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Abstract

G-quadruplex (G4) ChIP-Seq data are critical for studying the roles of G4 structures in vari-
ous biological processes, yet their reproducibility remains systematically uncharacterized.
In this study, we evaluated the consistency of in vivo G4 peaks across multiple replicates in
three publicly available datasets. We observed considerable heterogeneity in peak calls,
with only a minority of peaks shared across all replicates. To address this challenge, we
compared three computational methods—IDR, MSPC, and ChIP-R—for assessing repro-
ducibility and found that MSPC is the optimal solution in reconciling inconsistent signals
in G4 ChIP-Seq data. We further demonstrated that employing at least three replicates
significantly improved detection accuracy compared to conventional two-replicate designs,
while four replicates proved sufficient to achieve reproducible outcomes, with diminish-
ing returns beyond this number. Moreover, we showed that the reproducibility-aware
analytical strategies can partially mitigate the adverse effects of low sequencing depth,
though they do not fully substitute for high-quality data. Based on our findings, we rec-
ommend 10 million mapped reads as a minimum standard for G4 ChIP-Seq experiments,
with 15 million or more reads being preferable for optimal results. Our study provides
practical guidelines for experimental design and data analysis in G4 studies, emphasizing
the importance of replication and robust bioinformatic strategies to enhance the reliability
of genome-wide G4 mapping.

Keywords: G-quadruplex (G4); reproducibility estimation; performance comparison;
replicate design

1. Introduction
G-quadruplexes (G4s) are non-canonical secondary structures formed by guanine-

rich (G-rich) nucleic acid sequences [1]. Their fundamental structural unit is the G-tetrad,
a planar arrangement of four guanines held together by Hoogsteen hydrogen bonding.
Stacking of multiple G-tetrads, stabilized by central monovalent cations, gives rise to the
mature G4 structures.

The distribution of DNA G4s in the genome is not random; they are preferentially
enriched in functionally significant regions such as telomeres, gene promoters, and 5′

untranslated regions (5′ UTRs) [1]. This distinctive localization pattern suggests that
G4s play crucial roles in fundamental cellular processes, including the regulation of gene
expression and the maintenance of genomic stability. Consequently, G4s have emerged
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as highly promising therapeutic targets, particularly in oncology. Precise genome-wide
mapping of in vivo G4 structures is therefore essential for elucidating their biological
functions and facilitating the development of novel therapeutics.

While motif-based algorithms [2,3] can predict putative G4s (pG4s) and in vitro se-
quencing methods [4,5] can detect experimentally observed G4s (oG4s) formed in extra-
cellular environment, the dynamic and polymorphic nature of these structures presents
unique challenges for their accurate localization in living cells [6]. The formation and reso-
lution of G4s are dynamic processes influenced by cellular activities such as transcription
and replication, leading to substantial heterogeneity in G4 landscapes across individual
cells within a population. This biological variability introduces inherent noise between
replicate experiments, posing a significant challenge for the reliable profiling of in vivo
formed G4 structures.

Endogenously formed G4s (eG4s) can be captured in vivo using antibody-based tech-
niques with high-affinity probes antibodies as BG4 or G4P [7–10]. The majority of eG4
maps have been generated through ChIP-Seq or CUT&Tag experiments in various cell
lines. However, since recent concerns regarding the biased distribution of sequencing
reads in CUT&Tag data have been raised [11], this study focuses exclusively on G4 ChIP-
Seq datasets.

Given the inherent noise described above, a critical yet unaddressed question for these
intracellular G4 data is the consistency of peak calls—genomic intervals identified based
on sequencing read enrichment—across biological replicates. To address this gap, robust
methods for assessing reproducibility are required. Several computational approaches exist
for this purpose: The Irreproducible Discovery Rate (IDR) evaluates reproducibility by
measuring the consistency of peak rankings between replicate pairs [12]; Multiple Sample
Peak Calling (MSPC) integrates evidence from multiple replicates to rescue weak but
consistent peaks by combining p-values [13]; and ChIP-R employs a rank-product test to
statistically evaluate the reproducibility of peak intervals across numerous replicates [14].
Nevertheless, the suitability of these methods for G4 ChIP-Seq data remains to be validated.

