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Abstract

Acacetin, a naturally occurring flavonoid, has attracted increasing attention due to its broad
anticancer potential. In vitro and in vivo studies using diverse tumor models have demon-
strated that acacetin modulates oncogenic signaling, suppresses angiogenesis, and induces
apoptosis and other regulated cell death pathways. With the rising demand for multi-target
therapeutics, network pharmacology and molecular docking have emerged as powerful
tools to unravel the complex molecular mechanisms of phytochemicals. Unlike previous
reviews that have mainly focused on single pathways or limited cancer contexts, this
review emphasizes novelty by integrating network pharmacology with molecular docking
and explicitly linking these computational predictions to experimental validation, thereby
identifying epidermal growth factor receptor (EGFR), signal transducer and activator of
transcription 3 (STAT3), and the serine/threonine kinase AKT (also known as protein kinase
B (PKB) as central experimentally supported targets. This integrative framework maps
acacetin’s multi-target anticancer mechanisms and clarifies its translational opportunities
for future therapeutic development.

Keywords: acacetin; cancer; network pharmacology; molecular docking; EGFR; STAT3; AKT

1. Introduction

Cancer is one of the most formidable global public health challenges, consistently rank-
ing as the second leading cause of death worldwide and affecting millions of individuals
and families across diverse populations [1-5]. Cancer is characterized by uncontrolled cel-
lular proliferation, invasion of surrounding tissues, and the potential for distant metastasis,
all of which together contribute to its high morbidity and mortality [6].

Despite significant advances, traditional cancer therapies, including surgery, chemother-
apy, radiation therapy, and hormonal treatments, continue to grapple with intrinsic limita-
tions such as incomplete tumor eradication due to heterogeneity, systemic toxicity, devel-
opment of drug resistance, and adverse effects on patients” quality of life [1,7]. Although
these modalities remain the mainstay of oncology, therapeutic barriers underscore the
urgent need for novel and selective interventions [8]. Moreover, innovative strategies such
as targeted therapies, immunotherapies, gene therapy, and nanomedicine have emerged,
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offering improved specificity and promise for precision medicine. However, obstacles
such as antigenic variation, manufacturing complexity, limited tissue penetration, and high
costs are still encountered [9]. In this context, bioactive natural compounds, particularly
flavonoids, are attracting research interest due to their multi-target actions, favorable safety
profiles, and ability to regulate complex oncogenic signaling networks [10]. However, the
degree of scientific attention within this class has varied considerably. A PubMed search
conducted in August 2025 retrieved 7966 publications for luteolin and 7570 for apigenin,
two flavonoids that are structurally related to acacetin, but only 715 for acacetin, indicating
that acacetin has been investigated at roughly one-tenth the level of these well-established
flavonoids. Despite this gap, emerging evidence has revealed novel anticancer activities of
acacetin, particularly through molecular docking studies that predict multiple oncogenic
targets. These findings underscore its potential for translational research and justify a
dedicated systematic review.

Consistent with this need, reviews on other flavonoids such as isorhamnetin and
prunin have highlighted their ability to modulate major oncogenic pathways, including
phosphoinositide 3-kinase (PI3K)/serine/threonine kinase (AKT, also known as protein
kinase B, PKB), Janus kinase (JAK)/signal transducer and activator of transcription 3
(STAT3), and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated
kinase (ERK) [11,12]. These examples demonstrate how diverse flavonoids exert anticancer
activity through overlapping mechanisms, thereby helping to contextualize acacetin among
other flavonoid-based anticancer agents.

Acacetin, a naturally occurring flavonoid that belongs to the flavone subclass present
in various plant species, has demonstrated diverse pharmacological actions, including
anticancer, anti-inflammatory, antioxidant, and hepatoprotective effects through modula-
tion of key intracellular pathways such as MAPK/c-Jun N-terminal kinase (JNK)/ERK,
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), nuclear factor ery-
throid 2-related factor 2 (Nrf2), PI3K/AKT/mechanistic target of rapamycin (mTOR), and
cyclooxygenase (COX)-2 [13]. Nonetheless, a detailed understanding of the molecular
mechanisms by which acacetin exerts its anticancer activity remains limited owing to the
inherently networked and redundant signaling architecture of cancer cells [14].

In recent years, network pharmacology, defined as a systems-level approach that inte-
grates bioinformatics, cheminformatics, and systems biology to map interactions between
drugs and multiple molecular targets, has emerged as a powerful system-level framework
for predicting interactions between bioactive compounds and disease-associated targets,
facilitating the identification of hub proteins and enriched signaling pathways through in-
tegrated protein—protein interaction (PPI) networks and pathway analysis [15]. Molecular
docking offers a computational method for estimating binding affinities and interactions
between compounds and target proteins, providing structural insights to support experi-
mental validation [16-20]. These computational strategies have been successfully applied to
phytochemicals such as curcumin in osteosarcoma and herbal extracts in prostate and cervical
cancers, highlighting their value in uncovering multi-target anticancer mechanisms [21-23].

Therefore, in this review, we aimed to synthesize the pharmacological evidence of
acacetin’s anticancer activities in vitro and in vivo and complement this with a combined
network pharmacology and molecular docking approach to identify key targets and bind-
ing interactions. Such efforts may illuminate the potential of acacetin as a multi-target
therapeutic agent across diverse cancer types and may inform future strategies for transla-
tional and combinatory treatment development.

In preparing this review, we systematically searched the literature using the keyword
“acacetin” in the PubMed and Google Scholar databases. The search covered publications
available until August 2025 and was restricted to full-text articles written in English. Empha-
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sis is placed on preclinical investigations, particularly those providing mechanistic insights,
reporting in vitro and in vivo pharmacological activities, and presenting experimental
evidence supporting the predicted molecular targets.

