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Abstract

Primary graft dysfunction (PGD) remains a major cause of early morbidity and mortality
after a heart transplant (HTx). Understanding the donor-related mechanisms involved
may help improve organ selection and post-HTx outcomes. This study aimed to explore
the association between the donor serum biomarkers of cell death and inflammation and
the incidence of PGD and rejection in HTx recipients. We conducted a retrospective,
multicenter observational study of brain-dead (DBD) heart donors and corresponding
recipients between 2013 and 2019. Donor blood samples were analyzed for inflammatory
cytokines, cell death-related proteins, and mitochondrial (mtDNA) and genomic DNA
(gDNA). A total of 39 donor–recipient pairs were included. Sixteen recipients developed
severe PGD, and five experienced ≥2R cellular rejection. Donors whose recipients de-
veloped PGD had significantly lower serum Caspase-3 levels compared to those without
PGD (391.6 [101.8–1003.3] vs. 65.3 [40.2–163.3] pg/mL; p = 0.04). A trend toward lower
mtDNA/gDNA ratio was also observed in the same group (10.5 [5.4–24.6] vs. 6.5 [3.3–10.7];
p = 0.067). Lower Caspase-3 levels in donor serum were significantly associated with the
development of severe PGD in recipients. This may suggest that the sublethal activation of
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apoptotic pathways in the donor could play a protective role, potentially conditioning the
graft to tolerate ischemic injury.

Keywords: brain death donor; primary graft disfunction; allograft rejection; inflammatory
mediators; Caspase-3; cell death process; mitochondrial DNA

1. Introduction
Heart transplantation (HTx) remains the gold standard treatment for advanced heart

failure. Post-transplant 1-year survival is around 80–90%, according to the registries [1,2]
but these early outcomes are significantly impacted by primary graft dysfunction (PGD)
and rejection. PGD remains the primary cause of early mortality after HTx despite the
widespread use of mechanical circulatory support (MCS) to treat it. Its incidence and
mortality range from 16–36% and 19–28%, respectively [3–5]. Several factors in both the
donor and recipient have been associated with the development of PGD4 and there is a
growing interest in discovering donor biomarkers that may predict PGD [6,7].

An intense activation of the sympathetic nervous system known as “autonomic storm”
occurs after brain death [8], causes marked vasoconstriction followed by hypotension and
decrease in cardiac output [9]. These hemodynamic alterations translate into histological
changes with the appearance of contraction bands and cardiomyocyte necrosis [8]. Cytokine
gene expression increases after brain death in animal models and clinical studies [10–14].

Some studies have assessed the association between pre-operative inflammatory
biomarkers in brain death (DBD) donors and recipient outcome, yielding controversial
results [15]. High donor inflammatory biomarkers such as IL-6, IL-8, TNFα or IL-10
have been related to worse recipient heart function and survival [13,16]. However, despite
evidence of potential deleterious effect of a pro-inflammatory environment, donor treatment
with steroids has not demonstrated its utility in this context [17,18]. On the other hand,
a correlation between donor higher concentrations of soluble necrosis factor receptors,
IL-10 and IL-6, and reduced hospitalization times in recipients has also been described [19].
However, no studies have assessed the relationship between biomarkers of cell death in
donors and the outcomes after heart transplantation.

The aim of this study was to evaluate the association between inflammatory and cell
death biomarkers in DBD heart donors and early post-HTx outcomes, specifically PGD and
acute rejection.

2. Results
2.1. Baseline Characteristics and HTx Process

During the study period, there were 258 cadaveric organ donors. Donations after
the circulatory death (DCD) program did not start until 2021 and sixty-two DCD donors
were excluded. Of the 196 DBD donors, 55 were heart donors. We excluded 16 patients
whose serum samples could not be processed as sample processing was not available on
weekends. Finally, 39 heart donors were included in the study (Figure A1). The hearts were
distributed according to the national and regional distribution criteria, and all recipients
were transplanted in Spain. The organs were transported and preserved using standard
cold storage methods (Table S1).

The main age of DBD donors was 46 years, with 35.9% being women. Most of them
were smokers (61.5%) with low prevalence of other classic cardiovascular risk factors. The
main cause of death was stroke (33%) followed by subarachnoid hemorrhage (30%) and
traumatic brain injury (20%). Related to the ICU complications, more than 50% of patients
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suffered ventilator-associated pneumonia and 12,8% of patients presented acute kidney
injury (Table 1).