In this study, we utilize three G4 ChIP-Seq datasets, each comprising more than two
replicates, to evaluate data consistency and test the performance of different reproducibility
estimation methods. We first assess inter-replicate concordance by examining the size of
peak sets that are supported by different numbers of replicates, the genomic distribution
of peaks, and their overlap with pG4s and oG4s. Based on this analysis, we establish a
pseudo-gold standard benchmark to evaluate the applicability of the three reproducibility
algorithms. Our findings indicate that a strategy based on MSPC is the optimal solution in
reconciling inconsistent signals in G4 ChIP-Seq data. We subsequently employ this method
to determine the optimal number of replicates and necessary sequencing depth required
for robust detection.

2. Results
2.1. Inconsistency of Peaks Across Replicate Samples

We assessed the reproducibility of in vivo G4 peaks from three datasets, K562-rep5,
K562-rep6 and HepG2-rep9, which comprise 5, 6, and 9 replicate samples, respectively
(see Methods). These datasets yielded 31,130, 23,748, and 58,906 consensus regions (peaks),
respectively, markedly exceeding the approximately 10,000 peaks typically reported in ear-
lier G4 ChIP-Seq studies [7,9,15,16]. However, only a small proportion of consensus regions
were supported by all replicates within each dataset, as the shared-by-all regions (i.e., peak
regions consistently detected across all replicates) accounted for approximately 21%, 7.3%,
and 0.5% of the total peaks in the K562-rep5, K562-rep6, and HepG2-rep9 datasets, respec-
tively (Figure 1A). The notably low consensus in HepG2-9rep was largely attributable to
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one outlier replicate (GEO ID: SRR11537940), which contributed only 621 peaks (Table S1).
Even after excluding this replicate and considering peaks shared by eight of the nine
samples, however, the shared-by-all regions remained low at around 8%. These results
indicate poor reproducibility among in vivo eG4 peaks and suggest that inconsistency
across replicates has been substantially underestimated.

 

Figure 1. Summary of the G4 peaks from the three datasets. (A) Proportion of consensus regions
(peaks) supported by k out of N replicates, where k = 1, 2, . . . , N, and N is the amount of replicate
samples. (B) Genomic distribution of peaks identified in k replicate(s). (C) Overlap with external G4
annotations (pG4 and oG4 sites) for peaks detected in k replicate(s). The left, middle and right panels
correspond to K562-rep5, K562-rep6, and HepG2-rep9, respectively. All available biological replicates
within each cohort were included in the analysis.

To assess the confidence of the called peaks, we examined their genomic distribution.
The shared-by-all regions showed the strongest enrichment in promoter regions, with over
70% located in these regions across all three datasets. This finding aligns with established
understanding that G4 structures are frequently associated with promoters due to their role
in transcriptional regulation. We further observed a clear trend: peaks detected in fewer
replicates were progressively less likely to be located in promoters (Figure 1B).

We also leveraged external G4 annotations for validation, including putative G4s
(pG4s) and in vitro observed G4s (oG4s). pG4s were identified using pqsfinder [2] based
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on sequence potential, while oG4s were derived from G4-Seq data provided by Chambers
et al. [4] Over 90% of shared-by-all regions overlapped with pG4s, and more than 70% over-
lapped with oG4s. Furthermore, among these peaks, a positive correlation was observed
between the degree of sharing across replicates and the proportion of overlapping with
pG4 or oG4 sites.

The enrichment of these peaks in promoter regions, coupled with their overlap with
external G4 annotations, corroborates their biological validity. Peaks consistently detected
across multiple replicates are thus more likely to represent endogenously formed G4 struc-
tures, whereas those limited to few replicates may reflect technical artifacts or stochastic
noise. However, relying solely on the peak regions shared by all replicates is inadequate,
as it is overly stringent and fails to retain sufficient true signals. In contrast, using the
sets of occurring-at-least-once regions across replicates is overly inclusive and introduces
false positives. Thus, a refined reproducibility assessment strategy for in vivo G4 data is
warranted, and the distribution across different genomic regions and the support from
external G4 evidence may serve as criteria for the validation of the strategy.

2.2. Performance of Computational Methods for Reproducibility Assessment of G4 Peaks

To evaluate the reproducibility of G4 ChIP-Seq signals across multiple replicates, we
compared three computational methods based on IDR, MSPC, and ChIP-R algorithms, each
employing distinct strategies for peak consistency evaluation. Given that IDR is designed
for pairwise replicate comparisons, we adopted a modified approach combining results
from multiple replicate pairs (see Methods). Performance was assessed using a pseudo-
gold standard benchmark based on an “M of N” criterion. This framework integrated
both the degree of replicate support and independent evidence from pG4/oG4 overlaps
to define a high-confidence (HC) set and an artifact noise (AN) set (see Methods). Within
this framework, true positives (TP) were defined as peaks overlapping the HC set, false
positives (FP) as those overlapping the AN set, and false negatives (FN) as HC peaks not
recovered by the method. Precision, recall, and the F1 score were subsequently calculated.

