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Abstract

Glioblastoma multiforme (GBM) is an aggressive brain cancer characterized by highly
invasive growth driven by glial-mesenchymal transition (GMT). Given the urgent need for
effective therapies targeting this process, we aimed to discover potential GMT inhibitors
using transcriptomic-based repurposing applied to both approved and experimental drugs.
Deep bioinformatic analysis of transcriptomic data from GBM patient tumors and GBM
cell lines with mesenchymal phenotype using gene set variation analysis (GSVA), weighted
gene co-expression network analysis (WGCNA), reconstruction of GMT-related gene asso-
ciation networks, gene set enrichment analysis (GSEA), and the search for correlation with
transcriptomic profiles of known GMT markers, revealed a novel 31-gene GMT signature
applicable as relevant input data for the connectivity map-based drug repurposing study.
Using this gene signature, a number of small-molecule compounds were predicted as
potent anti-GMT agents. Further ranking according to their blood-brain barrier perme-
ability, as well as structural and transcriptomic similarities to known anti-GBM drugs,
revealed SP600125, vemurafenib, FG-7142, dibenzoylmethane, and phensuximide as the
most promising for GMT inhibition. In vitro validation showed that SP600125, which is
most closely associated with GMT-related hub genes, effectively inhibited TGF-f1- and
chemical hypoxia-induced GMT in U87 GBM cells by reducing morphological changes, mi-
gration, vasculogenic mimicry, and mesenchymal marker expression. These results clearly
demonstrate the applicability of connectivity mapping as a powerful tool to accelerate
the discovery of effective GMT-targeting therapies for GBM and significantly expand our
understanding of the antitumor potential of SP600125.

Keywords: drug repurposing; drug repositioning; glial-mesenchymal transition; proneural-
mesenchymal transition; glioblastoma; SP600125

1. Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor.
The introduction of the Stupp protocol (maximal resection followed by radiotherapy with
concurrent and adjuvant temozolomide) as the standard of care in 2005 improved median
patient survival from 12.1 to only 14.6 months [1]. Despite the incorporation of additional
therapeutic options, including nitrosourea-based alkylating agents, the anti-angiogenic an-
tibody bevacizumab, and tumor-treating fields, into clinical management [1], the response
rate in GBM remains exceedingly low. Even with a full course of therapy, only 4% of patients
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survive five years post-diagnosis due to high rates of GBM recurrence [2]. A primary driver
of this is the highly invasive nature of GBM cells, which infiltrate healthy brain parenchyma,
preventing complete surgical removal [3].

Bulk RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) ini-
tially categorized GBM tumors into four subtypes: classical, proneural, mesenchymal,
and neural [4]. Subsequent studies, however, revealed that the neural subtype likely
represents contamination by normal neural cells, leaving three principal GBM-specific
subtypes [5]. Prognosis is most favorable for the proneural subtype and poorest for the
mesenchymal subtype, which is associated with enhanced invasive potential and treatment
resistance [5,6]. Key microenvironmental components, such as hypoxia, inflammation,
and growth factors, can induce the transition of GBM cells to the mesenchymal subtype,
a process known as glial-mesenchymal transition (GMT) [7].

GMT shares features with the epithelial-mesenchymal transition (EMT) observed
in carcinomas, but it is an adaptation specific to the central nervous system. Like EMT,
GMT causes GBM cells to adopt a mesenchymal-like phenotype, characterized by the
upregulation of mesenchymal markers, such as Snail, N-cadherin, and vimentin, as well as
increased cell motility and invasiveness [8]. However, GMT differs from EMT in several key
aspects: (1) the absence of the canonical E-to-N cadherin switch [9], (2) hyperproduction
of extracellular matrix components (e.g., collagens and fibronectin) [10], and (3) a more
pronounced tendency of GBM cells to exhibit vasculogenic mimicry during mesenchymal
transition compared to epithelial cells [11].

The combination of these traits with the lack of a basal membrane in GBM cells enables
them to interact effectively with extracellular matrix components. This interaction allows
the cells to migrate along these structures and spread diffusely into healthy tissue [12].
While GBM cells frequently display baseline mesenchymal characteristics, GMT is regarded
as a process that substantially amplifies them [13]. Given the established link between GMT
and the diffusive growth of GBM [12], coupled with its frequent activation in response
to various stimuli (including growth factors, hypoxia, and temozolomide treatment) [13],
targeting GMT has emerged as a promising strategy for GBM therapy [14-16].

Drug repurposing accelerates and reduces the cost of drug development by bypassing
the pre-approval testing required for new drug candidates [17]. In GBM, this approach
showed promising results. The combination of dabrafenib and trametinib, previously used
to treat melanoma with the BRAFV®E mutation, improved response rates in GBM patients
with this mutation and was approved by the FDA in 2022 [18]. Regorafenib, a multikinase
inhibitor used to treat gastrointestinal cancers, is currently in a phase 2/3 clinical trial
(NCT03970447) and has demonstrated a survival benefit over lomustine in patients with
recurrent GBM [19]. These findings demonstrate the effectiveness of drug repurposing in
GBM, but further research is needed to make this therapy available to more patients.

Targeting GMT represents a novel approach for drug repurposing and is currently at
the preclinical stage. Recent studies have shown that abemaciclib, a CDK4/6 inhibitor used
in breast cancer treatment, and atomoxetine, prescribed for attention-deficit/hyperactivity
disorder (ADHD), can inhibit GMT. In vitro, both drugs significantly reduce motility,
invasion, stemness, and the expression of mesenchymal markers in GBM cell lines. In vivo,
abemaciclib suppressed the growth of intracranial tumors, while atomoxetine enhanced
the sensitivity of subcutaneous tumors to radiotherapy in mouse xenograft models [20,21].

The CLUE platform facilitates transcriptomic-based drug repurposing. It contains expres-
sion profiles derived from a variety of tumor cells exposed to approximately 3000 small-molecule
compounds. By comparing these profiles with expression signatures of diseases, the platform
finds potential drug candidates using a Connectivity Map method [22]. CLUE has identified
potential therapeutic applications for thioridazine (an antipsychotic drug), repaglinide (an an-
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tidiabetic drug), and flubendazole (an anthelmintic drug) in GBM, and these findings have been
successfully validated in preclinical models [23-25]. Although there are many reports describing
the use of Connectivity Map-based searches for GBM-targeting drug candidates [25-29], to our
knowledge, none of them have used GMT-related gene signatures as the search input. Given the
efficacy of the Connectivity Map in identifying EMT inhibitors [30-32], this approach offers a
promising avenue for the development of novel GMT-targeting anti-invasive drugs for GBM.

In this study, we employed a systematic approach to repurpose approved and investiga-
tional drugs to identify effective GMT inhibitors. We applied a comprehensive bioinformatics
pipeline to analyze GMT-related genes and their networks, leading to the selection of a gene
signature potentially involved in GMT regulation in both cell cultures and patient tumors.
Using the identified GMT-related gene signature, we conducted a Connectivity Map analysis
to identify small molecules with anti-GMT potency. Subsequent in silico screening based on
multiple GMT-associated indicators identified SP600125 as the most potent anti-GMT drug
candidate. In validation studies, SP600125 effectively suppressed GMT in two independent
in vitro models, including transforming growth factor beta 1 (TGF-p1)-stimulated GBM cells
and GBM cells with hypoxia induced by CoCl,. Thus, our findings demonstrate the validity
of a transcriptomics-driven drug repurposing strategy for identifying novel GMT inhibitors.
The obtained results provide a basis for developing compounds that target the highly invasive,
mesenchymal-like phenotype of GBM cells.

2. Results
2.1. Exploring Glial-Mesenchymal Transition in TCGA-GBM Dataset

To approach GMT-targeting drug repurposing, a comprehensive bioinformatic analysis
of publicly available GMT-related transcriptomic data was performed according to the
study workflow depicted in Figure 1.

First, we examined GMT in patient-derived GBM tumors using the methodology previ-
ously described by Liang et al. [33]. Gene set variation analysis (GSVA) was used to evaluate
the enrichment of Verhaak’s mesenchymal and proneural gene signatures in 168 patient tu-
mors from the TCGA-GBM RNA sequencing (RNA-seq) dataset [34]. For each tumor, the GMT
score was calculated by subtracting the proneural enrichment score from the corresponding
mesenchymal enrichment score. As expected, the highest and the lowest GMT scores were
found in mesenchymal and proneural tumors, respectively, while the classical subtype showed
intermediate values (Figure 2A). The accuracy of GMT scoring is further confirmed by the low
GMT score observed in the neural subtype (Figure 2A), which is now considered a mixture of
tumor cells and normal neural tissue [35], and the association of high GMT score with worse
patient survival in the TCGA-GBM cohort (Figure 2B).