2. Overview of Acacetin
2.1. Chemical Structure and Sources

Acacetin (5,7-dihydroxy-4'-methoxyflavone) is an O-methylated flavone (C14H;205)
belonging to the flavonoid family (Figure 1). Its A-ring bears hydroxyl groups at C-5 and
C-7, whereas the B-ring carries a methoxy group at C-4’, and these are features that shape
its physicochemical behavior and target engagement in biological systems [13]. In nature,
acacetin acts as an aglycone and glycoside in multiple edible or medicinal taxa. It has been
isolated from black locust (Robinia pseudoacacia), bee propolis, Dracocephalum moldavica,
Turnera diffusa, and Betula pendula, as evidenced by chemical profiling in peer-reviewed
studies. These sources include widely used foods or ethnomedicinal plants from which
acacetin and its conjugates have been chemically characterized [24-26].

OCH3

OH O

Acacetin

Figure 1. Molecular structure of acacetin.

2.2. Pharmacological Activities of Acacetin

Acacetin exerts diverse pharmacological effects. In oncology, it modulates key onco-
genic pathways, including PI3K/AKT, JAK/ STAT3, NF-«B, and MAPK, thereby inducing
apoptosis, cell cycle arrest, and inhibition of metastasis [27-30]. Its anti-inflammatory
action has been demonstrated in RAW 264.7 macrophages, where acacetin suppresses
lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS) and
cyclooxygenase-2 (COX-2) by inhibiting the NF-«B pathway through reduced inhibitor
of nuclear factor kappa-B alpha (IkBx) phosphorylation and blockade of NF-«B nuclear
translocation [31]. In cardiovascular research, acacetin selectively inhibits atrial potassium
currents, including ultra-rapid delayed rectifier K* current and transient outward, pro-
longing atrial action potential duration and preventing atrial fibrillation in canine models
without affecting ventricular repolarization [32,33]. Furthermore, in apolipoprotein E-
deficient mice, acacetin attenuated atherosclerosis by activating the Nrf2 signaling pathway
and upregulating the antioxidant enzyme methionine sulfoxide reductase A [34].

Beyond these effects, acacetin exhibits antiviral activity against multiple viruses,
including herpes simplex virus type 1, dengue virus type 2, influenza virus, and human
immunodeficiency virus, underscoring its broad-spectrum potential [35-38]. It displays
antimicrobial efficacy, particularly against methicillin-resistant Staphylococcus aureus and
various Gram-positive and Gram-negative bacteria, partly through synergy with antibiotics
and inhibition of virulence factors such as sortase A [39-41]. Moreover, acacetin exerts
anti-obesity effects by suppressing adipogenesis, enhancing lipolysis, and activating AMP-
activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling, consistent with reduced body
weight observed in high-fat diet-induced obese mice [42]. These multifaceted activities
highlight acacetin’s potential as a therapeutic candidate for a wide range of chronic diseases.
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Among these diverse effects, its role in oncology is particularly notable. While struc-
turally related flavonoids such as apigenin [43] and luteolin [44] also regulate major onco-
genic pathways, acacetin demonstrates distinctive advantages by directly targeting EGFR,
STAT3, and AKT and by uniquely influencing necroptosis, PD-L1 expression, and angio-
genesis [14,45-48]. This highlights its differentiated pharmacological profile compared
with other closely related flavones.

3. Pharmacological Evidence of Acacetin’s Anticancer Activity

Several mechanistic and pharmacological studies have evaluated the anticancer ac-
tivity of acacetin in different tumor types. As outlined in Table 1, these findings indicate
that acacetin exerts multi-faceted effects both in vitro and in vivo, including apoptosis
induction, proliferation inhibition, cell-cycle regulation, suppression of metastasis, and

inhibition of angiogenesis.

Table 1. Summary of acacetin’s anticancer effects by cancer type.

Cell

Ié\:;r;in;;(;)r;s Line(s)/Model Up-Regulation Down-Regulation Mechanisms Refs.
DNA fragmentation,
sub-Gl1 cells, Cyt c
(cytosolic)
AIF (cytosolic), (n?itiﬁxlﬁgaﬁy,;l: Apoptosis,
T-47D, p-SAPK/JNK1/2, p-c-Jun, (mitochon driza 1) Necroptosis,
Breast MDﬁé\gm’ ]1\!581/ 2 R7O 2 Cledaf’;d CDK1, CDK2, Cdc25C, E%(/ M arrest, [49-51]
' pase-7,/8 and -, Cyclin B1, Cyclin E - activation
MDA-MB-468, cleaved PARP, p-ERK, AKT.F AD’D ) AK"l: Migration and
Chk1, Bax, Mitochondrial AI’(T 38, ERK ! EMT inhibition
superoxide generation, At
RIP1, RIP3
p21, p27
HT-29, HCT 116, ROS, MMP . Apoptosis,
Colorectal SW480 (mitochondrial), AIF B-catenin, c-Myc, S and %2})/ M arrest 52,531
Apoptosis,
Ki-67, MMP-2 and -9, JAK2/STAT3
Esophageal TE-1, TE-10 Bax Bcl-2, p-JAK2, inhibition, [28]
p-STAT3 Migration
suppression
E-cadherin, Bax, cleaved
PARP, cleaved caspase-3, N-cadherin, MMP-2 Apoptosis
MEKN45, MKN45 DNA fragmentation, and -9, Snail, p-PI3K, EMT suppress,ion,
Gastri ft Sub-G1 cells, ROS, Cyt ¢ p-AKT, p-EGFR, Anti-metastasis [14,54,55]
astic xenogra (cytosolic) Bcl-xL, p-STAT3 4 Y
MGC803, AGS ! ! PI3K/AKT/Snail
caspase-3,-8, and -9 p-ERK, p-EGFR, inhibition
activity, Fas, FasL, cleaved = PCNA, DFF-45, MMP
Bid, p53
p-]/lleflT,?-T]ZKz, Apoptosis, STAT3
p-AKT, p-Src, Cyclin inhibition,
DNA fragmentation, D1 ]écl—Z B’CI-XL Invasion inhibition,
HepG2, cleaved PARP, p21, p53, Mcl—l’ Survilvin Mc,1-2 Angiogenesis
Liver HepG2/RARy FasL, mFasL, sFasL, V,E GE —IKiBoc ’ inhibition, G1 [56-58]
xenografts caspase-8 activity, Bax, P arrest, Apoptosis