Table 1. Brain dead heart donors baseline characteristics, including previous comorbidities and cause
of death. Summary of laboratory test results, information related to infections and treatment received
during ICU stay.

Donor Baseline Characteristics (N = 39)

Comorbidities

Age (years) 46.4 ± 12.4

Women, n (%) 14 (35.9)

Diabetes mellitus, n (%) 0

Hypertension, n (%) 6 (15.4)

Dyslipidemia, n (%) 6 (15.4)

Kidney disease, n (%) 0

Lung disease, n (%) 0

Liver disease, n (%) 2 (5.13)

Cardiac arrest, n (%) 5 (12.8)

Laboratory results

Troponin T (ng/L) 156 ± 316

Lactate (mmol/L) 1.66 ± 1.07

Creatinine (µmol/L) 88.2 ± 47.8

Sodium (mmol/L) 148 ± 27.7

PaCO2 (mmHg) 38.7 ± 5.98

PaO2 (mmHg) 298 ± 122

HCO3 (mmol/L) 25.8 ± 3.80

Albumin (g/L) 35.7 ± 7.38

Prealbumin (g/L) 178 ± 101

ALT (U/L) 0.91 ± 1.01

Bilirubin (µmol/L) 12.2 ± 10.3

LDH (U/L) 4.73 ± 1.71

Hemoglobin (g/dL) 11.9 ± 2.67

Leucocytes (109/L) 15.58 ± 6.32

Cause of death, n (%)

Hanging 1 (2.56)

Anoxic encephalopathy 3 (7.69)

Stroke 13 (33.3)

Suicide 1 (2.56)

Subarachnoid hemorrhage 12 (30.8)

Traumatic brain injury 8 (20.5)

Infections, n (%)

Respiratory infection 20 (55.6)

Microbiological isolation 18 (46.15)

Treatments, n (%)

Steroids 6 (15.4)

Levothyroxine 5 (12.8)

Desmopressin 32 (82.1)

Mineralocorticoids 12 (30.8)
Continuous variables are expressed as means ± SD.
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Recipient mean age was 55.3 years, with 17.9% being women. The indication for Htx
was ischemic cardiomyopathy in 41% of patients and the prevalence of cardiovascular risk
factors was high, with 33% of patients being diabetic. More than 40% of recipients were on
chronic inotrope support (15.4%) or MCS (28.2%) at the time of HTx, with more than 35%
of patients listed as status 0 priority (Table 2).

Table 2. Heart recipients baseline characteristics, including previous comorbidities and pre-HTx
situation. Continuous variables are expressed as means ± SD.

Heart Recipient Baseline Characteristics (N = 39)

Age (years) 55.3 ± 11.2

Height (cm) 164 ± 28.7

Weight (kg) 73.3 ± 15.5

Women, n (%) 7 (17.9)

Diabetes mellitus, n (%) 13 (33.3)

Hypertension, n (%) 12 (30.8)

Dyslipidemia, n (%) 16 (41.0)

Prior smoker, n (%) 19 (48.7)

Chronic kidney disease, n (%) 11 (28.2)

Ischemic cardiomyopathy, n (%) 16 (41.0)

Chronic inotrope support, n (%) 6 (15.4)

Previous MCS, n (%) 11 (28.2)

Emergency 0 status, n (%) 14 (35.9)

Emergency 1 status, n (%) 5 (12.8)

Sensitization, n (%) 0

Time on waiting list (days) 107.2 ± 141.2

INTERMACS profile n (%)

1 7 (17.9)

2 5 (12.8)

3 6 (15.4)

≥4 21 (53.8)

The mean time that elapsed between brain death diagnosis and organ procurement was
14 h. The mean ischemic time was 158 min, and there was widespread use of vasopressors
at medium doses (mean maximum noradrenaline dose of 0.31 ± 0.19 mcg/kg/min).

Data on PGD were available for 38 patients, because one patient died during surgery
due to a surgical complication, which was not secondary to PGD (Figure A2). A total of
16 patients experienced PGD—43.8% had severe LV-PGD, 12.5% had moderate LV-PGD,
18.8% had mild LV-PGD, 6.25% had severe RV-PGD, and 18.6% had either mild or moderate
isolated RV-PGD, according to ISHLT 2014 definition [20]. Nine patients required MCS;
there were six extracorporeal membrane oxygenation (ECMO) cases, one bi-ventricular
assist device (BiVAD) case, one right ventricular assist device (RVAD) case, and one intra-
aortic balloon pump (IABP).