To evaluate the accuracy of the GMT score in reflecting GMT, we divided GBM samples
into “high GMT score” and “low GMT score” groups based on the median GMT score. Then,
we examined their association with GMT-related processes in the tumor microenvironment.
As expected, gene set enrichment analysis (GSEA) revealed that samples in the high GMT score
group were enriched in epithelial-mesenchymal transition (EMT), hypoxia, inflammation,
and tendency to activation of the TGF-f signaling pathway (Figure 2C). These processes accom-
pany the acquisition of a mesenchymal-like phenotype by tumor cells [36]. Deconvolution of im-
mune cells in GBM tissue revealed that the high GMT group, in contrast to the low GMT group,
was characterized by a more heterogeneous immune landscape, enriched with a significantly
larger set of immune cells, including dendritic cells, monocytes, macrophages, various types of
T cells, B cells, mast cells, and granulocyte-monocyte and lymphoid progenitors (Figure 2D).
In turn, the low GMT group was enriched with T helper 1 cells, CD4+ central memory T cells,
plasma cells, eosinophils, and megakaryocyte-erythroid progenitors (Figure 2D). These findings



Int. J. Mol. Sci. 2025, 26, 9772

4 of 35

suggest that tumors in the high GMT group are more hypoxic and immunologically active,
which creates a favorable environment for GMT induction [37].
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Figure 1. Workflow overview. (A) Analysis of The Cancer Genome Atlas (TCGA)-GBM dataset.
The enrichment of mesenchymal and proneural gene signatures was assessed using gene set variation
analysis to calculate the GMT score. Modules of co-expressed genes were identified via weighted
correlation network analysis. The module correlating with the GMT score was carried forward to step
(©). (B) Analysis of the GSE192710 dataset. Differential expression analysis compared mesenchymal
subtype G7 cells to proneural subtype E2 cells. Upregulated genes were used to construct a gene
network with STRING and included in the subsequent analysis in (C). (C) Formation of the GMT sig-
nature. The positions of genes common to both the GMT-associated module (A) and the upregulated
genes (B) were analyzed in the gene network (B) using cytoHubba. This analysis identified 31 hub
genes included in the GMT signature. (D) Verification of the GMT signature. Additional clinical
datasets (Chinese Glioma Genome Atlas (CGGA) and Gravendeel) were analyzed for associations of
hub genes with the GMT signature, the literature data, and survival outcomes. This analysis identified
new regulators of GMT. (E) Drug repurposing. The Connectivity Map platform was used to find small
molecules with negative connectivity to the GMT signature. Further screening assessed blood-brain
permeability and P-glycoprotein substrate specificity using chemoinformatic tools. Text mining
evaluated compound associations with GMT-related terms in the literature. Tanimoto distance and
Connectivity Map analyses examined structural similarity and biological activity compared to known
GBM drugs. The screening identified hit compounds, which were integrated into a network with
their primary targets and the GMT signature using the Search Tool for Interactions of Chemicals
(STITCH). Topological analysis of this drug-gene network revealed novel potential GMT inhibitors.
(F) In vitro verification of the GMT inhibitory effect of the hit compound was conducted using cell
models of GMT induced by TGF-B1 or hypoxia. MES, mesenchymal; PN, proneural; WGCNA,
weighted correlation network analysis; BBB, blood-brain barrier; P-gp, p-glycoprotein.
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Figure 2. Identification of a GMT-associated gene cluster in TCGA-GBM tumor transcriptomes.
(A) Characterization of GMT status in patient tumors. GSVA was used to evaluate the enrichment
of Verhaak’s proneural and mesenchymal gene signatures in each tumor sample, with the GMT
score calculated as the difference between these enrichments. The color legend at the top of the
heatmap indicates the tumor subtype (classical, neural, proneural, or mesenchymal) extracted from
the TCGA-GBM cohort metadata. (B) Kaplan-Meier survival curves for patients stratified by median
GMT score. (C) GSEA of gene signatures for EMT, hypoxia, inflammatory response, and TGF-f3
signaling in tumors with low and high GMT scores. (D) Enrichment of immune cell types in GMT
score-stratified tumors assessed using xCell. Statistical significance was tested by the Wilcoxon
test: *, **, *** indicate p-values < 0.05, <0.01, and <0.001, respectively. (E) Clustering dendrogram
of TCGA-GBM tumors generated by WGCNA, with colors representing modules of co-expressed
genes. Red line under the dendrogram indicating the blue module, identified as tightly connected
with GMT in subsequent analysis (F) Module-trait relationship identified by Pearson’s correlation
analysis between module eigengenes (weighted average expression of each gene set) and GMT score,
as well as proneural and mesenchymal gene set enrichments. The blue module, showing the strongest
correlation with GMT score and mesenchymal signature enrichment, is highlighted by a red circle
below the heatmap. *, **, *** indicate p-values < 0.05, <0.01, and <0.001, respectively.
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To better understand the genetic landscape governing GMT in 168 TCGA-GBM tu-
mors, we performed weighted correlation network analysis (WGCNA) of their transcrip-
tomes, which identified 21 modules of co-expressed genes, each denoted by a specific
color (Figure 2E). For each tumor, the overall expression pattern of a specific co-expressed
module was summarized by its eigengene, representing the first principal component of
the expression data [38]. Subsequent module-trait relationship analysis revealed that the
eigengene of the “blue” module had the strongest positive correlation with the GMT score
(R =0.73) (Figure 2F). This module, consisting of 694 genes, of which 100 genes overlapped
with Verhaak’s mesenchymal signature, was selected for further analysis.

2.2. Identification of Hub Genes in the GMT Regulatory Network

To construct a robust gene signature for Connectivity Map analysis, we aimed to distin-
guish GMT-related transcriptomic changes in GBM cells from those in the tumor microenvi-
ronment. To achieve this, we first identified which genes in the “blue” module are activated
in mesenchymal GBM cells, then analyzed their position within the GMT-associated gene
network to select hub genes with strong regulatory potential (Figure 3A).

Analysis of the GSE192710 RNA-seq dataset identified 3718 differentially expressed
genes (DEGs) upregulated in mesenchymal GBM cells compared to their proneural coun-
terparts, with 160 of these genes located in the “blue” module (Figure 3B,C). The regulatory
potential of selected 160 genes was further assessed by analyzing their position in the recon-
structed GMT-associated gene network, using six key topological criteria (Degree, MCC,
MNC, EPC, Closeness, and Radiality). This analysis revealed 31 hub genes that occupy
central positions in the network, including signal transduction participants (A2M, ADRB2,
ARRB2, DAB2, JAK3, LYN, PIK3CD, STAT5A), regulators of immune response (C3, CSF1,
CXCLS, IL10RA, IL15,1L18, IL4R, IL6R, IL7R, IL13RA1, THBD, TLR1, TLR2, TLR6), cell death
(CASP10, CASP4, FAS, PRKCD), and cell adhesion and invasion (ITGAL, PLAUR, SELL)
(Figure 3D). Importantly, 25 of these hub genes are not included in Verhaak’s mesenchymal
signature; therefore, we decided to investigate their association with GMT in more detail.

We further examined the correlation between hub gene expression and transcriptomic
changes associated with GMT in TCGA-GBM tumors. As expected, the most hub genes
were positively correlated with GSVA enrichment scores for EMT, inflammatory response,
hypoxia, and TGF-f signaling, with the most promising associations shown for CXCLS,
IL4R, PLAUR, and THBD (median R = 0.61, 0.62, 0.69, and 0.69, respectively) (Figure 4A).
Furthermore, the majority of hub genes demonstrated the co-expression with mesenchymal
markers (the most significant correlation revealed for FAS, IL13RA1, and PLAUR (median
R = 0.53)) and a negative, albeit relatively weak, correlation with proneural markers
(JAK3, FAS, and PLAUR showed the most pronounced R coefficients (median R = —0.42))
(Figure 4B). Interestingly, immune cell deconvolution revealed an association of hub genes
mainly with the monocyte-macrophage lineage, with a predominance of pro-inflammatory
M1 macrophages (median R = 0.67). Among other immune cells, a prominent association
with hub genes was found for B cells, CD4+ effector memory T cells (CD4+ Tem), and mast
cells (median R = 0.49, 0.49, and 0.38, respectively), all belonging to the high GMT score
group (Figure 4C). The results obtained are consistent with published data on EMT. A gene
cluster associated with monocytes, macrophages, and mast cells was previously observed
after EMT induction in breast cancer cells [39], and CD4+ Tem were shown to be involved
in regulating EMT of pneumocytes during fibrosis [40].
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Figure 3. Identification of the GMT gene signature. (A) Workflow. Differential expression analysis
was performed on the GSE192710 dataset to find genes upregulated in G7 mesenchymal GBM cells
compared to E2 proneural GBM cells (p-value < 0.05, log2(fold change) > 1). These genes were
used to construct a gene network using STRING. Upregulated genes overlapping with the WGCNA
blue module (Figure 2E,F) were selected, and their positions within the network were analyzed
using cytoHubba. This analysis identified 31 hub genes that form the GMT signature, which were
then used in Connectivity Map analysis. (B) A volcano plot displaying the results of differential
expression analysis between mesenchymal G7 cells and proneural E2 cells from the GSE192710
dataset. Genes that are significantly upregulated (p-value < 0.05 and log(fold change) > 1) are
represented as red dots. (C) Intersection of the upregulated DEGs from GSE192710 and the GMT-
associated blue module of WGCNA. (D) The GMT regulatory network, in which the top-30 hub genes

are color-coded and sized by centrality score.

Thus, topological analysis revealed a regulatory core of the GMT, consisting of 31
hub genes associated with, and likely triggered by, inflammation and hypoxia in the GBM

microenvironment.
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Figure 4. Associations of the hub genes with hypoxia, inflammation, and expression of proneural
and mesenchymal markers. (A) Spearman’s correlation between hub gene expression and GSVA
enrichment scores for EMT, inflammatory response, TGF-f3 signaling, and hypoxia in TCGA-GBM,
with significant results marked by an asterisk (* p < 0.05). (B) Spearman’s correlation between hub
gene expression and established markers of mesenchymal and proneural GBM subtypes in TCGA-
GBM. Only significant results (p < 0.05) are shown. (C) Correlation between hub gene expression and
immune cell enrichment scores in TCGA-GBM. Only significant results (p < 0.05) are shown. Genes
belonging to Verhaak’s mesenchymal signature are highlighted in orange.