cleaved caspase-3,

(cytosolic), p-p65
(cytosolic),

pro-casapase-3, RARy,

p-GSK-3B, Ki67

via non-genomic
RARY-AKT-p53
pathway
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Table 1. Cont.
Interventions Cell . . .
Cancer Type Line(s)/Model Up-Regulation Down-Regulation Mechanisms Refs.
Cyclin B1, Cyclin D,
Bcl-2, PD-L1, MMP-2 . .
Proliferation,
and -9, u-PA, p-p38«, . .
Bak, p53, miR-34a, IkBa  p-MKK3, 6, p-MLK3 invasion, and
A549, H460, A549 ' P2 ’ T ! migration [29,30,47,
Lung (cytosolic), G1 phase, p21, NF-«B, NF-kB p50 S
xenografts inhibition, G2/M 59]
Fas, FasL (nuclear), NF-«B p65
arrest,
(nuclear) AP-1, c-Fos, Apoptosis
c-Jun, p-IkBa pop
(cytosolic)
Cell proliferation
and invasion
inhibition,
SKOV3, OVCAR-3, PCNA, MMP-2 and -9, Apoptosis,
. A2780, A2780 IL-6 and -8, RAGE, RAGE-PI3K/AKT
Ovarian (CAM assay AKT p-PI3K, p-AKT, VEGF, inhibition, [48,60]
in vivo model) HIF-1a Angiogenesis
inhibition,
AKT/HIF-1x
inhibition
Bax, cleaved PARP, Apoptosis
cleaved caspase-3, -8, and Colony-formation, ’
Osteosarcoma HOS -9, Cytc,ROS, p-c-Jun,  Bal-2, Survivin, MMP ROS/INK [61]
activation
c-Jun, p-JNK,
p-AKT, p-GSK-33,
p-NF-kB p65, p-IkB,
Bcl-2, XIAP, COX-2,
-STAT3 (Y705),
53, IkBx, Bax, cleaved p
DU145, DU145 Poo, ’ ’ Cyclin D1, Bcl-2, Apoptosis,
Prostate xenograft, LNCaP PAR-P];:IES_G} c3e8115, ZRlOS, Bcl-xL, Mcl-1, STATS3 inhibition [27,45,62]
p + Ppoo,p Survivin, STAT3
activity, CDK2, CDK4,
CDK®6, Cdc25C, Cdc2,
Cyclin Bl
Skin SK-MEL-28, P'_‘:g, gzrrjgg)) PI3K p110 binding,
SK-MEL-28 G1 arrest P L PI3K/AKT/p70S6K [63]
(Melanoma) p-GSK3p3, Cyclin D1, I
xenograft inhibition

Tumor volume

AIF, apoptosis-inducing factor; AP-1, activator protein 1; AKT, serine/threonine kinase (also known as protein
kinase B, PKB); Bax, Bcl-2-associated X protein; Bak, Bcl-2 homologous antagonist/killer; Bcl-2, B-cell lymphoma 2;
Bcl-xL, B-cell lymphoma-extra large; CAM assay, chorioallantoic membrane assay; CDK, cyclin-dependent kinase;
COX-2, cyclooxygenase-2; Caspase, cysteine-aspartic protease; Chk1, checkpoint kinase 1; Cyt ¢, cytochrome c;
DFF-45, DNA fragmentation factor 45; E-cadherin, epithelial cadherin; EGFR, epidermal growth factor receptor;
EMT, epithelial-mesenchymal transition; ERK, extracellular signal-regulated kinase; FADD, Fas-associated death
domain protein; Fas, first apoptosis signal receptor (CD95/APO-1); FasL, Fas ligand; GSK-33, glycogen synthase
kinase-3 beta; HIF-1«, hypoxia-inducible factor 1-alpha; IL-6, interleukin-6; IkBx, inhibitor of nuclear factor
kappa-B alpha; JAK2, Janus kinase 2; JNK, c-Jun N-terminal kinase; MKK, mitogen-activated protein kinase
kinase; MMP, mitochondrial membrane potential, MMP-2, matrix metalloproteinase-2; Mcl-1, myeloid cell
leukemia-1; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; p-, phosphorylated; PARP,
Poly(ADP-ribose) polymerase; PCNA, proliferating cell nuclear antigen; PD-L1, programmed death-ligand 1;
PI3K, phosphoinositide 3-kinase; RAGE, receptor for advanced glycation end-products; RARy, retinoic acid
receptor gamma; RIP, receptor-interacting protein kinase; ROS, reactive oxygen species; SAPK, stress-activated
protein kinase; STAT3, signal transducer and activator of transcription 3; VEGEF, vascular endothelial growth
factor; XIAP, X-linked inhibitor of apoptosis protein; u-PA, urokinase-type plasminogen activator.

3.1. In Vitro Effects: Apoptosis, Proliferation, and Cell Cycle Arrest

Acacetin exerts potent proapoptotic activity in diverse cancer cell lines by simulta-
neously activating the intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic
pathways. The intrinsic pathway involves disruption of mitochondrial homeostasis with
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cytochrome c release and activation of initiator caspase-9 followed by effector caspase-3/-7,
accompanied by downregulation of anti-apoptotic proteins such as B-cell lymphoma 2
(Bcl-2) and B-cell lymphoma-extra large (Bcl-xL) and, in certain contexts, upregulation of
pro-apoptotic mediators including Bcl-2-associated X protein (Bax) and Bcl-2 homologous
antagonist/killer (Bak), thereby shifting the balance toward apoptosis [43,49,55-57]. The
extrinsic pathway is promoted by the upregulation of the first apoptosis signal receptor
(Fas, also known as CD95 or APO-1) and Fas ligand (FasL) signaling and the activation
of caspase-8, which also engages the mitochondrial pathway via BH3-interacting domain
death agonist (Bid) cleavage [55,64].