Rejection surveillance with endomyocardial biopsy (EMB) during the first month
post-HTx was available for thirty-six patients; two patients died before first EMB, and in
one patient with congenital heart disease, access to the right ventricle was not feasible. A
total of five patients (13.8%) showed a cellular rejection grade of ≥2 according to ISHLT
criteria during the first month post-transplant. Antibody-mediated rejection was also
explored through immunohistochemistry analysis in the biopsy, yielding negative results
for all individuals. All patients received standard immunosuppression with steroids,
tacrolimus, and mycophenolate. At least one dose of basiliximab was administered to
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33 patients (86.8%). None of the patients received induction treatment with thymoglobulin
or plasmapheresis. Mortality during ICU stay was 10% and remained unchanged at
30 days. There was one intraoperative death.

2.2. Primary Graft Dysfunction According to Brain Death Donor Profile

No clinical or laboratory parameter from the donor was significantly associated with
the development of severe primary graft dysfunction (PGD) in the recipient. Likewise,
no correlation was observed between the time from brain death diagnosis to organ pro-
curement and PGD incidence. Thyroid hormone administration in donors also failed to
improve outcomes. In contrast, recipients with preoperative mechanical circulatory sup-
port (23.5% vs. 32%, p = 0.04) or those exposed to longer cardiopulmonary bypass times
(115 min [111–140] vs. 137 min [122–205]; p = 0.03) exhibited a higher incidence of severe
PGD (Table S2).

Among the biomarkers assessed, Caspase-3 emerged as the strongest discriminator,
with significantly lower levels in donors whose recipients developed severe PGD. This
association remained statistically significant after adjustment for multiple comparisons,
suggesting a potential protective role of apoptotic priming in graft resilience (Figure 1).
A similar trend was observed for IL-6 and IL-2, which were also lower in the group of
donors whose recipients developed PGD, although these differences were not statistically
significant. Similarly, reduced mtDNA/gDNA ratios were noted in donors associated with
PGD (10.5 [5.4–24.6] vs. 6.5 [3.3–10.7]; p = 0.067) but failed to reach significance (Table 3).

Figure 1. Donor biomarkers on blood samples obtained within the first 24 h after brain death diagnosis.
Differences in the levels of biomarkers associated with cell death process and inflammation between
patients whose recipients developed primary graft disfunction and those who did not. Comparisons
between groups were performed using the Mann–Whitney U test. For multiple comparisons, p values
were adjusted using the Bonferroni correction, p(a): p adjusted.



Int. J. Mol. Sci. 2025, 26, 9434 6 of 13

Table 3. Distribution of genomic DNA (gDNA), mitochondrial DNA (mtDNA), and the
mtDNA/gDNA ratio in DBD donors according to the occurrence of acute cellular rejection and
PGD in recipients. Comparisons between groups were performed using the Mann–Whitney U test
and variables are expressed as median [IQR].

Variable No Rejection Rejection p No PGD PGD p

gDNA 5.8 [1.6–13.7] 11.5 [2.5–27.7] 0.327 5.8 [1.3–13.7] 6.2 [2.5–23.6] 0.534

mtDNA 63.5 [18.4–170.0] 108.6 [28.6–306.1] 0.385 74.4 [18.8–274.4] 26.7 [19.6–143.0] 0.438

Ratio 7.8 [5.1–25.2] 10.9 [5.9–14.5] 0.117 10.5 [5.4–24.6] 6.5 [3.3–10.7] 0.067

2.3. Occurrence of Rejection According to Brain Death Donor Profile

No clinically significant differences in acute cellular rejection were observed in relation
to donor age, cause of death, comorbidities, or baseline organ function. Similarly, no
differences were found in cardiologic biomarkers or in the use of vasopressors or inotropes
(Table S3).