2.3. Assessment of Clinical Relevance for GMT-Associated Hub Genes

To verify the association of hub genes with GMT in clinical settings, the Chinese Glioma
Genome Atlas (CGGA) and Gravendeel datasets, containing transcriptomic and survival
data from 218 and 155 GBM patients, respectively, were included in our study [41,42]. Simi-
larly to the procedures applied to the TCGA-GBM data collection, we calculated GMT scores
for each tumor in these datasets using GSVA-derived enrichments of Verhaak’s mesenchy-
mal and proneural signatures (see Section 2.1 for details). Subsequent analysis revealed a
strong positive correlation between hub gene expression and GMT scores across all clinical
datasets (median R = 0.60, 0.63, and 0.55 for TCGA, CCGA, and Gravendeel, respectively),
similar to the correlation profile of mesenchymal markers (median R = 0.64, 0.60, and 0.61,
respectively) and opposite to that of proneural markers (Figure 5A). In addition, hub gene
expression exhibited a similar, albeit less robust, correlation with GSVA-derived enrichment
of the EMT hallmark signature in tumors, with the most pronounced coefficients observed
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in the TCGA and CCGA datasets (median R = 0.51 and 0.50, respectively) (Figure 5A).
The obtained data independently confirmed the relevance of hub genes as GMT participants
and novel promising markers of mesenchymal-like phenotype in GBM patients.
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Figure 5. Validation of the regulatory role of hub genes in GMT. (A) Spearman’s correlation analysis of
hub gene expression with GMT scores and EMT enrichment scores (EMT ES) across the TCGA-GBM,
CGGA, and Gravendeel datasets. Only significant results (p < 0.05) are shown. (B) Relationships of
hub genes with GBM (red), EMT (yellow), invasion (soft blue), and metastasis (gray) were identified in
the literature using GenCLiP3. Genes belonging to Verhaak’s mesenchymal signature are highlighted
in orange.

To determine the extent to which hub genes have been studied in the context of
GMT, we next performed text mining analysis. Since “GMT” is a relatively new term,
we analyzed the co-occurrence of hub gene names with more established terms such as
“GBM”, “EMT”, “metastasis”, and “invasion” in PubMed abstracts. As illustrated in
Figure 5B, CASP10, IL10RA, and IL13RA1 did not co-occur with any of these terms and can
therefore be considered as novel candidate markers for GBM malignancy. The remaining
genes have already been described in scientific texts in the context of “invasion” and
“metastasis”, and co-occurrence with more specific terms, such as EMT (DAB2 and THBD),
GBM (IL4R and TLR2), or EMT and GBM together (13 genes) was shown for a number of
them (Figure 5B), confirming the validity of our in silico analysis.

Consistent with this, a Cox univariate analysis of the TCGA-GBM, CGGA, and Graven-
deel datasets revealed a significant association between survival outcomes in patients with
GBM and 24 hub genes. Among them, IL4R, A2M, FAS, and TLR2 showed this association
in two transcriptomic sources, while CASP4, IL13RA1, PLAUR, and THBD were associated
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with poor prognosis in all three datasets (Figure 6A). Further stratification of patients
by median expression levels of these genes and Kaplan—Meier analysis revealed worse
survival in patients with higher expression of CASP4, PLAUR, or THBD (detected in two of
the three datasets analyzed) (Figure 6B-D). In the case of IL13RA1, its high expression was
associated with poor prognosis only in the TCGA-GBM dataset (Figure 6B).
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Figure 6. Relationship between hub gene expression and survival outcomes in GBM. (A) Intersection
of prognosis-related hub-genes identified by univariate Cox analysis (HR > 1) in the TCGA-GBM,
CGGA, and Gravendeel datasets. (B-D) Kaplan—Meier survival curves for patients from the TCGA-
GBM (B), CGGA (C), and Gravendeel (D) datasets, stratified by median expression levels of prognosis-
related hub genes. P-values were determined by the log-rank test. Genes belonging to Verhaak’s
mesenchymal signature are highlighted in orange.

Collectively, consistent results from three independent clinical datasets confirmed the
association of revealed hub genes with GMT and GMT-related processes in GBM patients,
underscoring their potential as a promising gene signature for transcripromics-based drug
repurposing to block GMT.

2.4. Drug Repurposing via Connectivity Mapping

The revealed GMT-associated hub gene signature was uploaded to the CLUE web
tool for Connectivity Map analysis, identifying 120 small-molecule compounds that reduce
the expression of these genes in various human cancer cell lines independently of cell origin
(Table S1). As shown in Figure 7A and Table S1, the largest group of identified drugs comprised
35 neurotransmitter agents, including modulators of adrenergic receptors (7 compounds),
acetylcholine system (6), and serotonine system (6). The second largest category consisted
of 25 compounds that target kinases, including VEGFR (4), JNK (2), GSK-3 (2), ERKS (2),
and LRRK?2 (2). The third category included 12 inhibitors of non-kinase enzymes, primarily
focusing on methyltransferases (3), peptidases (3), deacetylases (2), and prenyltransferases
(2). Beyond these major classes, we also identified several additional drug categories, namely
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modulators of apoptosis (10), nuclear receptors (9), and membrane transport (5), antimicrobials
(7), anti-inflammatory agents (5), and others (12). Notably, the Connectivity Map results
included temozolomide, an FDA-approved GBM drug, and vemurafenib, which has shown
durable anti-GBM activity in patients with the BRAFV®E mutation [1].
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Figure 7. In silico repurposing of small molecule drugs for GMT targeting. (A) Mechanisms of action of
the repurposed drugs identified through connectivity map analysis on the CLUE platform, based on
opposing their expression signatures to GMT-associated hub genes. (B) Predictions of BBB-permeability
for the repurposed drugs using AlzPlatform and PreADMET, with temozolomide and doxorubicin
serving as negative and positive controls, respectively. (C) Relationships between BBB-permeable drugs
and GBM (red), EMT (yellow), invasion (soft blue), and metastasis (gray) identified in the literature
through LitSense. (D) Predictions of P-gp substrate specificity for BBB-permeable drugs using LiverTox
Workspace, SwissADME, and ADMETlab, with doxorubicin and temozolomide serving as positive and
negative controls, respectively. Structures of the hit compounds are shown below.
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Since the blood-brain barrier (BBB) presents a major obstacle in GBM drug develop-
ment [43], the BBB permeability of the identified drugs was further assessed using two
independent chemoinformatics tools, AlzPlatform and PreADMET. Temozolomide and
doxorubicin served as reference compounds [44] and showed high and low BBB perme-
ability, respectively, confirming the validity of the data obtained (Figure 7B). Results from
both platforms indicated that 59 out of 120 compounds had comparable or higher BBB
permeability scores than temozolomide, and these compounds were selected for further
study (Figure 7B, Table S1).

Next, a text mining analysis of PubMed Central articles was performed to determine
whether the identified molecules had been studied in the context of cancer malignancy.
As shown in Figure 7C, 22 out of 59 compounds were associated with the terms “metastasis”
and “invasion”, of which 15 drugs were mentioned in abstracts related to GBM (naloxone,
navitoclax, and phenothiazine), EMT (estrone, Lrrk2-IN-1, PCI-34051, and physostigmine) or
both these terms (aspirin, estradiol, GSK-3 inhibitor II, L-BSO, resveratrol, SP600125, temozolo-
mide, and vemurafenib). Further manual text analysis revealed that the listed EMT-associated
drugs can be divided into three groups according to their effect on EMT: EMT inhibitors
(aspirin [45,46], resveratrol [47,48], SP600125 [49,50], Lrrk2-IN-1 [51], PCI-34051 [52]), EMT in-
ducers (estradiol [53,54], estrone [55], L-BSO [56,57], physostigmine [58]), and context-
dependent EMT modulators (GSK-3 inhibitor II [59,60], temozolomide [61-65], and vemu-
rafenib [66-69]). Similar effects of some of these compounds on GMT have also been reported
previously, namely, suppression of this process by aspirin (basal GMT status) [70], resvera-
trol (TGF-B-induced GMT) [71] and SP600125 (IL33-induced GMT) [72] and its activation by
estradiol [73]. Thus, these data confirm the validity of our transcriptome-based search for
potent GMT modulators and the expediency of further analysis.

Given the crucial negative role of P-gp in the regulation of the efficiency of xenobiotic
accumulation in brain tissue [74], we next asked whether the identified hit compounds
were substrates for this efflux pump protein. To address this issue, the top 12 molecules
with the highest BBB permeability scores (Figure 7B) were uploaded to three chemoinfor-
matics platforms, LiverTox Workspace, SwissADME, and ADMETlab, and their substrate
specificity for P-gp was predicted. As shown in Figure 7D, SP600125, dibenzoylmethane,
FG-7142, vemurafenib, and phensuximide were recognized as non-substrates for P-gp by
all in silico tools, confirming their promising application for GBM treatment.

