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Abstract

Hepatocellular carcinoma (HCC) ranks among the most prevalent malignancies globally.
Although treatment strategies have improved, the prognosis for patients with advanced
HCC remains unfavorable. Tumor-associated macrophages (TAMs) play a dual role, ex-
hibiting both anti-tumor and pro-tumor functions. In this study, we analyzed single-cell
RNA sequencing data from 10 HCC tumor cores and 8 adjacent non-tumor liver tissues
available in the dataset GSE149614. Using dimensionality reduction and clustering ap-
proaches, we identified six major cell types and nine distinct TAM subtypes. We employed
Monocle2 for cell trajectory analysis, hdWGCNA for co-expression network analysis, and
CellChat to investigate functional communication between TAMs and other components of
the tumor microenvironment. Furthermore, we estimated TAM abundance in TCGA-LIHC
samples using CIBERSORT and observed that the relative proportions of specific TAM
subtypes were significantly correlated with patient survival. To identify TAM-related genes
influencing patient outcomes, we developed a high-dimensional, gene-based transformer
survival model. This model achieved superior concordance index (C-index) values across
multiple datasets, including TCGA-LIHC, OEP000321, and GSE14520, outperforming other
methods. Our results emphasize the heterogeneity of tumor-associated macrophages in
hepatocellular carcinoma and highlight the practicality of our deep learning framework in
survival analysis.
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1. Introduction
Liver cancer is the sixth most common cancer worldwide and the third leading cause

of cancer-related deaths [1]. According to the Global Burden of Disease (GBD) Study 2021,
the incidence of liver cancer has risen by 53.7% over the past two decades [2]. Although
prognosis has improved over time, the five-year survival rate remains below 20% [3].
Major risk factors include viral infections (such as hepatitis B virus and hepatitis C virus,
HBV/HCV), chronic liver diseases (including fatty liver disease and cirrhosis), alcohol
misuse, and metabolic disorders (including diabetes).

Macrophages play a central role in balancing immune responses and tissue repair
to maintain homeostasis. Once this plasticity is exploited by malignant proliferation,
it coordinates multiple interactions in the tumor microenvironment (TME) to drive the
evolution of the cancer ecosystem. Although cancer cells exploit the pro-inflammatory
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function of tumor-associated macrophages (TAMs) to promote tumorigenesis by producing
various factors, TAMs involved in immune system recruitment also possess anti-tumor
properties [4].

Each TAM subgroup has unique transcriptional features and marker profiles based
on the type, stage, and immune composition of the infiltrating tumor [5]. The emergence
of single-cell sequencing technology has expanded our understanding of the cellular
composition and gene expression characteristics in the tumor microenvironment, enabling
us to study intercellular mechanisms and gene expression differences at the single-cell
level [6]. By achieving high-resolution visualization of individual cells, single-cell RNA
sequencing (scRNA-seq) has played a key role in depicting the diverse immune phenotypes
and complex intercellular interactions in hepatocellular carcinoma [7,8].

In recent years, deep learning has made remarkable progress in prediction tasks in the
field of survival analysis [9]. However, due to the severe overfitting issues caused by the
inherent curse of dimensionality problem in high-throughput sequencing data, accurately
predicting prognosis using cancer genomic data remains challenging. Additionally, survival
analysis presents unique challenges stemming from the difficulty of handling unobserved
and censored samples [10].

Cox regression models use survival outcomes and survival time as dependent vari-
ables, enabling simultaneous analysis of multiple factors affecting survival duration and
handling censored survival data [11]. The Faraggi–Simon network is regarded as a nonlin-
ear extension of the Cox proportional hazards model [12]. DeepSurv expands upon Faraggi
and Simon’s work by employing deep feedforward neural networks to estimate the log-risk
function in Cox models, allowing these models to capture increasingly complex relation-
ships between covariates and risk [13]. The FT-Transformer model converts features into
embeddings, which are then processed through layers of a Transformer architecture [14].
This approach applies the attention mechanism, which was originally designed for tasks
like natural language processing (NLP) to tabular data. The attention mechanism of the
model enables it to capture the complex relationships between heterogeneous features.

In this study, we employed single-cell bioinformatics analysis techniques to reveal
differences among macrophage subpopulations and explore their association with cancer.
Inspired by FT-Transformer and DeepSurv, we performed feature embedding and mini-
mized the negative log-likelihood through a Transformer architecture to predict prognosis.