Recipients who developed grade ≥2 cellular rejection received organs from donors
exhibited a trend toward lower levels of pro-inflammatory cytokines, particularly IL-2
and IL-6 (Figure 2). Although differences in apoptosis-related biomarkers such as Hsp60
and Caspase-3 did not reach statistical significance, consistently lower levels were noted
in donors associated with rejection. A similar non-significant trend was observed in
mtDNA/gDNA ratios (7.8 [5.1–25.2] vs. 10.9 [5.9–14.5]; p = 0.117), suggesting a potential
biological pattern despite a lack of significance (Table 3).

Figure 2. Donor biomarkers on blood samples obtained within the first 24 h after brain death diagnosis.
Differences in the levels of biomarkers associated with cell death process and inflammation between
patients whose recipients developed acute cellular rejection and recipients who did not develop cellular
rejection. Comparisons between groups were performed using the Mann–Whitney U test. For multiple
comparisons, p values were adjusted using the Bonferroni correction, p(a): p adjusted.
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3. Discussion
Serum biomarkers have demonstrated considerable promise for clinical use and their

application is expanding in some aspects of transplantation such as the non-invasive
surveillance of rejection [21]. However, evidence regarding their potential application in
donor evaluation and management is still scarce. We present one of the largest studies to
date evaluating cell death and inflammation-related biomarkers in DBD heart donors and
their association with early clinical outcomes after HTx.

PGD and allograft rejection continue to be major challenges, significantly affecting
first-year survival after HTx. In our cohort, severe PGD occurred frequently, with many
cases requiring MCS. Despite the incidence of severe PGD, 30-day post-transplant survival
remained high (90%), consistent with international registry data [1,2].

To date, predictive models for PGD have shown limited clinical accuracy. In our study,
the only donor-related factors associated with PGD were observed in recipients with prior
mechanical circulatory support and longer durations of cardiopulmonary bypass, and
findings aligned with recent publications [22].

Available evidence also suggests that traditional myocardial injury biomarkers offer
limited discriminatory value in donor assessment [23,24] a finding consistent with our re-
sults. Similarly, the administration of thyroid hormones in donors showed no improvement
in post-transplant outcomes, reinforcing prior observations [25].

Periods of cellular stress drive excessive reactive oxygen species production and
mitochondrial dysfunction that causes the mitochondrial permeability transition pore
opening and activation of the intrinsic apoptotic cascade [26]. In our cohort, donors
whose recipients did not develop severe PGD exhibited a biomarker profile consistent with
sublethal mitochondrial stress: they had modestly elevated inflammatory cytokines, higher
mtDNA/gDNA ratios, and significantly increased Caspase-3 levels.

Caspase-3 activation can occur via the intrinsic pathway (triggered by mitochondrial outer
membrane permeabilization) and the extrinsic pathway (death receptor–mediated) [27]. Higher
levels of Caspase-3 and higher mtDNA/gDNA ratios were associated with a lower incidence
of PGD. Both elevated mtDNA/gDNA ratio and Caspase-3 suggest controlled mitochondrial
permeability and the activation of the intrinsic apoptotic cascade.

In vitro studies showed that sublethal caspase activation has an important role in car-
diomyocyte differentiation. Bulatovic et al. demonstrated that caspase signaling promotes
the proliferation of cardiac progenitor cells, whereas its inhibition impairs cardiomyogene-
sis. These findings suggest that controlled apoptotic signaling might play an important role
in driving myocardial repair post-injury [28]. Moreover, in vitro evidence also indicates
that sublethal mitochondrial signals can trigger inflammation, alerting nearby cells in
response to stressors such as chemotherapy or infection [29].

Additionally, recent evidence indicates that caspases, beyond their classical role in
apoptosis, may regulate the biogenesis and cargo loading of extracellular vesicles (EVs) even
in non-lethal scenarios. These EVs can serve as mediators of cell-to-cell communication,
stress adaptation, and immunomodulation [30].

In this context, higher Caspase-3 levels in donors might promote the release of EVs that
precondition the graft by modulating the local immune response or enhancing cellular stress
resilience. A recent study conducted in pigs demonstrated brain death induced expression
of pro-inflammatory and pro-apoptotic markers, leading to the development of right
ventricular dysfunction in donors, which could potentially be prevented by tacrolimus [31].
However, there is no clinical study that proves the benefit of using calcineurin inhibitors in
the prevention of post-transplant PGD, and previous studies with corticosteroid treatment
in donors have yielded unsatisfactory results [32,33].
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Taken together, our results suggest that the presence of inflammation, capable of triggering
non-lethal caspase activation, could lead to a preconditioning of the myocardial cell before
the subsequent stress. This hypothesis may also help explain why the broad inhibition of
inflammation might not be the most effective therapeutic strategy in a donor setting.