Then, we assessed the similarity of the identified non-P-gp substrate compounds to
GBM drugs (both FDA-approved and investigational) in terms of chemical structure and
transcriptomic effects. As shown in Figure 8A,B, all of the selected hits were characterized
by low or moderate structural similarity with GBM drugs (Tanimoto coefficients of less
than 0.7). However, four out of five of the selected hits exhibited similar transcriptomic
changes to those of temozolomide. Furthermore, vemurafenib and SP600125 exhibited
high connectivity scores with procarbazine (a DNA alkylating agent), irinotecan (a topoi-
somerase I inhibitor), and cediranib (a VEGEFR inhibitor) (Figure 8B). Dibenzoylmethane
elicited a distinct transcriptomic profile compared to all GBM drugs (Figure 8A), which can
be explained by its unique structural features that differ significantly from those of the
analyzed GBM drugs (Figure 8B).

Thus, multiparametric in silico analysis revealed 22 BBB-permeable drugs capable of being
repurposed for GMT treatment, among which SP600125, dibenzoylmethane, FG-7142, vemu-
rafenib, and phensuximide were characterized by the most advantageous drug-like properties.
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Figure 8. Comparison of the hit compounds with approved or clinically investigated GBM drugs.
(A) Tanimoto similarity matrix of the hit compounds with FDA-approved and investigational GBM
drugs. (B) Associations between the expression signatures of the hit compounds and GBM drugs
identified by the CLUE platform.

2.5. Effects of SP600125 on GMT Induced by TGF-p and Hypoxia

To select a compound for testing GMT inhibitory activity in vitro, we ranked hit
compounds according to the strength of interactions with the GMT-related 31 hub gene
signature. This involved (a) retrieving primary protein targets of hit compounds from
the Search Tool for Interactions of Chemicals (STITCH) database and (b) mapping their
interactions with hub gene signature using the Search Tool for the Retrieval of Interacting
Genes/Genomes (STRING), resulting in a chemical-protein-gene network (Figure 9A).
As shown in Figure 9A, only vemurafenib, SP600125, and FG-7142 formed edges with GMT-
associated hub genes through their primary targets. Dibenzoylmethane and phensuximide
had no edges with the reconstructed network at all, apparently affecting the GMT-related
hub gene signature indirectly (Figure 9A). Since SP600125 had the highest centrality score
among the analyzed hits (Figure 9B) and demonstrated a higher BBB permeability score
than vemurafenib and FG-7142 (Figure 7B), this compound was finally selected for in vitro
verification testing.

SP600125 is a multitarget compound that inhibits not only JNK1/2 (MAPKS8/9) but
also several other proteins, including six identified in the STITCH database (Figure 9A),
as well as the recently reported AhR [75], AURKA [76], and MELK [77]. To determine
which of these targets mediates the anti-GMT potential of SP600125, we assessed the effects
of other JNK inhibitors and the knockdown of SP600125’s protein targets on the GMT
signature. As shown in Figure 9C, only the JNK inhibitor CC-930 (tanzisertib) produced a
negative connectivity score similar to SP600125 (Table S2), while other inhibitors yielded
positive scores. These results suggest that the anti-GMT potential of SP600125 is determined
not solely by JNK1/2 inhibition but also by its effects on other targets. Indeed, analysis
of knockdowns revealed that the inhibition of MELK and FLT3 may also underlie the
GMT targeting effect of SP600125 (Figure 9C, Table S3). Furthermore, JNK1 (MAPKS),
but not JNK2 (MAPKD9), was found to be associated with the GMT signature (connectivity
scores of -90.8 and 10.86, respectively) (Figure 9C). Thus, our findings demonstrate that the
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Figure 9. In silico analysis of the anti-GMT activity of SP600125. (A) Compound-protein network
illustrating connections between hit compounds (rounded rectangles, color-coded by centrality
score), their primary protein targets (pink circles), and hub genes (blue circles). (B) Assessment
of compound importance in the network using six topological algorithms. (C) Similarity between
the GMT-associated gene signature and gene expression profiles from tumor cells treated with JNK
inhibitors or with knockdown of genes encoding SP600125’s protein targets. Analysis was performed
using the CLUE platform.

The effects of SP600125 on the viability of human GBM cells (U87 and U118), mouse
GBM cells (EPNT-5 and GL261), and human fibroblast hFF3 cells were evaluated using the
MTT assay after 24 and 48 h. As shown in Figure 10A, SP600125 reduced the viability of all
GBM lines in a dose and time-dependent manner. Among the cell lines tested, U87 cells
were the most sensitive to SP600125 (IC50%*" = 19.6 & 2.5 uM, IC50*" = 7.3 + 0.9 uM).
At 24 h, EPNT5 showed the least sensitivity (ICs5oF"NT° = 104.7 + 29.2 uM), while U118 and
GL261 were more responsive (IC50Y118 = 58 4 6.8 and IC5,CL201 = 65.2 + 18.5). However,
by 48 h, the effect was similar among these three lines, with ICsy values around 40 uM.
Notably, cytotoxicity against non-malignant hFF3 cells was significantly lower than in
GBM cells (IC502*" = >100 uM, IC5*8" = 87.1 & 22.7 uM) (Figure 10A).

Previous studies have explored the impact of SP600125 on mesenchymal transition,
utilizing two different incubation strategies, namely long-term exposure [50,72,78] and
short preincubation [49,79,80]. To evaluate how these approaches affect U87 cell motility,
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a key GMT-related process, we performed a wound healing assay. Long-term incubation
with non-toxic concentrations of SP600125 modestly decreased U87 cell migration potential,
with the highest dose (2.5 pM) reducing motility by 19.3% (24 h) and 21.3% (48 h) compared
to the control. In contrast, a brief 30 min pretreatment of cells with 20 uM SP600125 had a sig-
nificantly more pronounced effect, suppressing cell motility by 1.5-fold and 2.1-fold after in-
cubation without the compound for 24 and 48 h, respectively (Figure 10B and Figure S1A).
The effect of the pretreatment regimen on cell motility was verified in U118 and GL261 cells
(Figure 10C and Figure S1B,C). Based on these findings, we selected a short preincubation
scheme to assess the effects of SP600125 on GMT.
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Figure 10. Selection of an effective incubation scheme with SP600125. (A) Viability of human GBM
cells (U87 and U118), mouse GBM cells (EPNT-5 and GL261), and human non-malignant cells (hFE3)
after 24 h and 48 h of incubation with SP600125 assessed by MTT assay. IC50 values are shown
on the right. (B) Impact of various SP600125 incubation regimens on U87 cell motility in a wound
healing assay. U87 cells were subjected to low doses (0-2.5 uM) for 48 h or were pretreated with
high doses (20 uM) for 30 min and then left untreated for the rest of the time. (C) Effect of SP600125
preincubation on the motility of U118 and GL261 cells. Representative wound images at each time
point are provided in Supplementary Figure S1. Data are represented as mean =+ standard deviation
(SD). Statistical significance was determined by comparison with control groups using a t-test. **,
*** indicate p-values <0.01 and <0.001, respectively.

Since our repurposing strategy for SP600125 was based on the GMT gene signature,
which positively correlates with TGF-f3 signaling and hypoxia (Figure 4A), these two factors
were selected as GMT inducers for the verification study. To the best of our knowledge,
the anti-GMT potency of SP600125 has been previously studied only in the immune-
related model of IL33-induced GMT [72]. However, its ability to prevent GBM cells from
acquiring mesenchymal-like characteristics under TGF-f and hypoxic conditions had not
been explored.

It was shown that TGF-B1 stimulation at 50 ng/mL for 48 h significantly altered
U87 cell morphology, increasing elongation (aspect ratio (AR)) by 37.5% and cell area by
74.4% compared to control. Preincubation with 20 uM SP600125 for 30 min before TGF-31
stimulation partially reversed these changes, reducing cell area by 26.2% without affecting
AR (Figure 11A). This partial mitigation of TGF-p1-induced morphological changes was
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verified in U118 cells. Interestingly, TGF-31 increased elongation but decreased the size of
U118 cells, and SP600125 reduced both these parameters (Figure S1D).
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Figure 11. Influence of SP600125 on TGF-p1-induced EMT in U87 GBM cells in vitro. (A) U87 cell
morphology after 30 min of SP600125 (20 uM) induction and 48 h of TGF-f1 (50 ng/mL) stimulation.
Marginal graphs in the upper and right panels show the distribution of cells by area and aspect ratio,
respectively, with dashed lines indicating mean values. The image on the left was taken at x200 mag-
nification. (B) Transwell migration of U87 cells after SP600125 pretreatment and TGF-31 activation.
(C) The effect of SP600125 on vasculogenic mimicry of TGF-[31-treated U87 cells. The microscopic im-
age was taken at x40 magnification. (D) Relative mRNA levels of mesenchymal markers (fibronectin,
N-cadherin, Slug) and hub genes (Il-13, PLAUR) in U87 cells following treatment with SP600125 and
TGF-p1, measured by RT-qPCR and normalized to HPRT. (E) Western blotting of N-cadherin in U87
cells after stimulation with SP600125 and TGF-31. (F) Immunofluorescence of vimentin in U87 treated
with SP600125 and TGF-p1. (G) Relative mRNA levels of pro-inflammatory cytokines IL-6 and IL-1j3,
and anti-inflammatory cytokine TGF-31 in U87 cells treated with SP600125 and TGF-f1, evaluated
by RT-qPCR. Data are represented as mean =+ standard deviation (SD). Statistical significance was
determined by comparison with control or TGF-f1-treated groups using a t-test. *, **, *** indicate
p-values < 0.05, <0.01, and <0.001, respectively.
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Consistently, sequential incubation of U87 cells with SP600125 and TGF-31 signif-
icantly affects their transwell migration. As shown in Figure 11B, TGF-f3 significantly
enhanced cell penetration through the porous bottom of the CIM-Plate, increasing the
normalized cell index (ANCI) by 8.7 compared to the control at 24 h, whereas pretreatment
with SP600125 reduced this parameter 2.3-fold (ANCI = 3.8), exerting a suppressive effect
throughout the experiment. Notably, in the absence of TGF-31, SP600125 had no effect on
cell migration (Figure 11B).