2. Results
2.1. Cell Type Identification

The single-cell dataset GSE149614 contains four types of tissue samples from 10 pa-
tients with primary and metastatic HCC: non-tumor liver (NTL), primary tumor (PT),
portal vein tumor thrombus (PVTT) and metastatic lymph node (MLN) tissues [6]. Ini-
tially, cells from PVTT and MLN tissues were removed, and the remaining data were
processed with the Seurat workflow, yielding 61,356 cells for downstream scRNA-seq
analysis. Subsequently, Harmony integration was applied to correct batch effects across
samples in GSE149614 datasets [15]. For exploratory visualization, the integrated data
were projected into a two-dimensional space using UMAP [16]. Thereafter, FindClusters
partitioned the cells into 27 clusters at a resolution of 1. Six major cell types were identified
using canonical surface markers: T/NK cells (NKG7, CD69, CD7); myeloid cells (CD14,
CD163, CD68, CD86); endothelial cells (CDH5, CD34, CCDC85B, CCL14); hepatocytes (TF,
FGB, ASGR1, KRT18); fibroblasts (COL1A1, COL1A2, LUM); and B cells (JCHAIN, CD79A,
MZB1) (Figure 1A). As illustrated in Figure 1B, the figure presents the proportions of T/NK
cells, hepatocytes, myeloid cells, endothelial cells, B cells and fibroblasts across various
samples; this highlights the heterogeneity of the TME. The scatter plots and heatmaps
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in Figure 1C,D illustrates the expression patterns of the marked genes across different
cell types.

Figure 1. Clustering of HCC scRNA-Seq Data: (A) UMAP representation of annotated cell types;
(B) The proportion of various cell types in different samples; (C) A scatter plot showing the expression
of genes marking different cell types; (D) A heatmap showing the expression of genes marking
different cell types.

2.2. Cell-to-Cell Communication Between Six Cell Types

Intercellular analysis revealed that both the number and the strength of cell interactions
were higher in PT tissues from HCC than in NTL tissues from HCC. Notably, ligand–
receptor pairs between myeloid cells and endothelial cells exhibited significantly higher
interaction intensity in NTL tissues compared with PT tissues, representing the most
pronounced change in interaction strength (Figure 2A–C). Pathway-level analysis showed
that the SPP1 pathway was most significant in PT tissues, with the strongest SPP1–CD44
ligand–receptor interaction, whereas the HLA-I pathway was most significant in NTL
samples (Figure 2D,E).
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Figure 2. Intercellular communication among six cell types: (A) Comparison of intercellular commu-
nication quantity (left) and intensity (right) between tumor and non-tumor tissues; blue indicates
reduced intensity in non-tumor tissue relative to tumor tissue; (B) Bar charts showing overall quan-
tity (left) and intensity (right); (C) Heatmap comparing the quantity (left) and intensity (right) of
intercellular communication between specific ligands and receptors; (D) Differences in pathway
intensity between tumor and non-tumor tissues (y-axis in black indicates no difference between the
two groups); (E) The two pathways with the greatest differences between tumor and non-tumor
tissues, involving specific ligand-receptor pairs.

2.3. Myeloid Cells Single-Cell Atlas

To explore the subtle differences in TAMs, we performed secondary clustering and de-
fined myeloid subpopulations into four categories: Kupffer cells (KCs), other macrophages,
monocytes, and dendritic cells (DCs) (Figure 3A). Clusters 0, 1, and 11 were designated as
KCs1 due to the high expression of canonical KC markers CD5L, CETP, and MARCO [17].
Clusters 2 and 5, which exhibit high expression of TREM2, GPNMB, and CD9 but low
expression of SPP1, were designated as lipid-associated macrophages (LAMs) [18]. Clus-
ter 4, showing high SPP1 expression but low TREM2 expression, was designated SPP1+
macrophages [19]. Clusters 7, 8, and 10 lie between KCs1 and LAMs in the UMAP plot;
they display partial expression of CD5L, CETP, and MARCO, along with high expression
of FOLR2 and C1Q complex genes (C1QA, C1QB, C1QC), and are therefore designated as
KCs2 (FOLR2 and C1Q complex genes appear among KC markers in some literature) [17].
Clusters 6, 9, 15, and 18, which exhibit notably high FCN1 expression, are designated
as monocytes. The designation of clusters 13, 3, and 24 as cDC1, cDC2, and cDC3 is
based on high expression of CLEC9A, CD1C, and CCR7, respectively [20]. The remaining
clusters, 16, 21, and 23, are designated as CXCL+ macrophage, HSP+ macrophage, and
MT+ macrophage, respectively, due to high expression of homologous genes [21]. Finally,
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cluster 12 shows no clearly identified marker genes in the existing literature and no highly
expressed genes with known functions; it is labeled GPR183+ macrophage (Supplementary
File S1). Additionally, the expression of marker genes for certain myeloid cell subtypes on
the UMAP plot is shown in Figure 3C.

Figure 3. Myeloid cell subpopulations: (A) UMAP representation of samples, clusters, and annotated
cell types after reclustering myeloid cells and performing harmony. Each point represents a cell;
(B) Proportions of various cell types in normal liver tissue, primary tumor tissue, different cancer
stages, and different samples; (C) Gene expression profiles of marker genes for each types of myeloid
cell subpopulation.