In breast cancer models, acacetin not only induces classical apoptosis but also trig-
gers receptor-interacting protein kinase 1 (RIP1)-dependent necroptosis through sustained
ERK1/2 phosphorylation, suggesting its potential to bypass apoptosis resistance mecha-
nisms [50]. Necroptosis induction is not exclusive to acacetin; for instance, apigenin has
been reported to induce necroptosis in mesothelioma and pancreatic cancer, and resveratrol
has also been shown to induce necroptosis in prostate cancer [7,43]. These findings indi-
cate that several flavonoids can activate necroptosis depending on tumor context, while
acacetin’s activity in breast cancer underscores a unique mechanistic contribution that
distinguishes it from other flavonoids.

In colorectal carcinoma, suppression of the Wingless-related integration site (Wnt)/ 3-
catenin/cellular myelocytomatosis oncogene (c-Myc) axis and nuclear 3-catenin accumula-
tion is coupled with apoptosis-inducing factor (AIF) translocation from mitochondria to
the nucleus, leading to caspase-independent cell death [53].

Acacetin disrupts cell cycle progression in several cancer types, inducing G1 arrest
in hepatocellular carcinoma via p53 and p21 upregulation [57,58] and S-phase arrest in
colorectal carcinoma through the downregulation of cyclin A and cyclin-dependent kinase
2 (CDK?2) [53]. These cell cycle regulatory effects are often accompanied by the inhibition
of key pro-survival signaling pathways, including PI3K/AKT, MAPK/ERK, and signal
transducer and activator of transcription 3 (STAT3), which are commonly dysregulated in
malignant cells [27,45,50,54,65].

3.2. Anti-Metastatic and Anti-Angiogenic Activities

Metastasis suppression by acacetin has been demonstrated most clearly in gastric
cancer, where the inhibition of epithelial-mesenchymal transition (EMT) is mediated
through the downregulation of PI3K/AKT/Snail signaling. This results in the restoration
of the epithelial marker E-cadherin and the reduction in mesenchymal markers such as
N-cadherin, along with decreased expression and activity of matrix metalloproteinase
(MMP)-2 and MMP-9, thereby reversing the EMT phenotype [54].

In non-small cell lung cancer (NSCLC) models, acacetin also attenuates tumor cell
invasion by downregulating MMP-2 and urokinase-type plasminogen activator (u-PA)
through inactivation of JNK and reduced NF-kB/activator protein-1 (AP-1) DNA-binding
activity, ultimately suppressing extracellular matrix degradation [29].

Regarding angiogenesis, acacetin decreases vascular endothelial growth factor (VEGF)
and hypoxia-inducible factor-1oc (HIF-1c) by inhibiting the AKT/HIF-1x pathway, and
this translates into significant suppression of ovarian cancer cell-induced angiogenesis and
tumor growth in vivo (as demonstrated in animal models), thereby linking its molecular
effects to anti-angiogenic efficacy in tumors [48]. Although comprehensive evaluations are
still limited, current evidence suggests that acacetin preferentially suppresses angiogenesis
within the tumor microenvironment, where AKT/HIF-1« signaling is aberrantly activated,
while exerting relatively minor effects on normal vasculature [66,67]. Further in vivo studies
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directly comparing tumor-associated and physiological angiogenesis will be necessary to
confirm the selectivity of this effect.

3.3. In Vivo Efficacy and Safety Profiles

Multiple animal models and human tumor xenografts have been used to confirm the
anticancer efficacy of acacetin in vitro [45,47,54,63]. In gastric cancer xenograft models,
acacetin treatment significantly reduced tumor volume and weight, consistent with the
suppression of the phosphoinositide 3-kinase/protein kinase B/Snail (PI3K/AKT/Snail)
signaling pathway [54]. In a separate gastric cancer xenograft study, acacetin administration
was associated with a lower Ki-67 proliferation index and increased levels of apoptotic
markers, including cleaved caspase-3 and poly(ADP-ribose) polymerase (PARP), in tu-
mor tissues, in parallel with the inhibition of STAT3 signaling. In lung cancer xenograft
models, acacetin treatment led to a marked reduction in metastatic nodules in the lungs
accompanied by decreased programmed death-ligand 1 (PD-L1) expression, suggesting
both antiproliferative and immunomodulatory effects [47]. From an immuno-oncological
perspective, PD-L1 suppression by acacetin may also enhance responsiveness to immune
checkpoint inhibitors (anti-PD-1/PD-L1 therapies), thereby providing potential synergistic
benefits in lung cancer treatment [68,69]. In prostate cancer xenografts, tumor regression is
associated with the strong inhibition of STAT3 Tyr705 phosphorylation, achieved through
the direct binding of acacetin to STAT3, which contributes to reduced tumor cell prolif-
eration and increased apoptosis in tumor tissues [45]. In a skin cancer xenograft model,
acacetin directly targets the p110 catalytic subunit of PI3K, resulting in the inhibition of
AKT phosphorylation and significant suppression of tumor growth [63]. Collectively, these
in vivo findings underscore the ability of acacetin to inhibit tumor progression across
diverse cancer types by modulating multiple oncogenic pathways. Although detailed
toxicological evaluations remain limited, no severe adverse effects or significant body
weight loss has been reported in the available studies, suggesting a favorable prelimi-
nary safety profile [25,45,47,54,63]. Nevertheless, most available studies have relied on
conventional xenograft models, which do not fully capture the complexity of human tu-
mors; to enhance translational relevance, patient-derived xenografts (PDX) and organoid
systems should be incorporated to more robustly evaluate the anticancer efficacy and
safety of acacetin [70,71].

