
indicate representative localization of LOX (+) cells in the ECM and LOX (+) muscle fibers (a–h).
Scale bar = 50 µm. The number of LOX (+) muscle fibers and LOX (+) cells in the ECM per area were
counted (i,j). Data are expressed as mean ± standard deviation. Two-way analysis of variance was
performed to assess the statistical interaction between age and injury (i,j). Since a significant statistical
interaction between age and injury affected the number of LOX (+) cells in the ECM, a multiple-group
comparison with Tukey’s honest significant difference test was performed (j). Statistical significance
is indicated by *** p < 0.0001. Individual data points are indicated by circles in the graph; CTX:
cardiotoxin. The right tibialis anterior muscle of young mice was designated as Young + CTX, and
the left tibialis anterior muscle was designated as Young + Saline. The right tibialis anterior muscle
of old mice was designated as Old + CTX, and the left tibialis anterior muscle was designated as
Old + Saline.

3. Discussion
In this study, we investigated the effects of aging on collagen remodeling and expres-

sion and localization of LOX in skeletal muscles during the recovery period after muscle
injury. The salient findings of this study are discussed here. First, Col1a1 expression as
well as collagen I-IR intensity and area were significantly increased during recovery after
muscle injury in old mice compared with those in young mice. Second, the expression of
Mmp9 and MMP9 after muscle injury was higher in old mice than in young mice. Third,
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the expression of Lox was significantly increased during recovery after muscle injury in
old mice compared with that in young mice. Fourth, the expression of LOX was elevated
after muscle injury in both old and young mice. Fifth, the number of LOX (+) muscle fibers
and LOX (+) cells in the ECM increased after injury in both the old and young groups,
and the number of LOX (+) cells in the ECM after injury was higher in old mice than in
young mice. Overall, these results indicate that collagen I may accumulate after muscle
injury in old age, accompanied by increased MMP9 expression. In addition, the increase
in the expression of LOX gene and the number of LOX (+) cells in the ECM region during
muscle recovery in old age compared with that in young age may reflect the formation of
collagen cross-links in aging muscle that poses difficulty in muscle recovery. These findings
on the expression of LOX gene and LOX localization characterize the effects of aging on
intramuscular collagen remodeling and are among the new findings of this study.

During the recovery process after muscle injury in old mice, collagen I accumulates
in the perimysium and endomysium of muscles. Collagen expression during muscle
recovery is considered a normal healing response [23]. However, in severe injuries or
challenging healing conditions, fibrotic collagen accumulates at the injury site, leading
to fibrosis [24,25]. In this study, collagen I-IR intensity and area were expanded in the
endomysium and perimysium during the recovery process in old mice, whereas young
mice showed smoother recovery with less pronounced responses. These findings suggest
that healing of CTX-induced muscle injury may be more challenging in old age, potentially
resulting in fibrosis.

MMP9 expression may be accentuated in aged muscles during recovery after muscle
injury. In this study, gene induction of Mmp2 and Mmp9 and protein expression of MMP9
were significantly increased during muscle recovery in old age. MMP2 and MMP9 are
enzymes that act on various ECM components, including collagens I and IV, which are
crucial for ECM remodeling [15,16,26]. Therefore, the increase in MMPs during muscle
recovery can be interpreted as part of the response to intramuscular ECM repair. In fact,
upregulation of MMP2 and MMP9 expression has been reported in the muscles of young
mice after muscle injury [27]. Furthermore, in the fragile muscle of mdx mice, constant
MMP2 upregulation is thought to reflect necrosis and regeneration associated with muscle
injury [27]. Moreover, studies have indicated MMP overexpression in aging skin, leading
to collagen fibril damage and disorganization, which contributes to skin wrinkling and
reduced elasticity, thereby adversely affecting tissue structure and function [26,28–31].
These findings suggest that high MMP expression during muscle recovery in old age may
indicate refractory ECM remodeling.