By examining the proportions of macrophages across tissues and disease stages
(Figure 3B), several patterns emerge. When comparing the KC subtypes, KCs1 is enriched
in NTL tissues, whereas KCs2 is relatively more abundant in PT tissues. Moreover, KCs are
more prevalent in early-stage cancer than in late-stage disease, consistent with the general
observation that resident KC populations are diminished or absent in liver diseases, with
some exception in stage 3. The LAMs and SPP1+ macrophage groups also show signifi-
cantly higher proportions in PT than in NTL tissues, and SPP1+ macrophages are largely
confined to late-stage HCC PT tissues. Additionally, macrophage groups with homologous
marker genes–CXCL+ macrophages, MT+ macrophages, and HSP+ macrophages exhibit
substantially higher proportions in PT than in NTL tissues.
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2.4. Identification of Co-Expression Modules in Myeloid Cells

We identified 13 co-expression modules across 12 myeloid cell types (Figure 4A–C).
KC1 and KC2 showed higher correlation with Modules 4 and 5. Module 4’s top GO terms
relate to immune response-activating signaling pathways, regulation of innate immune
responses, and viral processes (Figure 4D). Module 5’s top GO terms pertain to circadian
rhythm, rhythmic processes, and cellular responses to peptides. SPP1+ macrophages
are significantly associated with Module 9, whose top GO enrichments pertain to ADP
metabolism. Other macrophage subsets link to Modules 8, 2, 11, 6, 3 and 9. In addition, MT+
macrophages are significantly associated with Module 10, in which the top 10 genes are
metallothionein (MT) family genes. HSP+ macrophages are significantly associated with
Module 1, and the top 10 genes are heat-shock protein (HSP) family genes. Monocyte-like
cells associate with Modules 12 and 13, while DCs (cDC1, cDC2, cDC3) associate with
Module 7.

Figure 4. hdWCGNA: (A) hdWGCNA dendrogram, with gray modules composed of genes not
assigned to any co-expression modules; (B) Module expression in different myeloid cells; (C) Top
10 genes in each module; (D) Top three GO pathways involved in different modules.

2.5. Trajectory of Myeloid Cells

To investigate temporal differences in differentiation among tumor-associated macrophages
and the differentiation order of related cell states, we performed cell trajectory analysis
of the myeloid subpopulations using Monocle 2 and ordered cells along pseudo-time. As
shown in (Figure 5A,B), DCs occupy the early stage of differentiation, and monocytes,
lacking subpopulation differentiation, are scattered across various stages of differentiation.
KCs represent an early differentiation stage within macrophages excluding dendritic cells
and monocytes. While SPP1+ macrophages are found at the terminal end of the trajectory,
GPR183+ macro-phages, CXCL+ macrophages, MT+ macrophages, and HSP+ macrophages
also appear in later portions of the trajectory, combined with Figure 5C. This suggests that
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these macrophages may represent a distinct functional subtype of cells generated during
cancer progression. Figure 5D shows the density plots of different myeloid cells over time.

Figure 5. The differentiation trajectory of myeloid cells (the numbers inside the black circles represent
different state nodes of the cells): (A) SPP1+ macrophages is at the terminal stage of differentiation,
while DCs is at the starting point of differentiation; (B) Temporal representation of the divergence
trajectory; (C) Different tissue representations of differentiation trajectories; (D) Density plots of
different myeloid cells over time.

2.6. Estimate the Relative Proportions of Macrophage Subpopulations in TCGA-LIHC

We used CIBERSORT to estimate the relative proportions of macrophage subpopula-
tions in TCGA tumor versus normal samples (Figure 6A). Because MT+ macrophages were
present at very low numbers (cells < 200), they were excluded from the analysis. Our results
show that KCs1 and monocyte-like cells are more abundant in normal tissue, whereas KCs2
and SPP1+ macrophages are more prevalent in tumor tissue. These patterns are broadly
consistent with our previous single-cell sequencing results on normal and tumor tissues
(LAMs excluded).

To assess the prognostic value, we analyzed overall survival in the TCGA cohort
using the “survminer” R package (version 0.4.9) [22]. The proportions of KCs2, SPP1+
macrophages, GPR183+ macrophages, and CXCL+ macrophages all showed significant
associations with OS (log-rank p < 0.05). However, the direction of the associations differed:
high SPP1+ macrophages infiltration correlated with poorer prognosis, while lower infiltra-
tion of KCs2, GPR183+ macrophages, and CXCL+ macrophages was associated with worse
outcomes (Figure 6B).
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Figure 6. CIBERSORT and KM-plot: (A) Inference of the distribution of multiple macrophage
subpopulations in tumor and normal samples in the TCGA-LIHC dataset. (Some cells were excluded.)
The p-values shown are from the Wilcoxon test. ns, no significant difference; ** p < 0.01; *** p < 0.001;
**** p < 0.0001; (B) Relationship between overall survival and cell proportion in the TCGA cohort
(p < 0.05), with time calculated in days. The p-values shown are from the log-rank test.