4. Network Pharmacology-Based Target Prediction of Acacetin

The predicted and validated targets of acacetin identified in previous network pharma-
cology and molecular docking studies are summarized in Table 2. This table lists each target
protein, associated cancer types, implicated pathways, type of evidence (computational
prediction, docking simulation, or experimental validation), functional outcomes, and
corresponding references. Notably, several targets such as the epidermal growth factor re-
ceptor (EGFR), STAT3, and AKT1 appeared as high-ranking hub genes in network analyses
and as experimentally confirmed molecular targets, underscoring the concordance between
in silico prediction and empirical data. For clarity, docking scores are reported as binding
free energies (kcal/mol); affinities below —6.0 kcal/mol are generally considered favorable
for potential pharmacological relevance, whereas values closer to —4.0 kcal/mol indicate
weak binding and should be interpreted with caution [72].
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Table 2. Confirmed and predicted molecular targets of acacetin based on docking and

network pharmacology.
Cancer . Docking/Prediction/Validation  Validation .
Target Typels) Function Method Level Functional Outcome Refs.
|: p-EGFR, p-STAT3,
Target prediction p-ERK (transient), Ki-67,
(SwissTargetPrediction, PCNA, Bcl-xL, Colony
) GeneCards, RNA-seq); Confirmed formation, Tumor
_ EGFR—medlated network analysis (STRING, (docking + growth
Gastric 51gnahng (STAT3, Cytoscape); docking in vitro + +: Bax, cleaved caspase-3 [14]
ERK) (Schrodinger Maestro); in vivo) ' Clleave d PARP !
validation (DARTS, CETSA, Apoptosis !
WB, TUNEL, colony POPTOSIS,
formation, xenograft) Strong EGFR binding
EGFR (docking)
Target prediction
(SwissTargetPrediction,
TCMSP, GeneCards, OMIM, Docking Binding affinity —8.3
Colorectal i DisGeNET); network analysis only kcal/mol [0
(STRING, Cytoscape); docking
(AutoDock Vina)
Target prediction (TCMSP,
Bladder EGFR-mediated GeneCards, OMIM); network Docking Binding affinity —4.0 73]
signaling analysis (STRING, Cytoscape); only kcal/mol
docking (AutoDock Vina)
|: p-STAT3 (Tyr705),
Cyclin D1, Bcl-2, Bel-xL,
Mcl-1, Survivin, Tumor
Docking (Glide, Schrodi volume,
STAT3-mediated ocking (Llide, schrodinger .
sienalin Maestro); binding validation Confujmed T: Bax, cleaved PARP,
STAT3  Prostate - (DARTS, CETSA, pull-down); ~ (docking + cleaved caspase-3,  [45]
(proliferation, ’ P ! in vitro + A in V, p-JAK2
survival) functional assays (WB, L nnexin V, p-J '
Annexin V/PJ, xenograft) in vivo) p-p38, ROS, Apoptosis
Strong STAT3 SH2
binding (3 H-bonds +
cation—rt; Glide)
Target prediction v p.—A‘;KT, P_PI?).K'
. .. Survivin, Migration,
(SwissTargetPrediction, Confirmed Proliferation
TCMSP, GeneCards, OMIM, (docking +
AKT1 Colorectal PI3K/AKT/p53  DisGeNET); network analysis 1t & 1: p53, cleaved caspase-3,
. . ] . multiple A . [46]
signaling (STRING, Cytoscape); docking in vitro poptosis,
(AutoDock Vina); validation assays) Strong AKT1 binding
(WB, CCK-S, Annexin V—FITC, (792 kcal/mol' 1
scratch assay) H-bond, Thr211)
J: p-AKT, p-mTOR,
Chaperone- Network pharmacology; Confirmed Migration, Invasion,
HSP90AB1 Lung mediated docking (AutoDock Tools); (docking + EMT markers
. AKT PI3K/AKT/mTOR  validation (WB, EMT, invasion in vitro + T E-Cadherin; effect 1)
activation assay = terazosin) in vivo) reversed by HSP90

agonist terazosin
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Table 2. Cont.
Cancer . Docking/Prediction/Validation  Validation .
Target Type(s) Function Method Level Functional Outcome Refs.
1+ PI3Ky, p-AKT,
p-mTOR, p-p70S6K,
p-ULK1
Docking (SYBYL2.0); PI3Ky . .
PI3K/AKT/mTOR/ kinase assay; validation (WB Confirmed T: Apog;o/s;\z,ﬁlitsotphagy,
PI3Ky Breast p70S6K/ULK [PI3Ky, p-AKT, p-mTOR, (docking + [75]
signaling p-p70S6K, p-ULK1], Apoptosis in vitro) PI3Ky ATP-site binding
assay, G2/M arrest, LC3 (H-bonds: Ser806,
puncta) Ala885, Val882;
hydrophobic: Lys833,
Asp964)
Predicted Target predlctl.on.
PI3K/ AKT (SwissTargetPrediction,
SRC Colorectal sienaling: prolifer- TCMSP, GeneCards, OMIM, Docking Binding affinity —6.9 [46]
a t;g, 0 /mig’ r};)iti Nin DisGeNET); network analysis only kcal/mol
0 CRgC o (STRING, Cytoscape); docking
(AutoDock Vina)
Predicted Target predlctl.on.
chaperone- (SwissTargetPrediction, ‘ o o
HSP90AAL Colorectal mediated "IjCMSP, GeneCards, OMIM, Docking Binding affinity —7.1 [46]
DisGeNET); network analysis only kcal/mol
PI3K/AKT; cell .
survival in CRC (STRING, Cytoscape); docking
(AutoDock Vina)
Target prediction
Predicted inflam- (SwissTargetPrediction,
matory /apoptotic TCMSP, GeneCards, OMIM, Docking Binding affinity —6.4
TNF Colorectal signaling; CRC DisGeNET); network analysis only kcal/mol [46]
progression (STRING, Cytoscape); docking
(AutoDock Vina)
Target prediction (TCMSP,
IL-6 Bladder Inflammatory GeneCards, OMIM); network Docking Binding affinity —4.12 73]
cytokine signaling  analysis (STRING, Cytoscape); only kcal/mol -
docking (AutoDock Vina)
Target prediction (TCMSP,
Cell proliferation GeneCards, OMIM); network Docking Binding affinity —4.37
MYC Bladder and transcription  analysis (STRING, Cytoscape); only kcal/mol [73]
docking (AutoDock Vina)
Target prediction (TCMSP,
SwissTargetPrediction, SEA,
Inflammation, GeneCards, OMIM); network . 1: PTGS2 (docking: <—7
Nasopharyn- T lysis (STRING. C ~ Confirmed Keal |- Tyr385
PTGS? geal umor analysis ( , Cytoscape); (docking + cal/mol; Tyr [76]
carcinoma proliferation and  docking (AutoDock Vina), MD in vitro) contact), Proliferation,
migration simulation; validation (CCK-8, Migration
colony formation, migration,
WB [PTGS2])
J: PI3K activity, p-AKT,
p-p70S6K, Tumor
growth, Colony
Binding assays (pull-down, . formation,
PI3K kinase); cell transformation Conflr.med ) ) .
110 ) PI3K-AKT- (in vitro); docki (docking +  T: Gl arrest; dockingto  [63]
(p110 Skin p70S6K signaling | vitro); docking invitro+  PI3K-p110 ATP-binding
subunit) (Glide/induced-fit, Maestro); .. ) )
ft in vivo) site (H-bonds: Val828,
xehogta Glu826, Asp911;