In this study, we show for the first time that aging affects gene induction of LOX
during the recovery process after muscle injury. The expression of LOX and LOXL1 genes
in the skin and aorta of rats has been reported to decrease with aging [32–35]. Although the
tissues and model animals used in these previous studies differed from those used in the
present study, a trend toward decreased expression of LOX and LOXL1 genes with aging
was also observed in the present study. Moreover, in the present study, the expression of
the LOX gene was increased in old mice compared with that in young mice during the
process of recovery after muscle injury. This finding indicates that the ability to upregulate
the expression of the LOX gene after tissue injury may be retained in old age and is one
of the novel findings of this study. A previous study has reported that LOX participates
in collagen cross-link formation [36]. Indeed, in culture experiments using periodontal
ligament cells, it was suggested that gene induction of LOX is induced by mechanical
stimulation and contributes to ECM stabilization [37]. Furthermore, gene induction of LOX
is known to be elevated in fibrosis of various organs [18]. These findings suggest that gene
induction may occur not only in ECM stabilization but also in pathological conditions where
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excessive collagen accumulation occurs in association with collagen cross-link formation.
In a skeletal muscle study, Lox expression is upregulated in dystrophic muscle with fibrosis
in mdx mice, suggesting that collagen cross-link formation is promoted within dystrophic
muscle [20]. Furthermore, Lox expression has been reported to correlate with Col1a1 and
Col3a1 expression [38]. In the present study, both Lox and Col1a1 expression were elevated
in aging muscle during the recovery process from injury compared to young mice, which
may reflect collagen cross-link formation in injured old muscle.

In this study, we also show that aging may enhance the increase in the number of
LOX (+) cells in the ECM during the recovery process after muscle injury. We found that
LOX expression was increased after muscle injury in both young and old mice. This may
reflect the importance of LOX expression in the muscle recovery process, as LOX expression
was also found to increase in the fragile muscles of mdx mice, which are always prone to
muscle injury [20]. Furthermore, in the present study, we observed that LOX (+) muscle
fibers are less abundant in mature muscle fibers in the TA but are highly expressed in
regenerating TA muscle. This result shows the same trend as in previous studies [2,39,40]
and reaffirms that the experiments in this study are effective. We found for the first time
that the number of LOX (+) cells in the ECM region increases with age after muscle injury.
Previous studies have reported increased LOX-IR in the skin of patients with systemic
scleroderma, a disease characterized by fibrosis [41]. In the edematous phase of systemic
scleroderma, LOX staining was increased in the intra- and extracellular dermis, indicating
that LOX is highly expressed in skin lesions where fibrosis occurs. Although the tissues
and pathological conditions targeted in the previous studies differed from those in the
present study, these findings suggest that the expression of LOX may be increased intra- and
extracellularly in the skeletal muscle as well as in the skin under pathological conditions
where fibrosis occurs. Furthermore, in this study, the increased number of LOX (+) cells in
the ECM region during muscle recovery in old age compared with that in young age may
be a characteristic effect of aging on muscle recovery. LOX is known to be produced by
fibroblasts, endothelial cells, and muscle fibers [39,42,43]. A previous study has suggested
that LOX produced by muscle fibers contributes to muscle differentiation, while LOX in
the ECM region contributes to fibrosis [40]. In fact, in the present study, we observed an
overaccumulation of collagen I in injured muscle in old mice. These results suggest that an
increase in LOX (+) cells in the ECM region may induce fibrosis in the injured muscle of
old mice.

Although relevant findings were obtained, this study has several limitations. First,
only male mice were used in this study, and sex-related differences in muscle recovery and
collagen synthesis were not investigated. In a previous study, the recovery of muscle fiber
size after drug-induced muscle injury is faster in females than in males [44]. Furthermore,
the amount of collagen in total protein was reported to be higher in males than in females at
the same age throughout the mouse body [45]. Given these previous findings, the influence
of sex on collagen remodeling during recovery from muscle damage in old age needs to be
investigated in the future. Second, the timing of the study was limited to one week after
recovery, and the process of healing of the injured muscle was not tracked over time. In
previous studies, CTX-injured muscles in young mice showed reduction in fibrosis after
a one-month recovery period [46]. It is not known whether injured muscles in old mice
can recover after a prolonged recovery period. However, in the present study, fibrosis
was observed in injured aged muscles at the one-week recovery stage, compared with the
smooth recovery in young mice. Furthermore, inadequate healing is known to develop
into irreversible fibrosis [47]. Some intervention may be necessary to promote the recovery
of aging muscles. For example, some antifibrotic drugs and stretching are known to inhibit
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fibrosis in muscle [48,49]. Further research is needed on drug and exercise therapies to
promote the recovery of injured muscle in old mice.