2.7. Survival Analysis with Other Model

We performed subsequent survival analyses using bulk RNA-seq datasets TCGA-
LIHC, OEP000321, and GSE14520, benchmarking them against other prognostic models.
Because the relative abundances of KCs2, SPP1+ macrophages, GPR183+ macrophages,
and CXCL+ macrophages were significantly associated with overall survival differences,
we used their marker genes (539 in total See Supplementary File S2) for survival analysis.
Presented in Table 1 are the sample size, final number of feature genes, and deletion ratio
for each dataset.

Table 1. Sample information.

Dataset Name Sample Gene Censoring

TCGA 370 407 240 (64.9%)
OEP000321 158 510 102 (64.6%)
GSE14520 221 436 136 (61.5%)

For each dataset, we trained and evaluated our model (ZZFormer) and other baseline
models through 20 independent rounds of five-fold cross-validation. In each fold of
every round, the data was divided into five subsets: one subset was assigned as the test
set, another as the validation set, and the remaining three were used for training. For
models that did not require a validation set (i.e., RSF and GBM), all four non-test subsets
were combined to form the training set. To enhance robustness, the entire process was
repeated 20 rounds using different random seeds for data splitting, yielding a total of
5-fold × 20 rounds = 100 independent training-validation-testing runs.

Regarding hyperparameter settings for ZZFormer and other baseline models, we per-
formed grid search on key hyperparameters using one round of five-fold cross-validation.
For each candidate hyperparameter set, we computed the average sum of C-index scores
across the training and validation sets in all five folds, selecting the configuration with the
best performance. This optimal hyperparameter set was then applied to all subsequent
five-fold cross-validation runs, repeated with multiple random seeds. For our model, the
determined hyperparameters are: embedding length = 64; number of embeddings = floor
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(number of genes/embedding length); num_heads = 8; Transformer blocks = 2; learning
rate = 0.002; dropout = 0.1 [23]; optimizer = Adam with L2 regularization (weight de-
cay) [24,25]. DeepSurv is invoked through the “pycox” python package (version 0.3.0) [26],
Deep Survival Machines (DSM) through the “auton-survival” python package (version
0.1.0), and Random survival forests (RSF) and Gradient Boosting Machine (GBM) through
the “sksurv” python package (version 0.24.0) [27]. Model performance was evaluated using
a predefined metric (C-index); the results are shown in Table 2, with the best-performing
model across the three datasets highlighted in gray.

Table 2. C-index comparison with other models.

Model Name TCGA GSE14520 OEP000321
ZZFormer 0.65437 ± 0.0589 0.64752 ± 0.0661 0.68922 ± 0.0729
DeepSurv 0.63301 ± 0.0505 0.60605 ± 0.0714 0.64029 ± 0.0794

DSM 0.60637 ± 0.0646 0.61035 ± 0.0750 0.64108 ± 0.0826
RSF 0.64876 ± 0.0606 0.61663 ± 0.0733 0.67183 ± 0.0713

GBM 0.65220 ± 0.0546 0.60228 ± 0.0603 0.65544 ± 0.0641
Highlighted in gray represents the model that achieves the highest C-index on each dataset

On the TCGA-LIHC dataset, ZZFormer achieved a C-index of 0.654 ± 0.059, signifi-
cantly higher than DeepSurv (0.633 ± 0.051) and DSM (0.606 ± 0.065), and slightly higher
than the non-neural-network baselines RSF (0.649 ± 0.061) and GBM (0.652 ± 0.054). On
GSE14520, ZZFormer reached 0.648 ± 0.066, outperforming other neural-network base-
lines (DeepSurv 0.606 ± 0.071; DSM 0.610 ± 0.075) and RSF/GBM (0.617 ± 0.073 and
0.602 ± 0.060, respectively). On OEP000321, ZZFormer attained 0.689 ± 0.073, continu-
ing to surpass DeepSurv (0.640 ± 0.079) and DSM (0.641 ± 0.082) and also higher than
RSF (0.672 ± 0.071) and GBM (0.655 ± 0.064) (Table 2). Taken together across the three
datasets, ZZFormer delivers superior high-dimensional survival-prediction performance
with strong generalization, outperforming most baselines, including both neural-network
and non-neural-network models.

2.8. Feature Importance

Based on the importance ranking of Shapley Additive Explanations (SHAP) [28], the
top five genes with the highest importance ranking among the four macrophage marker
genes are CXCL8, MMP7, TSPAN8, HBA2, and CXCL9 (Figure 7).