hydrophobic: Trp760,
Lle777, Tyr813)
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Table 2. Cont.
Cancer . Docking/Prediction/Validation  Validation .
Target Type(s) Function Method Level Functional Outcome Refs.
STATS3,
AKT1,
Xé?};lo(i’Al PIBK-AKT, MAPK, HPLC-Q-TOF-MS/MS
! JAK/STAT3, and identification; network . . . ..
HRAS, . Docking High binding affinity
Gastric cytoskeleton pharmacology (STRING, [77]
SRC, ) ’ ) only (mostly < —7.3 kecal/mol)
PIK3CA regulation Cytoscape); docking
PIK3R1 ’ pathways (AutoDock Vina)
FYN,
RHOA,

AKT1, RAC-alpha serine/threonine-protein kinase (protein kinase B); Bax, Bcl-2-associated X protein; Bcl-2, B-cell
lymphoma 2; Bcl-xL, B-cell lymphoma-extra large; CCK-8, cell counting kit-8; CETSA, cellular thermal shift assay;
CRC, colorectal cancer; Cytoscape, Cytoscape network visualization software; DARTS, drug affinity responsive
target stability; EGFR, epidermal growth factor receptor; EMT, epithelial-mesenchymal transition; HSP90AA1,
heat shock protein 90 alpha family class A member 1; JAK?2, Janus kinase 2; MAPK, mitogen-activated protein
kinase; Mcl-1, myeloid cell leukemia-1; MD, molecular dynamics; OMIM, Online Mendelian Inheritance in Man;
PARP, poly(ADP-ribose) polymerase; PCNA, proliferating cell nuclear antigen; PI3K, phosphoinositide 3-kinase;
PTGS2, prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2); Pull-down assay, biotinylated compound-
based target validation assay; RNA-seq, RNA sequencing; ROS, reactive oxygen species; SEA, similarity ensemble
approach; Schrodinger Maestro, Schrodinger molecular modeling suite; SRC, proto-oncogene, non-receptor
tyrosine kinase Src; STAT3, signal transducer and activator of transcription 3; STRING, Search Tool for the
Retrieval of Interacting Genes/Proteins; SwissTargetPrediction, SwissTargetPrediction in silico target prediction
tool; TCMSP, Traditional Chinese Medicine Systems Pharmacology database; TNF, tumor necrosis factor; TUNEL,
terminal deoxynucleotidyl transferase dUTP nick end labeling; WB, Western blot. 1, increase; |, decrease;
—, mechanistic upstream regulatory relationship between proteins.

Methodological Pipeline and Identified Targets

Previous network-pharmacology studies investigating acacetin have reported its po-
tential multi-target spectrum in oncology through integrated computational workflows
that combine ligand-based target prediction [78-80], disease-gene mapping [81-84], PPI
analysis [85], enrichment analysis [86], and, in some cases, molecular docking [81,87].
As summarized in Table 2, these studies identified targets across multiple functional
classes, including EGFR [14,46,73], AKT [46,74,77], proto-oncogene tyrosine-protein ki-
nase Src (SRC) [46,77], transcription factors (STAT3 [45,77]), and molecular chaperones
or inflammatory mediators such as (heat shock protein 90 alpha family class A member
1(HSP90A A1) [46,77] and tumor necrosis factor (TNF) [46].

In the reported workflows, the compound-target prediction stage is generally con-
ducted using ligand-based virtual screening platforms such as SwissTargetPrediction [78],
Search Tool for Interacting Chemicals (STITCH) [79], or the Similarity Ensemble Approach
(SEA) [80], that generates candidate protein interactions based on chemical similarity met-
rics and known bioactivity profiles. Molecular docking simulations were performed using
AutoDock Vina [81] to evaluate the binding affinities between acacetin and its predicted tar-
gets. To ensure relevance to oncology, predicted protein targets were cross-referenced with
cancer-associated genes obtained from databases, including GeneCards (human gene com-
pendium) [82], Online Mendelian Inheritance in Man (OMIM) [83], and the disease-gene
association network database (DisGeNET) [84] (e.g., EGFR, AKT1 [46]).

The intersection sets of predicted and disease-related genes were subsequently ana-
lyzed through PPI network construction using the Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) database [85], followed by network visualization and
topological analysis in Cytoscape [86].

The resulting PPI networks enabled the visualization of interactions among acacetin-
associated targets and the identification of nodes with higher connectivity that were con-
sidered more likely to play central roles in the pharmacological activity of the compound.
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Several of these computationally prioritized targets such as EGFR [14,46,73], STAT3 [45,77],
and AKT [46,74,77] are also supported by experimental studies as direct or indirect medi-
ators of the anticancer effects of acacetin (see Section 5), thereby indicating concordance
between network-based predictions and empirical evidence.

5. Molecular Docking and Experimental Validation of Key Targets

As outlined in Section 4 and summarized in Table 2, network pharmacology analyses
highlighted several acacetin-associated targets of potential oncological relevance. In this
section, we focus on the targets for which molecular docking simulations and experimental
studies provide complementary evidence.