The GMT was known to induce vasculogenic mimicry, a process where tumor cells
establish structures that resemble new blood vessels [81,82]. Microscopic examination
revealed that U87 cells spontaneously formed closed tube-like structures, creating a mesh.
Following a 48 h induction with TGF-$31, the mean size of these meshes increased by 35.6%.
In contrast, preincubation with SP600125 significantly suppressed the formation of the
vascular network, resulting in a 2.7-fold reduction in mesh size and the prevalence of
branches in the network structure (Figure 11C).

Next, we conducted RT-qPCR to assess markers of the mesenchymal state in U87 cells.
TGF-p1 treatment increased the expression of fibronectin (FN1), N-cadherin (CDH2),
Slug (SNAI2), and uPAR (PLAUR) by 2.8-, 14.4-, 1.9-, and 2.2-fold, respectively. In contrast,
preincubation with SP600125 reduced these levels to near control values (Figure 11D).
To confirm these changes at the protein level, Western blot and immunofluorescence anal-
yses were performed. Although TGF-$1 induced CDH2 mRNA expression (Figure 11D),
it did not increase N-cadherin protein levels at 48 h (Figure 11E). SP600125 suppressed
N-cadherin expression in TGF-31-treated U87 cells, lowering it below the control value
(Figure 11E and Figure S1E). TGF-31 also significantly enhanced vimentin staining in
U87 cells, which was reduced by SP600125 (Figure 11F). These findings show that SP600125
attenuated the phenotypic shift toward the mesenchymal state.

We demonstrated that the GMT signature is associated with an increased presence of
immune cells within tumors (Figure 4C). GBM is known to shape its microenvironment by
secreting immune molecules such as IL-6, IL-13, and TGF-f1 [83]. Therefore, we assessed
whether SP600125 modulates the immunoregulatory activity of U87 cells undergoing GMT.
As shown in Figure 11G, TGF-1 treatment increased IL-6 and TGF-31 expression by
1.5- and 2.5-fold, respectively, but decreased IL-13 expression by 2.8-fold. Interestingly,
SP600125 reversed all TGF-1-mediated effects: IL-1 mRNA levels were restored to 59%
of control, TGF-f31 expression was reduced by 1.6-fold, and IL-6 levels dropped to 57% of
control (Figure 11G).

Finally, the pharmacological potency of SP600125 was evaluated in U87 cells subjected
to CoClp-induced chemical hypoxia. As shown in Figure 12A, CoCl, significantly altered
the morphological characteristics of GBM cells. However, unlike TGF-$1, its effect was
more pronounced on AR (a 54.8% increase over control) than on cell area (a 33.9% increase)
(for TGF-p1, these parameters were 37.5% and 74.4%, respectively (Figure 11A)). Prein-
cubation of CoCl,-treated cells with SP600125 for 30 min decreases AR by 20.2% without
affecting the cell area (Figure 12A).

In addition to altering cell morphology, CoCl, increased vasculogenic mimicry for-
mation in U87 cells by 38% compared to the control. SP600125 decreased this parameter
by 2.2-fold (Figure 12B). The CoCly-induced acquisition of a mesenchymal phenotype was
accompanied by the upregulation of key mesenchymal markers and GMT-related hub
genes (Figure 12C). Compared to the effect of TGF-31 (Figure 12D), these changes were less
pronounced but still statistically significant. Specifically, CoCl, increased the expression of
N-cadherin, Slug, IL-13, and uPAR by 1.4-, 1.8-, 1.3-, and 1.2-fold, respectively, but had no
effect on fibronectin. SP600125 counteracted the CoCl,-induced upregulation of N-cadherin,
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IL-13, and uPAR, returning their expression to control levels. Surprisingly, SP600125 did
not affect Slug expression in this model (Figure 12C).
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Figure 12. Effect of SP600125 on hypoxia-induced EMT in U87 GBM cells in vitro. (A) U87 cell
morphology after 30 min of SP600125 (20 utM) induction and 48 h of CoCl, (400 uM) stimulation.
Marginal graphs in the upper and right panels show the distribution of cells by area and aspect
ratio, respectively, with dashed lines indicating mean values. The image on the left was taken at
%200 magnification. (B) The effect of SP600125 on vasculogenic mimicry of CoCl,-treated U87 cells.
The microscopic image was taken at x40 magnification. (C) Relative mRNA levels of mesenchymal
markers (fibronectin, N-cadherin, Slug, and uPAR) in U87 cells following treatment with SP600125
and CoCl,, measured by RT-qPCR and normalized to the housekeeping gene HPRT. (D) Relative
mRNA levels of pro-inflammatory cytokines IL-6 and IL-1$, and anti-inflammatory cytokine TGF-{31
in U87 cells treated with SP600125 and TGF-31, evaluated by RT-qPCR. (E) Measurement of IL-6 levels
by ELISA in supernatants of U87 cells stimulated with SP600125 and CoCl,. Data are represented as
mean = standard deviation (SD). Statistical significance was determined by comparison with control
or CoCly-treated groups using a t-test. *, **, *** indicate p-values <0.05, <0.01, and <0.001, respectively.

Consistent with the strong correlation between the GMT signature and the pro-
inflammatory M1-like macrophage gene profile (Figure 4C), our analysis showed that
CoCl; treatment increased IL-6 and IL-13 mRNA levels by 2.7- and 1.3-fold, respectively
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(Figure 11D). SP600125 reduced IL-1 to the control level, and, unexpectedly, further en-
hanced the CoCl-induced increase in IL-6 mRNA by 1.7-fold (Figure 11D). To investigate
the latter effect in greater detail, we assessed the influence of SP600125 on IL-6 at the protein
level in CoCl,-treated cells. In line with the mRINA data, CoCl;, increased IL-6 secretion
by 7.3-fold in U87 cells (Figure 11E), whereas SP600125 exerted a slight inhibitory effect,
reducing IL-6 secretion by 12%. Thus, despite some discrepancy between the RT-PCR
and ELISA results, it was demonstrated that hypoxia-induced GMT is indeed associated
with upregulation of pro-inflammatory cytokines, and that SP600125 partly suppresses this
effect. In addition, CoCl, was found to increase TGF-31 mRNA by 2.1-fold compared to
the control, and SP600125 did not affect this upregulation (Figure 11D).

Thus, in vitro experiments clearly confirmed the potent GMT inhibitory activity of
SP600125, which supports the results of our in silico analysis. Minor differences were observed
in GMT induction by TGF-f31 and CoCl,, but SP600125 significantly prevented GBM cells from
acquiring key mesenchymal-like features in both models, including morphological changes,
vasculogenic mimicry, motility, and the expression of mesenchymal markers.

Taken together, our findings (a) demonstrate the promise of using transcriptomic
data for anti-GMT drug repurposing, (b) significantly expand insights into the anti-GBM
potential of SP600125, and (c) provide valuable information on hub genes sensitive to
GMT inducers. The protein products of the identified hub genes could serve as diagnostic
biomarkers and novel potential therapeutic targets for managing GBM malignancy.

3. Discussion

Recent research shows that tumor microenvironment factors, such as hypoxia and
inflammation, drive GBM cells from a proneural to a mesenchymal subtype, promoting
invasive growth and reducing treatment efficacy [37]. Given the strong association of GMT
with glioma progression and the poor prognosis of GBM patients, GMT blockers could
serve as a promising new class of anti-glioblastoma drugs. Despite the successful use of
omics-based drug repurposing to find novel inhibitors of GBM cell viability [84], to our
knowledge, this approach has not yet been applied to the search for anti-GMT compounds,
highlighting the high novelty of the present study.

To date, several key intracellular factors controlling GMT have been identified (as re-
viewed in [12,37,85]), yet the subtle regulatory mechanisms remain incompletely understood.
Our transcriptomic analysis provides new insights into this framework. We identified a set
of GMT-susceptible genes that occupy hub positions in the GMT-associated gene network
and exhibit transcriptional behavior similar to known mesenchymal markers (Figure 4B).
These characteristics enabled the use of this gene set not only as a signature for identifying
anti-GMT compounds but also to uncover additional features. Specifically, a significant frac-
tion of these genes is associated with immune response (Figure 4A). xCell deconvolution
analysis revealed that their expression is linked to monocyte/macrophage lineage signature,
more strongly with the pro-inflammatory M1 type than with the tumor-associated M2 type
(Figure 4C). This finding is consistent with published data. Hailong et al. demonstrated that
the progression of high-grade glioma is specifically associated with the pro-inflammatory
phenotype of brain-resident macrophages [86]. Furthermore, neuroinflammation has been
shown to promote GBM malignancy [87]. Notably, IL13RA1, IL4R, and IL10RA, identified
as GMT-related hub genes in our analysis (Figure 4A), have been previously included in
immune-related gene signatures associated with the mesenchymal GBM phenotype [88] and
poor patient prognosis [89].