Limitations: This is a hypothesis-generating study with limited statistical power due
to the small sample size. Nevertheless, it represents one of the largest studies to date
investigating donor-derived biomarkers in HTx. Although multiple comparisons were
performed, appropriate statistical adjustments were applied to mitigate this limitation.
Some biomarkers showed missing values inherent to the assay; however, this did not
affect Caspase-3, the main focus of the study. Donor management was standardized, as all
donors originated from the same institution; however, the multicenter design may have
introduced variability in post-transplant care practices, potentially influencing clinical
outcomes. Although the histological origin of circulating Caspase-3 was not assessed,
previous studies have demonstrated its activation in cardiac tissue from DBD donors [34].
Despite this limitation, the observed association between serum Caspase-3 levels and PGD
remains of interest due to its potential clinical applicability.

4. Materials and Methods
4.1. Patient Selection

We performed a retrospective, multicenter observational study. We included potential
heart donors of more than 18 years old, admitted to the Intensive Care Unit of Bellvitge
University Hospital between August 2013 and July of 2018. We included all DBD donors
with available stored blood samples in order to perform subsequent immunological analysis.
The hearts were distributed according to the national and regional Transplant Organization
distribution criteria and all centers with corresponding recipients were invited to participate
in the study. The study was approved by the Bellvitge University Hospital research ethical
committee (number PR066/17; approved on: 11 May 2017).

4.2. Data Collection

The epidemiological and clinical characteristics of DBD donors were recorded at the time
of brain death diagnosis. Data related to intensive care unit (ICU) admission, including inotrope
use and other medications, hemodynamics and biochemical parameters were collected.

The epidemiological and clinical characteristics related to the recipient’s baseline status, as
well as data of the postoperative course, which included surgical times, treatments administered
during ICU admission and biochemical parameters. PGD was defined and graded according to
the 2014 ISHLT consensus statement [35]. The requirement for mechanical circulatory support
due to PGD was specifically documented and classified as severe. Recipients with graft failure
due to surgical complications, hyperacute rejection, or pulmonary hypertension were excluded
from the PGD analysis. Rejection was classified according to the ISHLT definition [36], and we
considered clinically significant rejection as the presence of cellular rejection ≥2R or humoral
rejection needing bolus steroids ± additional therapies.

4.3. Sample Acquisition

The blood samples were obtained from each donor within the first 24 h after brain
death diagnosis. Then the samples were stored at least 30 min at room temperature,
centrifuged at 1200× g for 10 min and then aliquoted into 1.5 mL tubes and stored at
−80 ◦C until immunological analysis.
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4.4. Multiplex Analysis

The concentrations of interleukins, inflammatory mediators, and cell death markers—
including IL-1α, IL-1β, IL-1RA, IL-2, IL-6, IL-8, IL-10, IL-18, IL-33, IFN-δ, TNF-α, TREM-1,
CD28, IDO, GDF, MIP-1, MCP-1, C5a, sFas-L, TRAIL, TWEAK, Caspase-3, and Hsp60—were
quantified using the ProcartaPlex Human Plex Panel (ThermoFisher®, Waltham, MA, USA),
following the manufacturer’s instructions. Plates were processed using Luminex MAGPIX®

technology (Luminex corporation, Diasorin company, Austin, TX, USA). Results were expressed
as median fluorescence intensity (MFI) and converted to pg/mL based on standard curves.