5.1. Overview of Key Network-Derived Targets

Acacetin was further examined against several network pharmacology-highlighted
targets, most notably EGFR [14,46,73], STAT3 [45,77], and AKT [46,74,77], by using molecu-
lar docking simulations and experimental validation (Table 2). These proteins consistently
emerged as central nodes in the predicted protein—protein interaction networks and were
mechanistically linked to critical oncogenic signaling pathways, including PI3K/AKT,
JAK/STAT, and MAPK/ERK [14,45,46,73,74,77].

5.2. EGFR

EGEFR molecular docking using the crystal structure of the EGFR kinase domain pre-
dicted a stable binding conformation for acacetin within the kinase active site that was
characterized by a favorable docking score. Target engagement was further supported
by experimental validation using drug affinity responsive target stability (DARTS) and
cellular thermal shift assays (CETSA), both of which demonstrated a direct interaction
between acacetin and EGFR in gastric cancer cells [88,89]. Consistent with these in silico
and biophysical findings, in vitro assays demonstrated that acacetin treatment reduced
EGEFR phosphorylation and suppressed activation of downstream STAT3 and ERK path-
ways, leading to decreased proliferation. In vivo, acacetin administration in gastric cancer
xenografts significantly inhibited tumor growth without marked systemic toxicity [14].
In addition to these gastric cancer findings, docking studies in colorectal cancer models
predicted a strong binding affinity of —8.3 kcal/mol [46], while bladder cancer models
exhibited a binding affinity of —4.0 kcal/mol [73]. According to docking benchmarks,
affinities below —6.0 kcal/mol are often considered indicative of favorable interactions,
whereas values around —4.0 kcal/mol represent relatively weak binding with limited
pharmacological relevance [72]. This distinction highlights the importance of interpret-
ing docking scores in the context of biological significance and experimental validation.
Taken together, these results further support the potential of acacetin as a broadly relevant
EGFR-targeting compound across multiple tumor types.

5.3. STAT3

For STAT3, docking simulations demonstrated strong binding of acacetin to the SH2
domain of STATS3, stabilized by three hydrogen bonds and a cation— interaction. Biophys-
ical assays, including DARTS, CETSA, and pull-down experiments, confirmed a direct
interaction between acacetin and STAT3 in prostate cancer DU145 cells. In vitro, acacetin
treatment decreased p-STAT3 (Tyr705) levels, downregulated downstream STAT3-regulated
anti-apoptotic and cell cycle-related proteins such as cyclin D1, Bcl-2, Bcl-xL, Mcl-1, and
Survivin, and increased pro-apoptotic Bax expression. These effects were accompanied by
PARP and caspase-3 cleavage, Annexin V positivity, and elevated reactive oxygen species
(ROS) generation. In vivo administration of acacetin to DU145 xenograft models signifi-
cantly suppressed tumor growth and reduced STAT3 Tyr705 phosphorylation. Collectively,
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these findings indicate that acacetin functions as a STAT3 inhibitor and is a potential drug
candidate for targeting STAT3 in cancer therapy [45]. Furthermore, network pharmacology
and molecular docking in gastric cancer models predicted a strong binding affinity of
acacetin for STAT3 (—9.0 kcal/mol), reinforcing computational evidence for STAT3 as a
potential target across multiple tumor types [77].

5.4. AKT

For AKT1, docking simulations predicted that acacetin occupies the ATP-binding
pocket of the kinase domain, forming a hydrogen bond with Thr211 and exhibiting a
strong binding affinity (—9.2 kcal/mol) that is indicative of potential competitive inhibi-
tion. Experimental validation in colorectal cancer HT-29 cells confirmed these predictions,
indicating that acacetin treatment reduced p-AKT and p-PI3K levels, leading to the down-
regulation of Survivin and decreased cell migration and proliferation. Acacetin increases
P53 expression and induces caspase-3 cleavage, resulting in enhanced apoptosis. These
molecular effects are consistent with the inhibition of the PI3K/AKT/p53 signaling axis,
supporting AKT1 as a direct target of acacetin [46]. Additionally, in lung cancer models,
acacetin inhibited HSP90AB1, a molecular chaperone that stabilizes AKT, leading to re-
duced p-AKT and p-mTOR levels, suppression of EMT markers, decreased migration and
invasion, and restoration of E-cadherin expression. These effects were reversed by the
HSP90 agonist terazosin [74]. Additionally, gastric cancer-based network pharmacology
and molecular docking analyses reported a notable binding affinity of acacetin for AKT1
(—8.3 kcal/mol) [77], providing complementary computational support for its potential
role as an AKT1-targeting compound across diverse malignancies.

5.5. Additional Network-Derived Targets

In addition to EGFR, STAT3, and AKT1, acacetin was associated with several other
targets, and this was supported primarily by docking predictions, with a subset corrobo-
rated by experimental validation. In colorectal cancer-focused analyses, SRC exhibited a
docking affinity of —6.9 kcal/mol, the docking affinity of HSP9OAA1 was —7.1 kcal/mol,
and that of TNF was —6.4 kcal/mol [46]. In bladder cancer models, IL-6 and MYC exhib-
ited relatively weaker predicted affinities of —4.12 kcal/mol and —4.37 kcal/mol, respec-
tively [73]. Among the targets with functional corroboration, prostaglandin-endoperoxide
synthase 2 (PTGS2) in nasopharyngeal carcinoma demonstrated < —7 kcal/mol docking
with a key Tyr385 contact and facilitated in vitro suppression of proliferation and migra-
tion [76]. In skin cancer models, acacetin directly targeted PI3K (p110), as validated by
pull-down/kinase assays and xenografts, and docked to the ATP-binding site (H-bonds:
Val828, Glu826, and Asp911; hydrophobic: Trp760, 1le777, and Tyr813) [63]. In breast
cancer systems, PI3Ky inhibition by acacetin was supported by kinase and Western blot
assays, while docking analyses indicated binding at the ATP site through hydrogen bonds
(Ser806, Ala885, and Val882) and hydrophobic interactions (Lys833 and Asp964) [75]. Ad-
ditionally, a gastric cancer—based network pharmacology study reported “high” docking
affinities (mostly < —7.3 kcal/mol) for a broader panel that included STAT3, AKT1, MAPK1,
HSP90AA1, HRAS, SRC, PIK3CA, PIK3R1, FYN, and RHOA [77]. Although many of
these associations remain supported primarily by computational predictions, they provide
testable hypotheses where systematic investigation may reveal whether acacetin exerts
pleiotropic anticancer effects via the concurrent modulation of multiple oncogenic signaling
pathways. Nonetheless, in silico approaches such as docking and network pharmacol-
ogy are inherently limited by the quality of structural data and algorithmic assumptions,
and their results do not always translate into biologically relevant interactions without
experimental validation [16,72].
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6. Challenges and Future Prospects

Despite a growing body of preclinical evidence supporting the anticancer potential of
acacetin, several challenges remain to be addressed before its effective clinical translation.