Among the identified hub genes, CASP4, IL13RA1, and THBD are of particular interest
due to their nodal location in the GMT-related regulome (Figure 3D) and negative asso-
ciation with GBM patient survival (Figure 6B-D). Although CASP4 and THBD are part
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of Verhaak’s mesenchymal signature (Figure 6A), and ILI3RA1 is linked to poor survival
in GBM patients [88], their direct role in GMT remains unclear. According to published
data, these genes play an important role in regulating the malignant characteristics of
GBM cells. Caspase 4 (CASP4) is more abundant in GBM than in normal brain tissue [90],
and ts activation induces ER stress-associated GBM cell death, highlighting its therapeutic
significance [91-94]. Interleukin 13 receptor «1 (IL13RA1) is a marker of GBM progression
and survival [95,96], while thrombomodulin (THBD) regulates GBM chemoresistance [97].
These genes have been implicated in processes related to acquiring a mesenchymal-like phe-
notype. For example, CASP4 regulates actin assembly and focal adhesion dynamics in GBM
cells, thereby enhancing their migration [98-100]; IL13R«1 induces key EMT-related tran-
scription factors ZEB1 and [3-catenin in colon and gastric cancer cells [101,102]; and THBD
inhibits EMT in colon, bladder, and lung cancer cells [103—-105]. Thus, our bioinformatics
analysis had not only revealed a GMT-related hub gene signature applicable for drug
repurposing but also identified novel GMT-sensitive targets for therapeutic control of GBM
invasive growth.

Computational methods accelerate drug repurposing. For example, machine learning
efficiently extracts key patterns from large multiparametric datasets to build prognostic mod-
els [106,107]. Using such models, anti-GBM activities were found for vortioxetine (an antidepres-
sant), cetirizine (an antihistamine), and lovastatin (a lipid-lowering drug) [108-110]. The Con-
nectivity Map, developed by the Broad Institute, identifies biologically active small compounds
by comparing their transcriptomic responses in tumor cells with disease gene signatures [22].
This method led to the discovery of anti-GBM activity in thioridazine (an antipsychotic drug),
repaglinide (an antidiabetic drug), and flubendazole (an anthelmintic drug) [23-25].

In our study, we used the Connectivity Map to identify small molecules with negative con-
nectivity to the GMT signature, indicating their anti-GMT potency (Figure 7A). Given the ex-
tensive list of predicted compounds, which included diverse agent classes (Figure 7A), we ap-
plied four key selection criteria to identify hit compounds: (i) BBB permeability (Figure 7B),
(ii) lack of P-gp substrate specificity (Figure 7D), (iii) reported activity in GBM or EMT studies
(Figure 7C), and (iv) similarity in chemical structures or transcriptomic effects to known GBM
drugs (Figure 8). This filtering identified SP600125, vemurafenib, FG-7142, dibenzoylmethane,
and phensuximide as promising novel GMT inhibitors (Figure 7D). SP600125 was selected
for further in vitro validation (Figures 10-12) based on its superior connectivity within the
GMT-associated network (Figure 9A, B) and high BBB permeability score (Figure 7B). The sub-
sequent successful confirmation of its anti-GMT activity (Figures 11 and 12) not only validates
our computational strategy but also underscores the potential of the other candidates as
promising therapeutics for targeting GMT.

e  Vemurafenib: This BRAF inhibitor suppresses EMT in colorectal cancer [67] and
melanoma [68] cells and demonstrates prolonged disease control in clinical trials for
high-grade glioma [111]. However, since resistance to vemurafenib in melanoma led to
a re-emergence of the mesenchymal phenotype [69], future evaluation of its anti-GMT
potential should consider the chemoresistant status of GBM cells.

e  Dibenzoylmethane: This compound inhibits the viability of GBM cells at micromolar
concentrations [112] and blocks the invasion of breast cancer cells induced by phorbol
12-myristate 13-acetate [113], a known EMT inducer [114].

e  FG-7142: Although there are no reports on the direct effect of this GABAA receptor
agonist on GBM cells, its anti-GMT potency warrants investigation. Activation of the
GABAA receptor suppresses brain cancer [115]. Furthermore, moxidectin, an analog of
FG-7142, significantly inhibited cancer stem cell properties of medulloblastoma cells [116],
which are closely associated with the mesenchymal phenotype of CNS tumors [117].
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e  Phensuximide: This anticonvulsant has not been previously investigated as an anti-
tumor agent. However, network pharmacology and drug repurposing studies have
identified it as a potential therapeutic agent for adrenal cortical [118] and breast [119]
carcinomas, including a highly invasive form of the latter [120].

In the verification block of the study, we confirmed that SP600125 effectively suppressed
GMT in GBM cells induced by TGF-f3 (Figure 11) and chemical hypoxia (Figure 12). Specifi-
cally, SP600125 reversed the morphological changes (Figures 11A and 12A and Figure S1D),
vasculogenic mimicry formation (Figures 11C and 12B), and mesenchymal gene activation
(Figures 11D and 12C) in both models. Moreover, SP600125 effectively suppressed the
FBS-stimulated transwell migration of TGF-3-induced GBM cells (Figure 11B).

The association between GMT and M1-like macrophage signatures, initially identified
through in silico analysis (Figure 4C), was partially validated in this study. We demonstrated
that the induction of GMT by either TGF-f31 or chemical hypoxia upregulated the expression
of pro-inflammatory cytokines IL-6 (Figures 11G and 12D) and IL-1§3 (Figure 12D), and these
changes were susceptible to SP600125 (Figures 11G and 12D,E). These findings indicate a
close relationship between GMT and GBM cells’ ability to shape a distinct immune microen-
vironment, thereby promoting malignant progression. This interpretation is consistent with
published studies [121-123].

SP600125 is a well-known JNK1/2 inhibitor characterized by low kinase selectivity and
the ability to interact with other protein targets [124]. Based on connectivity map analysis
(Figure 9C), we conclude that the pronounced anti-GMT activity of SP600125 is not primar-
ily due to its direct action on JNK1/2, as most other JNK inhibitors exerted the opposite
effect on the GMT signature. Instead, its activity is likely explained by multi-target prop-
erties, specifically interactions with JNK1, MELK, and FLT3. Indeed, Liu et al. previously
demonstrated a key regulatory role of MELK in ankyrin repeat domain protein 22 (ANKRD22)-
mediated GMT in GBM cells [125]. FLT3 also plays an important role in the progression of
intracranial tumors: mutations in FLT3 correlate with worse survival in glioma patients [126],
while pharmacological inhibition of FLT3 reduces meningioma cell motility [127]. A partic-
ularly intriguing finding of this study is that JNK1, but not JNK2, is negatively associated
with the GMT signature (Figure 9C). This observation presents an interesting therapeutic
opportunity. However, due to the high homology of the ATP-binding sites of JNK1 and
JNK2 (98% similarity) [124], developing a selective JNK1-targeting anti-GMT compound poses
a significant challenge.

Despite its poor kinase selectivity and off-target effects, intraperitoneal administra-
tion of SP600125 demonstrated significant antitumor efficacy in vivo in a murine model
of Lewis lung carcinoma and DU145 prostate carcinoma xenografts [128]. Additionally,
SP600125 markedly potentiated the antitumor effect of semisynthetic anhydrophytosphin-
gosine C-2 in EJ bladder carcinoma xenografts [129], indicating SP600125’s ability to accu-
mulate in tumor tissue. Furthermore, SP600125 was effective against Parkinson’s disease
and encephalopathy induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [130]
and cecal ligation and puncture [131], respectively. These findings confirm that SP600125
can cross the blood—-brain barrier and is well-tolerated in brain tissue.

The absence of significant systemic toxicity in mouse models [128-131] suggests that
despite its limitations, SP600125 could serve as a platform for developing novel antitumor
agents. Indeed, its derivative CC-401 has been evaluated in clinical trials for acute myeloid
leukemia (NCT00126893) [132]. Another derivative, CC-930, which shows a connectivity
profile similar to SP600125 (Figure 9C), was discontinued in Phase 2 due to an increased
risk of hepatotoxicity (NCT01203943) [133]. Clearly, further development of SP600125
as a structural platform for new anti-GMT agents requires molecular derivatization to
mitigate its adverse effects. Promising strategies include introducing alkyl substituents at
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the N2 position [134,135], cleavage of the cyclohexanone ring followed by introduction of
substituents [136], or conjugation of the molecule with targeting moieties [137].

We acknowledge that this study has several limitations. Although transcriptomic
analysis suggests a promising regulatory role for the revealed hub gene signature in GMT
induction (Figure 5A), experimental verification of this issue is necessary. Our lead com-
pound selection was based on its structural properties (Figure 7B,D and Figure 8A) and
interactions with the GMT-related hub gene signature (Figure 9A,B), but successful repur-
posing requires consideration of additional features such as patent restrictions, clinical
approval status, and treatment cost. Furthermore, although JNK signaling is tightly linked
to cancer progression, SP600125 indiscriminately inhibits phosphorylation of all JNK sub-
strates, which determines its low tumor specificity [138]. In view of this, it is crucial
to elucidate the molecular mechanisms of SP600125’s anti-GMT activity and to identify
its key protein targets. Future research should focus on the derivatization of SP600125
to improve its selectivity and experimental testing of the remaining hits (vemurafenib,
FG-7142, dibenzoylmethane, and phensuximide) for GMT inhibitory properties. Finally,
the application of state-of-the-art machine learning approaches, which enable the analysis
of global transcriptomic data beyond the limited gene sets typically used in Connectivity
Map analysis [106,107] could significantly complement the results presented here.