Precision–recall curves were generated for each method across all three datasets
Figure 2A), with overall performance quantified by the area under the curve (AUC). The
MSPC-based method consistently outperformed the other methods, achieving superior
balance between high precision and recall. In contrast, both IDR and ChIP-R exhibited
moderately lower performance, attributable in part to reduced sensitivity in identifying true
positive peaks and higher false-negative rates (Table S2). The limitations of IDR likely stem
from its design for dual-replicates and exclusive reliance on peak intersections, making it
susceptible to inconsistencies inherent in G4 data (Figure S1). Similarly, ChIP-R assigns the
lowest rank to intervals lacking peaks in a replicate prior to rank-product computation,
thereby amplifying the impact of peak variability. Consequently, IDR and ChIP-R are less
suited for assessing in vivo G4 data, where inter-replicate inconsistency is prominent, when
compared with MSPC.

Moreover, MSPC recovered the largest number of peaks across all datasets while
maintaining genomic distributions consistent with biological expectations and showing
comparable levels of overlap with pG4 and oG4 sites (Figure 2B,C). These results indicate
that MSPC’s ability to integrate weak but consistent signals across replicates offers a robust
solution for processing noisy and heterogeneous G4 data. Based on these findings, we
selected the MSPC-based approach for all subsequent analyses.
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Figure 2. Comparison of computational methods for assessing G4 ChIP-seq reproducibility.
(A) Precision–recall curves for IDR-, MSPC-, and ChIP-R-based methods across all replicates in
the three datasets, evaluated using a pseudo-gold standard benchmark. (B) Genomic distribution of
high-confidence peaks identified by each method at its optimal F1 score. Total numbers of these peaks
are indicated above each bar. (C,D) Overlap of high-confidence peaks (called at optimal F1 score)
with predicted (pG4) (C) and experimentally observed (oG4) G4 sites (D).

2.3. Optimal Number of Replicates: Three Improves Performance, Four Is Sufficient

A common practice in G4 antibody-based sequencing studies is the use of only two
biological replicates [8,9,17], and in some cases even one, often due to experimental con-
straints or specific research objectives [8–10]. However, whether two replicates are sufficient
for reliable G4 detection—particularly given the high intrinsic inconsistency of in vivo G4
data—has not been systematically evaluated. To address this, we applied the MSPC-based
method to randomly selected subsets of replicates (ranging from 2 to N, where N is the
total number available in each dataset) to simulate experiments with varying replicate
numbers. Each subset size was tested in five independent iterations, and performance was
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assessed using precision–recall curves based on the same pseudo-gold standard benchmark
mentioned above (Figure 3A).

 

 

Figure 3. Effect of replicate number on G4 reproducibility estimated by using MSPC. (A) Precision–
recall curves of the MSPC-based method evaluated using the pseudo-gold standard benchmark with
k replicates (k = 2 to N). (B) Number of high-confidence peaks identified at optimal F1 score across
different replicate count. (C) Mean F1 score for each k replicate set (k = 2 to N). Error bars indicate
the standard deviations across trials.

A consistent trend was observed in which the reproducibility of G4 peak detection
improved as the number of replicates increased, approaching the performance achieved
when using all available replicates. This pattern was evident across all three datasets.
Notably, the two-replicate designs not only resulted in the lowest precision and recall values
but also displayed the greatest variability across repeated trials (Figure 3A). Moreover, when
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applying thresholds that maximized the F1 score, the two-replicate design consistently
yielded the fewest high-confidence peaks (Figure 3B). These findings indicate that although
two replicates may be technically feasible, they are likely insufficient for robust genome-
wide profiling of in vivo G4 structures—at least within the datasets evaluated here.