4. Materials and Methods
4.1. Animals

The experiments were conducted using male C57BL/6J mice (Jackson Laboratory,
Kanagawa, Japan) aged 21 weeks (young; n = 6) and 92 weeks (old; n = 6). All animals
were housed in conventional transparent plastic cages with unrestricted access to food and
water. The environmental temperature was controlled at 22 ± 2 ◦C, with a 12-h light/dark
cycle. Approval for the study protocol was granted by the Animal Care and Use Committee
of Hokuriku University (approval number: 23-14; approval date: 10 April 2023). All
procedures adhered to the Institutional Guidelines for the Use of Laboratory Animals and
the ARRIVE guidelines.

4.2. Grip Strength Test

One week prior to the start of the experiment, a grip strength test was performed
to evaluate muscle function. Grip strength of all four limbs was measured using a grip
strength meter (GPM-101B; Melquest, Toyama, Japan). Each mouse was placed on a
metal grid attached to the grip strength meter, and each mouse’s tail was gently pulled
manually until the limb was released. Peak grip strength (N) was measured three times for
each mouse. Time intervals were set at 1 min. The mean of the three trials was used for
statistical analysis.

4.3. Muscle Injury and Sampling

Muscle injury was induced in the right TA muscle of mice by intramuscular injection
of 10 µM CTX (100 µL) as described previously [24,27]. The left TA was injected with
the same volume of saline as a sham treatment. A recovery period of one week after
intramuscular injection was provided. The right TA of young mice was designated as
Young + CTX, and the left TA was designated as Young + Saline. The right TA of old
mice was designated as Old + CTX, and the left TA was designated as Old + Saline. One
week following the intramuscular injections, the mice were weighed and euthanized using
cervical dislocation. The TA muscles were dissected and weighed. To ensure optimal
preservation for subsequent analyses, a portion of each TA muscle was immediately im-
mersed in RNAlater (Thermo Fisher Scientific, Waltham, MA, USA). The remaining tissue
was rapidly frozen in pre-cooled isopentane and stored at −80 ◦C for further biochemical
and histological investigations.

4.4. Histochemical Analysis

Transverse sections (10 µm thick) of the TA muscle were obtained from the middle
portion using a cryostat (CM1950; Leica, Wetzlar, Germany) at −25 ◦C. The tissue sections
were mounted on glass slides and processed for HE staining. For the staining procedure,
the sections were first incubated with hematoxylin for 10 min to stain the nuclei, followed
by eosin for 1 min. After staining, the sections were dehydrated using a graded ethanol
series, cleared in xylene, and then mounted in Permount Mounting Medium (Falma Inc.,
Tokyo, Japan). The stained sections were examined under a microscope (BZ-X810; Keyence,
Osaka, Japan).

4.5. Quantitative PCR

Total RNA was extracted from the tissue samples using TRIzol reagent (Thermo Fisher
Scientific, Waltham, MA, USA). The quality of the extracted RNA was assessed, and the
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RNA concentration was subsequently normalized to 0.5 µg for further analysis. First-
strand complementary DNA (cDNA) synthesis was performed using random primers in
conjunction with ReverTra Ace (Toyobo, Osaka, Japan). Quantitative PCR was conducted
using TB Green Premix Ex Taq II (Takara Bio, Shiga, Japan) and the StepOnePlus Real-Time
PCR System (Thermo Fisher Scientific, Waltham, MA, USA). The following thermocycling
conditions were applied: an initial cycle at 95 ◦C for 30 s, followed by 40 cycles of 95 ◦C
for 5 s and 60 ◦C for 30 s. A standard calibration curve was generated using the cDNA
template, allowing for the quantification of each target gene. The expression levels of
the target genes were normalized to those of the housekeeping gene, 18S ribosomal RNA
(Rn18s). Upregulation or downregulation of the target genes was determined by comparing
their expression levels relative to the Young + Saline group. A detailed list of the primers
used in the present study is provided in Table 1.

Table 1. Primer sequences utilized in the present study.

Genes Direction Nucleotide Positions and Sequence (5′-3′) Sequence ID

Col1a1 Forward 2916 GATCTCCTGGTGCTGATG 2933 NM_007742.4
Reverse 3028 GAAGCCTCTTTCTCCTCTCTGA 3007 NM_007742.4

Col3a1 Forward 3587 CAGGTCCTAGAGGAAACAGA 3606 BC052398.1
Reverse 3728 TCACCTCCAACTCCAACAATG 3708 BC052398.1

Mmp2 Forward 2120 AAGAAAATGGACCCCGGTTT 2139 NM_008610.3
Reverse 2251 CTTCAGGTAATAAGCACCCTTG 2230 NM_008610.3

Mmp9 Forward 969 CAGCCAACTATGACCAGGAT 988 NM_013599.5
Reverse 1217 CTGCCACCAGGAACAGG 1201 NM_013599.5