Figure 7. SHAP value for top 10 important genes: Red features make the predicted value larger
(similar to positive correlation), blue makes the predicted value smaller, and purple is close to the
mean. The wider the color area, the greater the influence of the feature.
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Expression and role for the CXCL8 family of chemokines in acute and chronic in-
flammatory conditions and cancer. These molecules may be, however, relevant for host
immune responses against certain infections [29]. MMP-7 can regulate the occurrence
and development of cancer and mediate the proliferation, differentiation, metastasis and
invasion of various types of cancer cells through multiple mechanisms [30]. TSPAN8 is
associated with tumor growth and metastasis. Overexpression of TSPAN8 promotes the ex-
pression of stem cell markers such as ALDH1A1, increases the proportion of CD44 +/CD24
− cells, and enhances the expression of pluripotent transcription factors (including SOX2,
OCT4 and NANOG) [31]. HBA2 encodes hemoglobin α2 and is an erythroid gene; it is not
related to macrophage biology and likely appears here as a redundant/erythroid-specific
signal [32]. Chemokine CXCL9 is a member of the CXC family and plays a significant
role in the chemotaxis of immune cells. The HBx protein can induce the transcription of
CXCL9 by activating NF-κB that binds to its promoter, and CXCL9 promotes the migration
of white blood cells in the liver infected with hepatitis B virus. Moreover, an increasing
amount of evidence indicates that CXCL9 acts as a cancer-promoting factor in various types
of cancer [33]. The top five important genes, except for HBA2, are all related to cancer
and have the potential to be targeted genes, which indicates the feasibility of our model in
screening important characteristic genes.

3. Discussion
At the single-cell level, we performed stringent quality control, batch correction, and

dimensionality reduction on scRNA-seq data derived from HCC PT and adjacent NTL,
followed by clustering analysis. This approach identified six major cellular clusters and
nine macrophage-associated subclusters, delineating the detailed composition of myeloid
cells within the HCC microenvironment. Secondary clustering analysis revealed that
hepatic sinusoidal macrophages (KCs) exist in distinct transcriptional states: KC1 was
more abundant in NTL, whereas KC2 was relatively enriched in PT. Notably, both LAMs
and SPP1+ macrophages demonstrated significant enrichment in tumor tissues. Moreover,
the presence of SPP1+ macrophages was primarily associated with the advanced stages
of tumor progression. In addition, macrophage subpopulations with unique functional
signatures—designated as CXCL+, HSP+, and MT+—were identified. Collectively, these
findings underscore the substantial heterogeneity and plasticity of TAMs in HCC, indicating
that these distinct subpopulations may exert differential roles in tumorigenesis, immune
regulation, and metabolic reprogramming.

In addition, cell-to-cell communication analysis with CellChat revealed that PT tissues
exhibited a higher overall number and strength of cell–cell interactions compared to NTL
tissues. Notably, communication between myeloid cells and endothelial cells appeared
relatively attenuated in PT. At the signaling pathway level, the SPP1 axis emerged as
the most prominent in PT, where the SPP1-CD44 ligand-receptor pair demonstrated the
strongest interaction, implicating this pathway in tumor-associated inflammation, cellular
migration and adhesion, and immunosuppression. Strikingly, SPP1+ macrophages and the
SPP1-CD44 axis exhibit conserved features across diverse cancers. In contrast, the HLA-I
pathway displayed heightened activity in NTL, reflecting relatively preserved antigen
presentation and immunomodulatory functions. Simulated cell trajectory analysis using
Monocle2 delineated a differentiation pathway: DCs were positioned early in the trajectory,
KCs1/KCs2 occupied an intermediate stage, and specialized macrophage subsets (SPP1+,
GPR183+, CXCL+, MT+, HSP+) resided predominantly later in the trajectory. Weighted
gene co-expression network analysis (hdWGCNA) further connected myeloid subsets to
distinct functional modules: KC was primarily associated with modules related to immune
activation, innate immune regulation, and circadian rhythms. SPP1+ macrophages were
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significantly enriched in modules involving ADP/nucleoside diphosphate metabolism and
exhibited elevated activity in pathways such as glycolysis, HIF-1 signaling, amino acid
synthesis, and carbon metabolism. MT+ and HSP+ macrophages were strongly linked
to metallothionein- and heat shock protein-related modules, suggesting a central role for
oxidative stress mitigation and protein homeostasis maintenance in tumor adaptation. Fi-
nally, CIBERSORT was employed to estimate the relative proportions of these macrophage
subsets in TCGA-LIHC samples. These proportions significantly correlated with overall sur-
vival (OS), particularly the abundances of KC2, SPP1+, GPR183+, and CXCL+ macrophages.
Importantly, high infiltration of SPP1+ macrophages was an extremely significant predictor
of poor prognosis (p < 0.0001).