In contrast, using three or more replicates led to marked improvements, yielding
higher F1 scores (increasing from approximately 0.9 to 0.95, Figure 3C, Table S3) and
reduced inter-trial variability (Figure 3A,C and Table S3) compared to the two-replicate
design. Performance metrics from designs incorporating four or more replicates were
largely comparable to those using full replicate sets, with diminishing returns beyond
four replicates—each additional replicate generally increasing the mean F1 score by ap-
proximately 0.01 or less. Furthermore, the number of high-confidence peaks identified
in three- and four-replicate designs was similar to that obtained with larger replicate sets
(Figure 3B). In summary, utilizing at least three replicates significantly enhances the com-
pleteness and stability of in vivo G4 landscapes, while four replicates are sufficient to
achieve reproducible results without substantial benefit from additional sequencing.

Notably, the aberrant F1 scores observed in the HepG2-rep9 dataset with three repli-
cates (Figure 3C, Table S3) is attributable to sample imbalance. This imbalance stemmed
specifically from the outlier replicate (GEO ID: SRR11537940) that exhibit an exceptionally
low number of mapped reads (Table S1), which likely skews subsampling results. This
interpretation is also supported by the correspondingly large standard deviation. Aside
from this anomaly, F1 score trends remained consistent across datasets, as the replicate
number increased, the effect of the outlier diminished, resulting in a corresponding increase
in F1 scores and a decrease in standard deviation. This pattern again underscores the
robustness of employing multiple replicates in G4 ChIP-Seq studies, even when anomalous
samples are present.

2.4. Rescuing Experiments with Low Sequencing Depth

A further challenge in ChIP-Seq experiments is insufficient or highly variable sequenc-
ing depth across replicates [18]. Such variability often stems from both technical and
biological inconsistencies throughout the experimental workflow—from immunoprecipita-
tion to library preparation and sequencing. Although seldom highlighted in published G4
studies, empirical evidence suggests that low sequencing depth remains a common obstacle,
especially for newcomers to the field. To assess whether integrating multi-replicate designs
with reproducibility-aware methods could alleviate this issue, we simulated low-coverage
conditions by subsampling reads from the K562-rep5 and K562-rep6 datasets to 5, 10, and
15 million mapped reads per sample, and the HepG2-rep9 dataset to 5, 10, 15, 20, and
25 million, taking into consideration their original mapping statistics (Table S1).

We applied the MSPC-based method to each subsampled dataset using all available
replicates. Increasing the sequencing depth significantly enhanced peak detection reliability
(Figure 4A). Performance curves across all datasets progressively approached—yet did not
fully match—those derived from the original non-subsampled (NS) data. To determine the
minimal read depth required for confident peak calling, we plotted the optimal F1 score
against the number of mapped reads under each subsampling scenario (Figure 4B). Using
90% of the maximum F1 score as a performance threshold, we found that approximately
10–15 million mapped reads are necessary to achieve this benchmark. This recommendation
aligns with the ENCODE guidelines [19], which propose a minimum of 10 million reads per
replicate for standard ChIP-seq experiments. Thus, we suggest 10 million mapped reads as
an acceptable minimum for G4 ChIP-Seq studies, though depths exceeding 15 million are
preferable for optimal results. Meanwhile, our findings demonstrate that incorporation of
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reproducibility-aware strategies with multiple replicates can compensate for the limitations
imposed by low sequencing depth, at least to some extent.

 

Figure 4. Performance of the MSPC-based method on G4 data with subsampled low sequencing
depth. (A) Precision–recall curves of the method using all N replicates under subsampled conditions,
compared to the original non-subsampled data (NS). (B) Non-linear fit of F1 score under different
subsampled conditions, with different number of mapped reads. Green dots represent observed

F1 scores, the blue curves show the fitted model F1 = F1,max ×
(

1 − e−kN
)

where F1,max is the optimal
F1 score generated by the original datasets, N is the number of mapped reads, and k is the parameter
to be estimated. Red dots and dashed lines indicate the read amounts required to achieve 90%
performance (F1 score).

3. Discussion
In this study, we systematically evaluated the reproducibility of G4 ChIP-Seq data

by examining peak consistency across biological replicates, genomic distribution patterns,
and overlap with predicted (pG4) and in vitro observed (oG4) G4 structures. Our analysis
revealed substantial inconsistency in peak calls across the three representative datasets,
underscoring a significant challenge for robust G4 identification and downstream functional
analysis. To address this issue, we compared three computational methods—based on
IDR, MSPC, and ChIP-R—using a pseudo-gold standard benchmark. MSPC demonstrated
superior performance in reconciling discordant signals across replicates, while both IDR
and ChIP-R were less suitable for G4 data due to their more aggressive strategies for
handling low-overlap peak sets.