4.5. Mitochondrial and Genomic DNA

The free DNA from 100 uL of serum from the heart donors was isolated with
the DNeasy blood and tissue extraction kit (Qiagen, Hilden, Germany), following the
manufacturer’s instructions. The DNA was eluted in 100 µL of elution buffer, soni-
cated for 10 min at 38 kHz to fragment the DNA, measured in Qbit4 fluorometer (Ther-
mofisher Scientific) and then the concentration was adjusted to 1–10 ng/mL. The sam-
ples were stored at −80 ◦C until the reverse transcription polymerase chain reaction
(RT-PCR) was performed. The RT-PCR for mitochondrial DNA (mtDNA) and genomic
DNA (gDNA) was performed according to Ajaz S. et al. [37]. For the mtDNA, we
used the forward primer hMitoF3 5′-CACTTTCCACACAGACATCA-3′ and the reverse
primer hMitoR3 5′-TGGTTAGGCTGGTGTTAGGG-3′; for the gDNA, we used the for-
ward primer hB2MF1 5′-TGTTCCTGCTGGGTAGCTCT-3′ and the reverse primer hB2MR1
5′-CCTCCATGATGCTGCTTACA-3′. The amplification was performed with the Quantitect
Sybr Green PCR (Qiagen 204141) in the CFX95 thermal cycler (BioRad, Hercules, CA, USA) by
triplicate, with an initial denaturation at 95 ◦C for 15 min (1 cycle), followed by denaturation at
95 ◦C for 10 s, annealing at 60 ◦C for 30 s, and extension at 72 ◦C for 1 min and 30 s (40 cycles)
and melt curve analysis. Sample concentrations were calculated using a calibration curve based
on the linear regression equation y = −mx + b. Measurements are expressed as DNA copy
number. The mtDNA/gDNA ratio is presented as a descriptive index.

4.6. Data Analysis

Biochemical and clinical donor parameters were associated with recipient outcomes as-
sessed as mortality, rejection, and PGD with or without the requirement of circulatory support.
Continuous nonparametric variables were summarized as the median (±IQR), and those that
follow a normal distribution as the mean (±SD). Categorical variables were expressed as count
and percentage. The groups were compared with the χ2 test for categorical variables or Fisher’s
exact test in the case of 2 × 2 tables, an analysis of variance (ANOVA) or Student’s t-test for
continuous variables in data with normal distribution, and the nonparametric Kruskal–Wallis
or Mann–Whitney U tests for data that did not follow a normal distribution. All statistical
tests and confidence intervals were constructed with a type I error alpha value of 5%. The
Bonferroni correction was applied to adjust the significance level in multiple analyses of donors’
inflammatory and cell death biomarkers to minimize the risk of Type I errors. Analyses were
performed with Stata software (version 16.1).

5. Conclusions
PGD remains a major challenge in HTx. Our findings suggest that non-lethal caspase

activation in the donor may precondition myocardial cells, enhancing graft tolerance to
subsequent stress. Lower donor serum Caspase-3 levels were linked to severe PGD, indicat-
ing a possible protective role of sublethal apoptotic signaling. These results underscore a
donor’s critical influence on transplant outcomes and highlight the underexplored potential
of donor serum biomarkers for prognostic evaluation and clinical decision-making.
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DCD Donation after circulatory death
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ECMO Extracorporeal membrane oxygenation
EMB Endomyocardial biopsy
EV Extracellular vesicles
GDF Growth differentiation factor
gDNA Genomic deoxyribonucleic acid
Hsp60 Heat shock protein 60
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ICU Intensive care unit
IFN-γ Interferon gamma
IL Interleukin
IL1RA Interleukin-1 receptor antagonist
INTERMACS Interagency Registry for Mechanically Assisted Circulatory Support
IP-10 Interferon gamma-induced protein 10
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PGD Primary graft dysfunction
RVAD Right ventricular assist device
sFAS-L Soluble Fas ligand
TNF-α Tumor necrosis factor alpha
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
TREM-1 Triggering receptor expressed on myeloid cells 1
TWEAK Tumor necrosis factor-like weak inducer of apoptosis

Appendix A

258  donors  B U H  
2013 - 2018

39 D BD  heart donors 
included

196 D B D  donors

55 D BD  heart donors

62 D C D  donors

141 no heart donation

16 blood sam ples 
unavailable 

Figure A1. Donor flow chart. BUH: Bellvitge University Hospital; DCD: donation after circulatory
death; DBD: donation after brain death.

39  D B D  heart donors

39  heart recipients

1 intraop erative 
d eath

1 postop erative d eath 

b efore first E M B

3 6  p  includ ed  in 
rejection analysis

3 8  p includ ed  in P G D  
analysis

5  p  w ith 
rejection

16  p w ith 
P G D

9  p  w ith 
M C S

1 unavailab le 
access for E M B

Figure A2. Heart recipients flow chart. EMB: endomyocardial biopsy; MCS: mechanical circulatory
support; p: patients; PGD: primary graft disfunction.
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