4. Materials and Methods

4.1. Bioinformatics
4.1.1. Data Acquisition

The Cancer Genome Atlas—Glioblastoma multiforme (TCGA-GBM) dataset, which in-
cludes transcriptomic profiles and survival information for 168 patients, was sourced from
the Genomic Data Commons (GDC) data portal (https://portal.gdc.cancer.gov/, accessed
on 26 December 2023). The datasets “mRNAseq_693” and “mRNAseq_325" were obtained
from the Chinese Glioma Genome Atlas (CCGA) (https://www.cgga.org.cn/, accessed on
10 September 2024) and subsequently merged. To address batch effects, the “Combat_seq”
function from the sva package (v3.54.0) [139] in R was used. Subsequently, only samples
with confirmed GBM histology and corresponding survival information were retained, re-
sulting in a total of 218 patients. The Gravendeel dataset was accessed via the GlioVis portal
(http:/ /gliovis.bioinfo.cnio.es/, accessed on 10 September 2024). After filtering for GBM patients
with survival data, 155 samples remained. The RNA-Seq data from TCGA-GBM and CGGA
were normalized using the variance stabilizing transformation (VST) method, while the microar-
ray data from the Gravendeel dataset underwent log normalization. The GSE192710 dataset was
retrieved from the Gene Expression Omnibus database (https://www.ncbinlm.nih.gov/geo/,
accessed on 11 January 2024) as raw read counts for subsequent differential expression analysis.

4.1.2. Gene Set Enrichment Analysis

The gene signatures for mesenchymal GBM (M2122), proneural GBM (M2115), EMT
(M5930), hypoxia (M5891), TGF-f signaling (M5896), and inflammatory response (M5932)
were retrieved from the Molecular Signatures Database (MSigDB). The enrichment of sig-
natures was evaluated in TCGA-GBM patient tumors using Gene Set Variation Analysis
(GSVA) from the GSVA package (v2.0.7) in R [140]. The GMT score was calculated by
subtracting the proneural score from the mesenchymal score, as previously described [33].
The samples were divided according to the median GMT score into two subgroups, des-
ignated as “GMT high” and “GMT low”. Subsequently, Gene Set Enrichment Analysis
(GSEA) was conducted using GSEA software (v4.3.3) [141] to assess the enrichment of
gene signatures of EMT, hypoxia, TGF-p signaling, and inflammatory response in the
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“GMT high” and “GMT low” subgroups. The significance criteria were set at a nominal
p-value < 0.05 and FDR < 25%.

4.1.3. Text Mining Analysis

The co-occurrence of hub genes with the terms “epithelial-mesenchymal transition
OR EMT”, “glioblastoma”, “metastasis”, and “invasion” was analyzed in the MEDLINE
database using the default settings of GenCLiP3 (http://cismu.net/genclip3/analysis.
php, accessed on 3 November 2024) [142]. Terms were considered related if the number
of articles found exceeded three. A similar analysis for potential GMT inhibitors was
performed using the LitSense search system (https:/ /www.ncbi.nlm.nih.gov/research/
litsense/, accessed on 3 November 2024), which conducts co-word analysis on sentences
from the PubMed and PubMed Central databases [143] A manual review of sentences was
carried out to exclude potential misinterpretations of the terms “EMT” (e.g., “emergency
medical technician”, “endometriosis”) and “invasion” (e.g., “invasive procedure”, “invasive
infections”). Terms were considered related if the number of sentences exceeded five.

4.1.4. Survival Analysis

A survival analysis was conducted using the survival (v3.8.3) and survminer (v0.5.1)
packages [144,145] of R. Genes associated with prognosis were selected using univariate
Cox proportional hazards regression analysis, with a p-value < 0.05 considered significant.
The patient cohorts were stratified by median GMT score or median expression of prognosis-
related genes. Subsequently, Kaplan—-Meier curves were plotted, and differences were
evaluated using the log-rank test, with a significance threshold of p < 0.05.

4.1.5. Immune Cell Quantification

An immune cell type enrichment analysis was performed on TCGA-GBM samples
using the xCell package (v1.1.0) [146] in R. Subsequently, a literature review was conducted
to identify immune subtypes that had been experimentally validated for GBM.

4.1.6. Weighted Gene Co-Expression Network Analysis (WGCNA)

WGCNA was conducted using the WGCNA package (v1.73) [38] in R. Outlier genes were
filtered using the “goodSamplesGenes” function. A soft-threshold power {3 of 12 was chosen
using the “pickSoftThreshold” function to achieve a scale-free topology. A co-expression
network was created using the “blockwiseNodules” function, after which similar modules
were merged by cutting the dendrogram at a height of 0.25. Finally, Pearson correlation
analysis was performed to examine the relationship between the module eigengenes and the
GMT score or EMT enrichment.

4.1.7. Differential Expression Analysis

The transcriptomes of E2 and G7 cells, which represent proneural and mesenchymal
GBM, respectively, were obtained from GSE192710. Genes with increased expression in
G7 cells compared to E2 cells were identified using differential expression analysis in the
DESeq2 R package (v1.46.0) [147]. The analysis employed a Wald test with significance
thresholds of a Bonferroni-corrected p-value < 0.05 and a log fold change (logFC) > 1.

4.1.8. Gene Network Analysis

Upregulated differential expressed genes (DEGs) were used to construct a gene asso-
ciation network in Cytoscape (v3.10.3) with the STRING plugin (v2.2.0) [148], applying a
confidence score > 0.7 and no additional interactions as cutoff criteria. Nodes in the network
were ranked by topological features using the cytoHubba plugin (v0.1) [149], with central-
ity scores calculated by averaging the ranks of Degree, Maximal Clique Centrality (MCC),
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Maximum Neighborhood Component (MNC), Edge Percolation Component (EPC), Close-
ness, and Radiality. Subsequently, 30 hub genes were identified based on their centrality
scores and inclusion in the GMT-associated co-expression module as analyzed by WGCNA.

GMT inhibitors, their protein targets, and interactions were obtained from the STITCH
database v5.0 (confidence score > 0.7; interaction source: text mining, experiments,
and databases) [150]. They were then mapped to a hub gene network using the STRING plu-
gin in Cytoscape. The most interconnected GMT inhibitors in the network were identified
via cytoHubba, using the same procedure as for hub genes.

4.1.9. Connectivity Map Analysis

The CLUE platform (https://clue.io/, accessed on 11 January 2024) was used to com-
pare the hub gene signature with expression profiles of nine tumor cell lines treated by small
molecules and gene knockdown [22]. According to CLUE Connectopedia, connectivity
scores >90 or <—90 indicate strong similarity or dissimilarity, respectively. We selected
small molecules with scores <—90 as potential GMT inhibitors. Their mechanisms of action
were investigated using CLUE data and a literature review. To assess the similarity between
potential GMT inhibitors and FDA-approved or investigational GBM drugs, connectivity
scores were analyzed using the Touchstone dataset. For SP600125, its mechanism was
analyzed by comparing the expression profiles of JNK inhibitors and SP600125 target genes
with the GMT signature.

4.1.10. Chemoinformatics

The blood-barrier permeability of potential GMT inhibitors was predicted using
AlzPlatform (https:/ /www.cbligand.org/AD/, accessed on 15 January 2024) [151] and
PreADMET (https:/ /preadmet.qsarhub.com/, accessed on 15 January 2024). The top 30 hit
compounds from both platforms were intersected and assessed for their specificity as
substrates of P-glycoprotein (P-gp) using the Vienna LiverTox Workspace (https://livertox.
univie.ac.at/, accessed on 15 January 2024) [152], SwissADME (https:/ /www.swissadme.
ch/, accessed on 15 January 2024) [153], and ADMETIab (https://admet.scbdd.com/,
accessed on 15 January 2024) [154]. Doxorubicin and temozolomide served as negative and
positive controls, respectively, due to their contrasting BBB permeability and P-gp specificity.
Further details on these analyses can be found in an earlier publication [155]. The structural
similarity of potential GMT inhibitors with FDA-approved and investigational GBM drugs
was evaluated using the Tanimoto score in ChemBioServer 2.0 (https:/ /chembioserver.vi-
seem.eu/, accessed on 12 October 2024) [156].

4.2. Chemicals and Reagents

CoCl; (232696-5G) was obtained from Sigma-Aldrich (St. Louis, MO, USA). Fresh
stock solutions of CoCl, (25 mM) in deionized water were prepared each time before addi-
tion to cells. Human recombinant TGF-1 (CYT-716) was purchased from ProSpec-Tany
TechnoGene Ltd. (Ness-Ziona, Israel). SP600125 (ab120065) was obtained from Abcam
(Waltham, MA, USA), dissolved in DMSO at a concentration of 10 mM, and stored at
—20 °C before use. M-MuLV-RH First Strand cDNA Synthesis Kit and BioMaster SYBR
Blue reagent kit were obtained from Biolabmix (Novosibirsk, Russia). Primary rabbit anti-
human N-cadherin (ab76011) and vimentin (ab92547) antibodies, along with secondary
HRP-conjugated (ab205718) and Alexa Fluor 488-conjugated (ab150077) anti-rabbit IgG
antibodies, were purchased from Abcam (Waltham, MA, USA).