Lox Forward 890 GTGCCCGACCCCTACTACAT 909 M65142.1
Reverse 1007 TGACATCCGCCCTATATGCT 988 M65142.1

Loxl1 Forward 2280 GGCCTCAGGGAGTGAACATG 2299 NM_010729.3
Reverse 2339 AAGACAGGGTCTGGCATCCA 2320 NM_010729.3

Loxl2 Forward 3257 CCTCCCTCCCGCTTTCA 3273 NM_033325.2
Reverse 3313 CAAGTGTGCAGTCCTGGGTTT 3293 NM_033325.2

Loxl3 Forward 2603 CCCCAGCAACAGACAGAACA 2622 NM_013586.5
Reverse 2661 GAGCTGCTGCCATCCTGTGT 2642 NM_013586.5

Loxl4 Forward 3501 GCAGCTTCCACTGCACTACACT 3522 NM_001164311.1
Reverse 3561 TGTTCCGAGCGTCATCCA 3544 NM_001164311.1

Rn18s Forward 1617 GCAATTATTCCCCATGAACG 1636 NR_003278.3
Reverse 1739 GGCCTCACTAAACCATCCAA 1720 NR_003278.3

4.6. IHC

Transverse sections of TA muscle, 10 µm in thickness, were obtained from the middle
portion using a cryostat (CM1950; Leica, Wetzlar, Germany) set to −25 ◦C and mounted
onto glass slides. The sections were fixed in 4% paraformaldehyde, followed by rinsing
with phosphate-buffered saline (PBS; pH 7.4). To block endogenous peroxidase activity,
the sections were treated with 3% hydrogen peroxide (H2O2), rinsed again with PBS, and
incubated with PBS containing 1% normal goat serum and 0.3% Triton X-100 at 4 ◦C for 1 h.
The sections were incubated overnight at 4 ◦C with a rabbit polyclonal anti-collagen I or
LOX antibody (ab21286 and ab174316; Abcam, Cambridge, MA, USA) diluted 1:500 in PBS
with 0.3% Triton X-100. Following primary antibody incubation, the sections were treated
with biotinylated anti-rabbit immunoglobulin G (Vectastain ABC kit; Vector Laboratories,
Burlingame, CA, USA) at a dilution of 1:1000 in PBS for 1 h at room temperature (25 ◦C),
followed by incubation with avidin-biotin complex (Vectastain ABC kit) for 1 h at 4 ◦C. After
washing with PBS, the sections were rinsed with Tris-HCl buffer (pH 7.4) and incubated
in a diaminobenzidine solution (0.035%) in Tris-HCl buffer containing 0.001% H2O2 for
15 min at 25 ◦C. Upon completion of the diaminobenzidine reaction, the sections were
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counterstained with hematoxylin, dehydrated using a graded ethanol series, cleared in
xylene, and mounted using Permount™ Mounting Medium (Falma Inc., Tokyo, Japan).

4.7. Morphological Analysis

Areas injured by CTX or saline injection were measured with ImageJ Fiji using HE-
stained images [50]. The region with either central nucleus fibers or necrotic fibers was
defined as the area where the muscle injury occurred because one week after the muscle
injury is the phase of regeneration [51]. The percentage of the injured area in the entire
transverse section was calculated. In addition, HE-stained images were analyzed using
the Analysis Application Hybrid cell count and Macrocell count according to the BZ-X810
microscope instruction manual (Keyence, Osaka, Japan) to determine the FCSA of intact
muscle fibers in Young + Saline and Old + Saline groups and the FCSA of fibers with
central nuclei in Young + CTX and Old + CTX groups. FCSA analysis followed methods
from previous studies [52,53], measuring over 150 muscle fibers per sample. Regarding
image analysis in IHC, a semi-quantitative analysis was conducted to assess the intensity of
collagen I-IR [54]. Each image had an area of 393,880 µm2, and two images per TA muscle
were analyzed using ImageJ Fiji (version: 2.14.0/1.54f) [50]. The photographs included
the endomysium and perimysium. The collagen I-IR area was also measured with same
photographs using the Analysis Application Hybrid cell count according to the BZ-X810
microscope instruction manual (Keyence, Osaka, Japan). The measured collagen I-IR area
was calculated as a percentage per area. Furthermore, the number of LOX (+) cells in ECM
and LOX (+) muscle fibers was counted using two photographs with an area of 393,880 µm2

each. Cells co-expressing LOX and hematoxylin in ECM were designated as LOX (+) cells
in ECM. Muscle fibers in which LOX-IR was observed in the cytoplasm or nucleus, or
both, were designated as LOX (+) muscle fibers. In addition, images were analyzed in a
single-blinded manner.