We further evaluated the effect of replicate number on G4 detection reliability using
the MSPC framework. Although two replicates remain a common experimental design,
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our results indicate that three to four replicates significantly improve detection accuracy,
reducing both false positives and false negatives. Beyond four replicates, however, we
observed diminishing returns, suggesting that additional samples offer limited practical
benefit for such studies.

Finally, we simulated low sequencing depth conditions to mimic common technical
challenges in G4 ChIP-Seq workflows. We showed that leveraging multiple replicates
with reproducibility-aware strategies partially offset the loss of data quality caused by low
sequencing depth. Based on our findings, we recommend a minimum of 10 million mapped
reads per replicate for G4 ChIP-Seq experiments, with 15 million or more reads being
preferable for optimal outcomes. It remains important to note, however, the performance
of such rescued data remains inferior to that of high-depth original datasets. We therefore
emphasize that optimizations in wet-lab procedures should remain the primary strategy
for ensuring data quality. When experimental constraints preclude such improvements,
however, the use of additional replicates with reproducibility estimation offers a viable
alternative for recovering meaningful biological signals.

To our knowledge, this work represents the first comprehensive effort to assess con-
sistency across replicate samples in G4 ChIP-Seq data and to provide evidence-based
recommendations for experimental design and data analysis. These findings offer practical
guidance for researchers working with G4-related genomic datasets and underscore the
importance of reproducibility-aware strategies in epigenomic studies.

4. Materials and Methods
4.1. Benchmark Datasets

Three G4 sequencing datasets containing more than two replicate samples were down-
loaded from the Gene Expression Omnibus (Table 1). K562-rep5, containing 2 biological
replicates with 2 and 3 technical replicates, respectively, was from GSE107690, and K562-
rep6 and HepG2-rep9, with 6 and 9 technical replicates, respectively, were from GSE145090.
All the three datasets were generated by ChIP-Seq experiments with the antibody BG4. The
datasets exhibit different replicate structures, from purely technical to mixed biological and
technical, and the reproducibility-aware methods were tested on each dataset separately, to
assess their performance in identifying robust peaks across distinct scenarios with different
sources of variability.

Table 1. Summary of the datasets used in the study.

Dataset Name GEO Accession
Number Cell Line # of Replicates

K562-rep5 GSE107690 K562 5
K562-rep6 GSE145090 K562 6

HepG2-rep9 GSE145090 HepG2 9

4.2. Sequencing Data Processing and Peak Calling

Following the protocol suggested by Spiegel et al. [16], raw sequencing data were quality-
checked and adapter-trimmed by using FastQC (v0.11.9) [20] and Cutadapt (version 2.8) [21].
Reads were aligned to the hg19 reference genome with BWA (version: 0.7.17) [22], and then
filtered by using Samtools-(version: 1.17) [23]. Duplicate reads were removed with Picard
(version: 2.26.4) [24]. Peaks were identified by using MACS2 (version: 2.2.7.1) [25], with 10−4

as the p-value threshold, which is looser than the default value and allows more candidate
peaks to be identified.
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4.3. Generation of Consensus Regions and Quantification of Replicate Support

For a specific dataset containing N biological replicates, peaks from all the replicate
samples were merged and processed (Figure 5). Let Pi be the set of genomic intervals
(peaks) called from replicate Rep-i. The universal set of peak intervals is defined as the
union of all peaks across replicates:

U =
N⋃

i=1

Pi (1)

Figure 5. Generation of consensus regions and quantification of replicate support. The universal
set of peaks was defined as the union set of peaks from all the N replicates (illustrated for N = 4).
This union set U was then merged to form a non-overlapping set of consensus regions. For each
consensus region Cj, the number of replicates that support it (i.e., sj) was counted.

This union set U is then merged to form a non-overlapping set of consensus regions
C = {C1, C2, . . . , CM}, where each Cj is a discrete genomic interval. For each consensus
region Cj, its replicate support count sj is defined as the number of replicates in which a
peak intersects Cj:

sj =
N

∑
i=1

I
(

Pi ∩ Cj ̸= ∅
)

(2)

where I is the indicator function that equals 1 if the condition is true and 0 otherwise.
The consensus regions were grouped by sj, the number of consensus regions in each

group was then counted, and the proportion of different groups were calculated.
The union and intersection sets were generated by using pybedtools [26].