4.3. Cell Lines

Human GBM U87 and U118 and mouse GBM EPNT-5 cell lines were obtained from
the Russian Culture Collection (Institute of Cytology of the Russian Academy of Sciences
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(RAS), St. Petersburg, Russia). Mouse GBM GL261 cells and human non-transformed
hFF3 foreskin fibroblasts were kindly provided by Dr. Alexey Stepanenko (Department of
Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology,
Moscow, Russia) and Dr. Olga A. Koval (Institute of Chemical Biology and Fundamental
Medicine of the Siberian Branch of RAS, Novosibirsk, Russia), respectively. All cells were
maintained in DMEM medium supplemented with 10% fetal bovine serum (FBS; Dia-M,
Moscow, Russia) and 1% antibiotic-antimycotic solution (100 U/mL penicillin, 100 pug/mL
streptomycin, 0.25 pg/mL amphotericin B (Central Drug House Pvt. Ltd., New Delhi,
India)) at 37 °C and 5% CO; in a humidified atmosphere. During experimental procedures,
the medium was replaced with DMEM without additives to avoid effects associated with
growth factors, antibiotics, and antimycotics.

4.4. Biological Evaluations
4.4.1. Cell Viability Analysis

U87, U118, GL261, EPNT-5, and hFF3 cells were seeded at 10,000 cells/well in 96-well
plates and allowed to adhere overnight. SP600125 (0-100 uM) was then added to the cells
for 24 h and 48 h, after which cell viability was assessed using the MTT assay as described
previously [157].

4.4.2. Wound Healing Assay

U87, U118, and GL261 cells were placed in 24-well plates at densities of 250,000,
300,000, and 150,000 cells per well, respectively. When the cells reached approximately 80%
confluence, two perpendicular scratches were made across the cell layer using a 100 pL
pipette tip. Detached cells were then removed by washing with PBS. Subsequently, the cells
were co-incubated with low concentrations (0-2.5 uM) of SP600125 for 48 h. Alternatively,
the cells were pre-incubated with a high concentration (20 pM) of SP600125 for 30 min
and maintained in serum-free medium for the remainder of the experiment. Scratches
were photographed at 0, 24, and 48 h using an EVOS XL Core microscope (Thermo Fisher
Scientific, Waltham, MA, USA). Wound closure was calculated by assessing the wound
area at each time point using Image] (v2.14.0) and normalizing it to 0 h.

4.4.3. Assessment of Cell Morphology

U87 and U118 cells were seeded at 5000 cells/well in 96-well plates and allowed to
adhere overnight. The cells were pretreated with SP600125 (20 pM) for 30 min prior to incu-
bation with TGF-$1 (50 ng/mL) or CoCl, (400 uM) for 48 h. The photographs were obtained
using an EVOS XL Core microscope. Morphology was analyzed for 200 cells per group
using the parameters of the area, circularity (circ), aspect ratio (AR), roundness (round),
and solidity in Image]. In the main text, we focused on area and AR, while the other param-
eters, along with between-group statistical comparisons, are provided in Tables S4-56.

4.4.4. Transwell Migration Assay

500,000 U87 cells were allowed to attach to a 6-well plate overnight. Following a 30 min
pre-treatment with SP600125 (20 uM), the cells were incubated with TGF-f1 (50 ng/mL) for
48 h. Thereafter, they were detached using TrypLE Express (Gibco, Grand Island, NY, USA)
and placed at 50,000 cells in the upper chamber of a transwell plate in quadruplicate.
The migration of cells towards 10% FBS placed in the lower chamber was analyzed using
the xCELLigence RTCA DP system (ACEA Biosciences Inc., San Diego, CA, USA), as pre-
viously described [14]. In the main text, we focused on the 24 h endpoint, while Table S7
provides ANCI and between-group statistical comparison for each hour of the experiment.
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4.4.5. Vasculogenic Mimicry Analysis

300,000 U87 cells were placed in a 24-well plate. The next day, cells were pretreated
with SP600125 (20 uM) for 30 min and then supplemented with TGF-f1 (50 ng/mL) or
CoCl, (400 uM). Photographs were taken by the EVOS XL Core microscope at 48 h of
incubation. Tubular structures were analyzed by estimating the mean mesh size using the
Angiogenesis Analyzer plugin for Image] [158].

4.4.6. Western Blot

U87 cells (100,000 cells/well) were pretreated with SP600125 (20 pM) for 30 min and
incubated with TGF-p1 (50 ng/mL) for 48 h. Cell lysate was prepared using Laemmli buffer
(Sigma-Aldrich, St. Louis, MO, USA). Further experimental procedures were carried out as
described previously [157].

4.4.7. RT-qPCR

Following 30 min treatment with SP600125 (20 uM) and 48 h incubation with either TGF-31
(50 ng/mL) or CoCl, (400 pM), U87 cells were lysed with TRIzol Reagent (Ambion, Austin,
TX, USA). The cDNA synthesis and RT-qPCR were conducted using the M-MuLV-RH First
Strand cDNA Synthesis Kit and BioMaster SYBR Blue reagent kit, respectively, as described
previously [14]. Table S1 contains primer sequences for mesenchymal markers and the house-
keeping gene HPRT.

4.4.8. Immunofluorescence

150,000 U87 cells were seeded onto glass coverslips in 24-well plates. The next day,
cells were treated with SP600125 (20 uM) for 30 min, followed by TGF-f1 (50 ng/mL) for
48 h. Cells were fixed with 4% formaldehyde, then incubated with anti-vimentin antibody
(1:250) in permeabilization buffer (PBS with 0.1% Triton X-100 and 5 mg/mL BSA) for
1 h. AlexaFluor 488-conjugated secondary antibody (1:500) was applied in staining buffer
(5 mg/mL BSA in PBS) for 1 h in the dark. Nuclei were stained by DAPI (1 pg/mL in PBS).
Each staining step was followed by two washes. Coverslips were mounted on slides with
Fluoromount-G (Thermo Fisher Scientific, Rockford, IL, USA). Images were captured using
a LSM710 confocal microscope (Zeiss, Oberkochen, Germany) at X200 magnification.

4.4.9. Enzyme-Linked Immunosorbent Assay (ELISA)

U87 cells were seeded in 96-well plates at 10,000 cells/well and allowed to adhere
overnight. They were treated with SP600126 (20 uM) for 30 min, followed by CoCl,
(400 uM) for 48 h, after which the culture medium was collected. ELISA was performed
using the Interleukin-6-EIA-BEST kit (Vector-Best, Novosibirsk, Russia). Four-fold diluted
medium was incubated for 2 h in plates coated with IL-6 monoclonal antibodies, then with
biotinylated IL-6 antibodies for 1 h, followed by streptavidin-HRP for 30 min. Each step
was performed at 500 rpm and 37 °C on a thermostatic shaker (ELMI ST-3L, Riga, Latvia),
followed by five washes with Tween-PBS. The colorimetric reaction was developed by
incubating samples with tetramethylbenzidine for 25 min in the dark and stopped by
adding 0.5 M sulfuric acid. Absorbance was measured at 450 nm using a Multiscan RC
plate reader (Thermo LabSystems, Helsinki, Finland). IL-6 concentration was determined
using a calibration curve from standards of known concentration.

4.5. Data Analysis and Visualization

Data analysis and visualization was conducted using R (v4.4.2) and RStudio (v.2024.12.1).
A pairwise group comparison was conducted using the Student’s t-test and Wilcoxon rank
sum test from the rstatix (v0.7.2) package in R. Spearman correlation analysis was performed,
and the results were visualized using the Hmisc (v5.2.3) and corrplot (v0.95) packages in R,
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respectively. Additional visualization tools included ggplot2 (v4.0.0) [159], ComplexHeatmap
(v2.22.0) [160], ggvenn (v0.1.10) [161], networkD3 (v0.4.1) [162], and plotly (v4.11.0) [163].

5. Conclusions

This complex study yielded three sets of results that are novel and of interest for
molecular oncology and drug development. First, a novel gene signature susceptible
to GMT induction in GBM cells, occupying hub positions in the GMT-related regulome,
was identified. This list included 31 genes, a significant proportion of which were found
to be associated with the inflammatory response, suggesting an association of GMT with
the deployment of cytoprotective immune-related programs in GBM cells. Second, using
the GMT-related hub gene signature, a number of drug candidates with anti-GMT potency
were predicted, including SP600125, vemurafenib, FG-7142, dibenzoylmethane, and phen-
suximide. Given their negative effect on GMT-related hub gene expression and published
data confirming their ability to suppress EMT in non-brain tumor cells, the effect of these
compounds on GMT in GMB cells requires further detailed studies. Third, for the first time,
SP600125 was shown to effectively suppress GMT induced by TGF-3 and chemical hypoxia
in GBM cells, inhibiting morphological changes, motility, vasculogenic mimicry, and the
expression of mesenchymal markers. These results not only expand the understanding of
the anti-tumor potential of SP600125 but also confirm the applicability of the connectivity
map-based drug repurposing approach in the search for novel anti-GBM drug candidates.
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GMT Glial-mesenchymal transition
GSEA Gene set enrichment analysis
GSVA Gene set variation analysis
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P-gp P-glycoprotein
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STRING  Search Tool for the Retrieval of Interacting Genes/Genomes
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