We use key macrophage marker genes to build and evaluate a Transformer-based sur-
vival model across three transcriptomic cohorts: TCGA-LIHC, OEP000321, and GSE14520.
The model uses linear embedding, multi-head self-attention, and learnable class tokens,
with Cox partial likelihood as the optimization objective to effectively capture gene–gene
dependencies and nonlinear risk patterns. Across datasets, the model achieved the highest
or tied-highest C-index, approximately 0.65437 in TCGA-LIHC, 0.68922 in OEP000321, and
0.64752 in GSE14520, outperforming representative baselines such as DeepSurv and DSM in
a robust manner. This suggests that the attention mechanism can enhance feature selection
and feature interaction modeling in high-dimensional gene expression data, improving risk
discrimination and cross-cohort generalization. Notably, interpretability analyses indicate
that the model captures genes highly associated with patient survival. Our results provide
novel directions for subsequent studies.

Nevertheless, several limitations warrant consideration. First, the sample set com-
prises a limited number of patients, which may not fully capture the heterogeneity of
macrophage subpopulations in hepatocellular carcinoma. The tumor microenvironment of
hepatocellular carcinoma is composed of a series of complex components, and multiple
factors may influence the immune environment. Second, the proposed model is unimodal
and based on a single data modality; its stability and generalizability have yet to be fully
established and may be improved by incorporating additional data types and validating
in independent cohorts. Finally, through SHAP analysis, we identified the hemoglobin
gene HBA2 as making a significant contribution to the model. This gene is a characteristic
marker for GPR183+ macrophages and may be influenced by red blood cell phagocytosis
or technical artifacts in the data. This suggests that our current feature set has limitations
in specificity and requires more refined feature selection.

4. Materials and Methods
4.1. Data Collection and Processing

Single-cell transcriptomic data were obtained from GSE149614 in the Gene Expression
Omnibus (GEO) and used to construct a liver macrophage atlas from scRNA-seq, enabling
screening for survival related macrophage genes. We also downloaded bulk expression
data for survival analysis: TCGA-LIHC and OEP000321 [34], as well as GEO dataset
GSE14520 [35,36]. To evaluate the prognostic impact of the target genes, survival models
were built using these three datasets.

4.2. Single-Cell RNA-Seq Analysis

Single-cell RNA sequencing data were processed and normalized using the Seurat R
package (version 5.0.3), following stringent quality-control measures [37]. Cell viability
was assessed based on feature counts and mitochondrial gene content. Cells were excluded
if they were low quality or dead (genes detected in fewer than 3 cells; cells with <200 or
>6000 detected genes; and those with >20% mitochondrial gene content). After QC, we
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used FindVariableFeatures to identify highly variable genes and applied principal compo-
nent analysis (PCA) for dimensionality reduction. For clustering, we performed Uniform
Manifold Approximation and Projection (UMAP) on the top 20 principal components, and
marker genes were identified with FindAllMarkers. Cell-type annotation was supported by
the CellMarker 2.0 database and existing literature to ensure accurate categorization [38].

4.3. TAM Subset Analysis

Considering the heterogeneity of TAMs, we performed secondary clustering of
myeloid cells. This allowed us to examine the distribution and expression profiles of
characterized genes in each macrophage subpopulation, thus providing insight into their
specificity. Our annotation of subclustering followed a two-step approach. First, subtype-
specific marker genes were primarily derived from published TAM-HCC studies. For each
cluster, the top 20 differentially expressed genes (DEGs) with the smallest p-values were
identified using FindAllMarkers. Most subclusters could be annotated by matching these
top 20 genes to established macrophage markers reported in the literature. For clusters
lacking obvious marker genes, if many top-20 genes belonged to the same gene family, the
cluster was named with a gene-family prefix; otherwise, it was named after the top-ranked
gene. The top 20 genes for each cluster are detailed in Supplementary File S1.

4.4. Inferring Intercellular Communication Networks

CellChat (version 1.6.1) is an R package for inferring intercellular communication net-
works from single-cell transcriptomic data and is widely used to reveal signaling patterns
among different cell types within tissues. By leveraging curated ligand–receptor interac-
tion resources (e.g., CellChatDB) and estimating the communication probability or signal
strength between cell populations, CellChat can identify signaling pathways that change
significantly under specific biological conditions (such as disease, developmental stage, or
treatment) and compare intercellular communication across samples or conditions [39].

4.5. Co-Expression Modules in Myeloid Cells

In scRNA-seq data, hdWGCNA can help to identify cell-type specific gene modules
and further explore the relationship between these modules and cell state or disease [40].
The core goal of hdWGCNA is to construct weighted co-expression networks of genes
between cells and identify gene modules. Finally, modules can be analyzed based on their
eigenvalues correlated with cell type or phenotypic data (e.g., disease state, developmental
stage, etc.).