4.4. Reproducibility Measurement

Five strategies were employed for measuring the reproducibility of peaks among
multiple replicate samples: (1) Occurring-at-least-once; (2) Shared-by-all; (3) an IDR [12]-
based method, (4) an MSPC [13]-based method and (5) a ChIP-R [14]-based method.

The first two strategies operate on consensus regions discussed above. The occurring-
at-least-once strategy considers all consensus regions that appear in at least one replicate
(i.e., where sj = 1, 2, . . . , N), thereby maximizing sensitivity. In contrast, the shared-by-
all strategy retains only those regions supported by every replicate (i.e., where sj = N),
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maximizing specificity. These two methods serve as the evaluation baseline, representing
the two extremes of specificity and sensitivity, respectively, and providing a reference frame
for the performance of more complex methods.

IDR assesses reproducibility by comparing the consistency of peak rankings between
pairs of replicates. Since IDR was designed for only dual-replicates situations, we took
the union sets consisting of the reproducible peaks between any two of the replicates,
where the peaks were ranked and filtered by the irreproducible discovery rate. After being
filtered by a given threshold, these peaks were further merged. The rate values were used
only for ranking purposes, and their implications for hypothesis testing were ignored.
Different thresholds (1, 0.75, 0.5, 0.25, 0.1, 0.05, and 0.01) were tested. The version of IDR
we employed was 2.0.4.2.

MSPC processes the peak lists from all replicates at once, ranking the regions contain-
ing peaks by Fisher’s combined p-values. Peaks shown in any of the replicates were taken
into consideration (-c 1), and the algorithm was run in the “bio” form, which is a more
lenient option, with the default stringency and weak thresholds. The version of MSPC we
employed here was 6.0.0.

ChIP-R also processes the peaks lists from all replicates, and ranks the peaks based on
a rank-product test. Peaks shown in any of the replicates were taken into consideration
(-m 1), with the default cut-off value. The version of ChIP-R we used was 1.1.0.

4.5. Identification of pG4s and oG4s

Putative G4s (pG4s) were identified using pqsfinder (v2.0.1) [2]. In vitro observed G4s
(oG4s) were derived from G4-Seq data provided by Chambers et al. [4].

The intersections of identified G4 peaks with pG4s and oG4s were accomplished by
using Bedtools (v2.27.1) [27].

4.6. Pseudo-Gold Standard Establishment

A tiered Pseudo-gold standard was defined for each dataset based on the “M of
N” principle, an empirical approach in ChIP-Seq data analysis of which effectiveness
has been validated [16,18]. Additional G4 evidence, such as overlap with pG4s or oG4s,
was also employed, as such information is frequently used in G4 research to support the
validity of endogenous identified G4 structures [7,9,17,28]. For a N-replicate dataset, the
high-confidence (HC) set consisted of peaks detected in at least 2N/3 of the N replicates
(Sj ≥ 2N/3) and overlapping with both pG4 and oG4 sites, which represents the most
stable and robust G4 signals. Whereas the artifact noise (AN) set comprised peaks detected
in only 1 replicate (Sj = 1), or detected in 2 replicates (Sj = 2) but missing overlapping with
either pG4 or oG4 sites, which represents the most likely false positives or random noise.

4.7. Performance Evaluation of the Reproducibility-Estimating Strategies

The IDR-based, MSPC-based, and ChIP-R-based strategies were applied under eval-
uation to the three datasets, based on the pseudo-gold standard. The resulting peak sets
from each method were compared against the HC and AN sets to calculate metrics such as
precision, recall, and F1-score that provides a symmetric measure balancing both precision
and recall. The performance of these strategies was thus quantitatively assessed. The
true positives (TP) are the peaks overlapping the HC set, the false positives (FP) are those
overlapping the AN set, and the false negatives (FN) are peaks within the HC set but
missed by the current strategy. The metrics for performance evaluation were defined as:

Precision =
TP

TP + FP
(3)
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Recall =
TP

TP + FN
(4)

F1 =
2

Precision−1 + Recall−1 (5)

4.8. Genomic Annotation

Genomic regions were annotated by using the R package ChIPseeker (version: 1.44.0) [29].
Promoter, 5′ UTR, 3′ UTR, Exon, Intron, Downstream, and Distal Intergenic regions were
annotated in the above shown priority, where Promoter regions were defined as −1 kb to +1 kb
around the TSSs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms26199769/s1.
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