4.8. WB

The expression levels of LOX, MMP2, and MMP9 were assessed using WB. Frozen
muscle tissues were homogenized in an ice-cold homogenization buffer containing 50 mM
Tris-HCl, 150 mM NaCl, 0.1% SDS, 1% NP-40, and 0.5% sodium deoxycholate (pH 8.0), sup-
plemented with a protease inhibitor cocktail (FUJIFILM Wako Pure Chemical Corporation,
Osaka, Japan). The homogenates were centrifuged at 15,000 rpm for 5 min at 4 ◦C, and the
resulting supernatant was carefully collected for further analysis. Protein concentrations
were determined using the DC protein assay kit (Bio-Rad Laboratories, Hercules, CA,
USA). The supernatant was then solubilized in SDS sample buffer (10% glycerol, 2% SDS,
0.005% bromophenol blue, 100 mM dithiothreitol, and 50 mM Tris-HCl, pH 6.8), followed
by heating at 98 ◦C for 3 min to ensure denaturation of the proteins. Subsequently, equal
amounts of protein were resolved by electrophoresis on 8% (for MMP2 and 9), 10% (for
GAPDH), or 12% (for LOX) sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE) and
transferred to polyvinylidene difluoride membranes. To block nonspecific binding, the
membranes were incubated in 5% skim milk dissolved in Tris-buffered saline with 0.1%
Tween 20. Membranes were then probed with primary antibodies, including rabbit mono-
clonal anti-LOX (ab 174316; Abcam, Cambridge, MA, USA), rabbit monoclonal anti-MMP2
(ab92536; Abcam, Cambridge, MA, USA), or rabbit polyclonal anti-MMP9 (10375-2-AP;
Proteintech Group, Inc., Rosemont, IL, USA), and incubated overnight at 4 ◦C. Following
the incubation with primary antibodies, the membranes were incubated with horseradish
peroxidase-conjugated secondary antibodies (Cell Signaling Technology, Beverly, MA, USA)
for one additional hour at room temperature. GAPDH (ab181602; Abcam, Cambridge, MA,
USA) was used as an internal loading control to ensure equal protein loading. Immunore-
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active signals were visualized using a chemiluminescence detection system (Immunostar
Zeta; FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan), and the intensity of
the signals was quantified with an image reader (FUSION Solo7; M&S Instruments Inc.,
Osaka, Japan). The digitized signal intensities were analyzed using ImageJ Fiji software
(version: 2.14.0/1.54f) [50].

4.9. Statistical Analysis

Statistical analyses were conducted using EZR (Saitama Medical Center, Jichi Med-
ical University, Saitama, Japan) [55], a user interface for R (R Foundation for Statistical
Computing, Vienna, Austria). EZR is a customized version of the R Commander that
includes tools for statistical methods frequently used in the field of biostatistics. To assess
the effects of aging and muscle injury, a two-way analysis of variance was applied. If
a significant interaction between the factors was identified, Tukey’s honest significant
difference test was used for post hoc pairwise comparisons across all groups. Statistical
significance was set at a p < 0.05. Results are presented as means ± standard deviations.
In addition, the probability of significance by the Shapiro–Wilk test was compared to the
adjusted significance level using the Holm method in this study. Normality was confirmed
in the experimental data (4-group comparison). Since normality was not confirmed in the
experimental data (2-groups comparison) only in the data of the injured area by CTX, the
Mann–Whitney U test was used to compare the groups. For all other data, the Student’s
t-test was used for 2-group comparisons. Furthermore, the results of the Shapiro–Wilk test
conducted to confirm normality are expressed as adjusted p-values using the Holm method
(Tables S1 and S2).

5. Conclusions
In the present study, Col1a1 expression as well as collagen I-IR intensity and area

during recovery after muscle injury were significantly higher in old mice compared to
young ones. Similarly, Lox expression and the number of LOX (+) cells in the ECM during
recovery were also significantly increased in old mice. Furthermore, expression levels of
Mmp2, Mmp9, and MMP9 after muscle injury were higher in old mice than in young mice.
These results suggest that collagen I accumulation and collagen cross-link formation may
occur after muscle injury in old age, along with increased MMP9 expression.
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