4.6. Single-Cell Trajectory Analysis

Single-cell trajectory analysis aims to infer developmental trajectories at the single-
cell level. By analyzing single-cell RNA-seq data, it reveals the dynamic changes cells
undergo during development or differentiation. Cell trajectory analysis tools monocle R
package (version 2.32.0) [41], use dimensionality-reduction methods (e.g., t-SNE or UMAP)
to project high-dimensional data into two- or three-dimensional space for visualization,
generating pseudotime trajectories that depict the distribution of cells along developmental
progress. This approach identifies genes that change with pseudotime and validates the
findings by integrating known biology and supporting experimental data.

4.7. Gene Enrichment Analysis

Gene Enrichment Analysis (GEA) is a widely used bioinformatics method for inter-
preting the biological significance of functions or features that appear to be significantly
enriched in a genome or a set of genes. Gene Ontology (GO) is a standardized language
and classification system for describing gene function and genomics data [42]. It is a classi-
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fication system for annotating the functions, processes, and cellular components of genes
and proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database resource
that contains the functions and information of biological systems, providing information on
genomes, chemicals, metabolic pathways, diseases, and drugs [43]. GO- and KEGG-based
enrichment analyses of gene sets corresponding to different macrophage subtypes can
illuminate the biological functions and interactions associated with these genes, providing
an initial view of the functional profiles and differences among macrophage subtypes.

4.8. CIBERSORT Immune Infiltration

We used CIBERSORT R package (version 0.1.0) for immune infiltration analysis.
CIBERSORT, a tool for immune infiltration analysis tool based on linear support vector
regression (LSVR). Through the expression profiles of macrophage-subtype-specific DEGs
after screening, the bulk gene expression data from TCGA LIHC tumor and adjacent normal
tissues were deconvoluted using the R script provided in the guidelines to estimate the
abundances of different TAM populations. The criteria for defining macrophage-subtype-
specific DEGs were FDR < 0.05, min.pct = 0.25, and |log2FC| > 1.0 [44].

4.9. Our Model Diagram

Our model (ZZFormer) is a Transformer-based model tailored for survival analysis
with high-dimensional feature inputs [45]. The architecture comprises three components:
(1) a feature embedding layer, (2) sum transformer-like encoder layers, and (3) a prediction
head. The detailed model architecture is shown in Figure 8.

Figure 8. Our model (ZZFormer) diagram: Inputs pass through an embedding layer, a Transformer-
like encoder layer, and a prediction head to generate the predicted prognosis index.

Our feature embedding layer first processes the input features x ∈ RB×num_ f eatures

through LayerNorm and then linearly projects them into a fixed number of tokens
(num_tokens). Each token has token_dim dimensions, producing a sequence X ∈
RB×num_tokens×token_dim. Following the ViT model, a learnable CLS token is prepended
to the sequence to interact with all elements and aggregate global information. This com-
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posite sequence is then fed into the Transformer architecture alongside the rest of the model
components for prognosis prediction [46].

Each transformer-like encoder layer consists of a multi-head self-attention layer and a
feedforward layer. Additionally, layer normalization and residual connections are used to
stabilize training. Self-attention enables each position in the sequence to attend to all other
positions, effectively capturing dependencies within the sequence. Each attention head
employs learnable linear projections to generate three components from the input sequence
X: key (K ∈ Rm×k), query (Q ∈ Rm×k), and value (V ∈ Rm×k) matrices (Figure 9). The
self-attention operation computes pairwise attention scores via the dot product of Q and K,

scales them by 1/(dk)
1
2 (where dk is the key dimension), applies a softmax normalization,

and uses the resulting weights to compute a weighted sum of V:

Attention(Q,K,V) = so f tmax

(
QKT

(dk)
1
2

)
V (1)

Figure 9. Network architecture diagram of Multi-Head Attention and Scaled Dot-Product Attention.

This mechanism enables the Transformer to learn dependencies between input features
by dynamically weighting their contributions.

After processing through the transformer-like encoder layers, the prediction head uses
the CLS token to obtain the prognosis. The CLS token is normalized and passed through a
linear layer to produce the Prognosis Index (PI). A higher PI indicates a poorer prognosis,
while a lower PI indicates a better prognosis.

We use SHAP to interpret the feature importance of the model. SHAP is a model
interpretation framework based on cooperative game theory, which can provide consistent
local feature contribution values for prediction models and help understand which input
feature contributions the predictions of samples come from.

4.10. Loss Function

Cox proportional hazards model is a semiparametric regression model proposed by
British statisticians, and it is a frequently employed survival model in survival analysis [11].
The Cox proportional hazards model can be expressed as

h(t, x) = h0(t)exp
(

βTX
)

(2)
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where h0(t) is the baseline risk function served as the part of the nonparametric model. X is
the relevant factor that may affect the survival time, called a covariate, and β is the weight
coefficient of the variable X. r(a) = βTX is called the risk function and is a parametric
model. Therefore, the Cox model is called as a semiparametric model. But its hazard
function r(a) is a linear function, which cannot fit the complex nonlinear scene between
variables in reality. To optimize the model and predict patient risk, the gradient descent
approach is used to minimize the negative log partial likelihood loss function Cox during
the training, which can be defined as follows:

Lcox = − ∑
i:δj=1

(
ri − log ∑

j:tj≥ti

exp
(
rj
))

(3)

4.11. Baseline Methods

With five-fold cross-validation, we compared the C-index of our model with that of
the following state-of-the-art baseline methods.

• RSF: this ensemble model is similar to random forest and uses survival trees to predict
the ensemble cumulative risk function [47].

• GBM: this is an ensemble model based on gradient boosting, which builds a base
learner with a greedy strategy [48].

• DeepSurv: this was the first neural network model to outperform the CPH model. It
uses neural networks to fit the relationship between covariates and the log risk [13].

• DSM: use neural networks to model potential events through a mixture of fixed (K)
parameter distributions [49].

4.12. Hyperparameter Optimization

The complete search scope for all models is as follows:

• ZZFormer: token_dim: [32, 64], num_heads: [4, 8], num_blocks: [1, 2], dropout: [0.1,
0.3], Learning_Rate: [0.01, 0.002], L2: [0.05, 0.1, 0.3].

• Random Survival Forest (RSF): n_estimators: [100, 500], max_depth: [3, 5, None],
min_samples_split: [0.01, 0.02, 0.05], min_samples_leaf: [0.005, 0.01, 0.02], max_features:
[‘sqrt’, ‘log2’, None].

• Gradient Boosting Machine (GBM): learning_rate: [0.05, 0.1], n_estimators: [100, 200],
max_depth: [3, 5], min_samples_split: [0.01, 0.05], min_samples_leaf: [0.005, 0.01],
subsample: [0.9, 1.0], max_features: [‘sqrt’, ‘log2’].

• DeepSurv: num_nodes: [[64], [64, 64]], dropout: [0.1, 0.3], lr: [0.1, 0.03, 0.01]
• Deep Survival Machines (DSM): k: [3, 4, 6], distribution: [‘LogNormal’, ‘Weibull’],

learning_rate: [0.001, 0.0001], layers: [[], [64], [64, 64]].

4.13. Model Evaluation Metrics

Using the same evaluation metrics as in article [50], we evaluated each model by
the C-index. C-index is a widely used ranking metric for evaluating the discriminative
ability of a survival analysis model, it counts concordant pairs between the predicted risk
score. The range of C-index is from 0 to 1. The larger its value, the stronger the ability to
distinguish the risks of samples.

C − index =
∑i,j 1

{
ñi< ñj

}
1{Ti>Tj}δj

∑i,j 1{Ti>Tj}δj
(4)

Here ñi and Ti are the predicted risk score and overall follow-up time for patient i,
respectively. The terms 1{...} and δj are both indicators: 1{...} takes value 1 if the argument
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in {...} is true and 0 otherwise; δj takes value 1 if the death of patient j is observed and 0 if
patient j is censored.

5. Conclusions
This study employs single-cell bioinformatics techniques to characterize macrophage

subpopulations and explore their relationship with cancer progression. We integrated 539
marker genes from four prognostically significant tumor-associated macrophage subtypes
(KCs2, SPP1+, GPR183+, and CXCL+ macrophages) and established a corresponding
deep survival model. The model employs feature embedding techniques, undergoes
transformer-like processing, and predicts prognostic indices by minimizing the negative log-
likelihood function in the prediction head. Robust performance was demonstrated across
three independent RNA sequencing cohorts (TCGA-LIHC, OEP000321, and GSE14520),
validating the potential application of the identified macrophage-associated gene signatures
in prognostic assessment.

Several limitations should be acknowledged: First, to directly assess the independent
predictive value of TAM-specific biological features, this prognostic model exclusively uti-
lizes TAM marker genes, excluding other potentially important tumor microenvironment
characteristics (e.g., cancer cell intrinsic genes, other immune cell features, or clinical co-
variates). Additionally, TAM marker genes may lack purity, including redundant genes like
HBA2. Although the model consistently outperformed multiple established benchmarks,
absolute C-index indicates room for improvement in predictive capability. Future studies
will focus on refining feature selection based on existing TAM characteristics. Integrating
complementary multidimensional features with clinical variables to establish a multimodal
integration framework holds promise for significantly enhancing prognostic accuracy and
clinical utility.
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