6.1. Bioavailability and Pharmacokinetics

Acacetin exhibits very low aqueous solubility and poor oral absorption, with in-
stability across physiological pH levels and gastrointestinal fluids, resulting in limited
intestinal uptake. Consequently, its oral bioavailability in rats is extremely low (~2%),
while intravenous studies have demonstrated rapid plasma clearance and a short half-life
(~1.5h) [90,91]. These findings highlight the urgent need for the development of advanced
formulation strategies.

6.2. Nanoparticle-Based Delivery and Structural Optimization

The pharmacokinetic limitations of acacetin have spurred the exploration of nanotech-
nology-based delivery approaches, including polymeric nanoparticles, liposomes, and
solid lipid nanoparticles that can enhance bioavailability, prolong circulation time, and
increase tumor selectivity via enhanced permeability and retention effect [90,92-94]. Sur-
face modification with tumor-targeting ligands (e.g., folate, RGD [Arg-Glu-ASP] pep-
tides, and antibodies) has demonstrated reduced off-target toxicity in preclinical studies,
suggesting the potential of acacetin formulations [95-97]. Parallel to delivery strategies,
structural optimization through medicinal chemistry, such as prodrug derivatization, may
improve the stability and absorption, distribution, metabolism, and excretion (ADME)
properties [98-101]. Collectively, nanoparticle-mediated delivery and structural modifica-
tion represent synergistic strategies to overcome the pharmacokinetic barriers of acacetin
and enable its development into clinically viable formulations [102,103].

6.3. Synthetic Derivatives and Structural Analogs of Acacetin

Synthetic derivatives and structural analogs of acacetin have been developed to over-
come its pharmacokinetic limitations and enhance its anticancer efficacy. Aminoalkyl and
Mannich base derivatives of acacetin-7-O-methyl ether demonstrated enzyme inhibitory
activity, supporting the feasibility of structural diversification [104]. Simple glycosylated
analogs such as linarin and linarin acetate exhibited much weaker activity than that of
acacetin, indicating that certain glycosylation patterns can reduce anticancer potency [62].
In contrast, semisynthetic 7-O-B-D glycosides of acacetin prepared from naringin exhib-
ited measurable cytotoxicity across multiple cancer cell lines (HL-60, SMMC-7721, A549,
MCE-7, and SW480), suggesting that specific glycosylation patterns may preserve or even
restore biological activity [105]. Methylated flavone derivatives exhibit improved hepatic
metabolic stability and intestinal absorption compared to their unmethylated counterparts,
supporting methylation as a viable strategy for orally available analogs [98,106]. In paral-
lel, biotechnological methods enable scalable production of methylated flavonoids with
favorable pharmacological profiles [100]. Collectively, these findings highlight the ability
of methylation to consistently improve pharmacological stability, whereas the effects of gly-
cosylation are context-dependent. In some cases, glycosylation reduces activity, whereas in
others, it can yield analogs with favorable pharmacological profiles. These structural modi-
fications complement the formulation strategies for enhancing the translational potential of
acacetin [62,98,100,105].

6.4. Synergistic Drug Combinations

The most direct evidence of synergy comes from non-small-cell lung carcinoma, where
acacetin enhances the therapeutic efficacy of doxorubicin by reducing clonogenic survival,
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inducing G2/M arrest, and suppressing multidrug resistance protein 1 (MDR1)-mediated
efflux, thereby increasing the intracellular retention of doxorubicin [107]. Beyond this,
although acacetin’s inhibition of EGFR [14,46,73], STAT3 [45,77], and PI3K/AKT [46,74,
75,77] signaling, as well as its suppression of PD-L1 expression [47] and VEGF/HIF-1a—
mediated angiogenesis [48], are mechanistically compatible with combination strategies,
formal synergy studies remain lacking. In this context, combinations with clinically relevant
chemotherapeutics such as cisplatin or paclitaxel appear theoretically plausible and warrant
systematic evaluation in preclinical models. Thus, a systematic evaluation of well-designed
preclinical models is required to establish the role of acacetin as an adjuvant in combination
therapies, both in vitro and in vivo.

6.5. Need for Clinical Translation

Despite accumulating preclinical evidence demonstrating the anticancer efficacy of
acacetin in vitro and in various animal models, no clinical trials have evaluated its safety,
tolerability, or therapeutic effectiveness in humans, and this represents a critical translational
void. Most research remains confined to cell culture and xenograft models that report pro-
apoptotic, anti-proliferative, and anti-metastatic effects; however, these effects remain clinically
unverified [25,108]. Human pharmacokinetic and toxicity data are lacking, precluding the
determination of dosing regimens, dose-limiting toxicities, or metabolic pathways [25,109].
Therefore, early-phase safety studies are essential for clinical advancements [110].

7. Conclusions

Acacetin has exhibited promising preclinical anticancer activity, as supported by ex-
tensive in vitro and in vivo studies, and has been systematically characterized using an
integrated approach combining network pharmacology and molecular docking. Mecha-
nistic investigations have demonstrated that acacetin suppresses tumor progression by
inhibiting oncogenic signaling and angiogenesis while inducing apoptosis, cell cycle arrest,
anti-metastatic activity, and other regulated cell death modes. These effects are mediated
primarily through EGFR, STAT3, and AKT, as well as additional critical pathways. Molecu-
lar docking and experimental validation further confirmed the ability of acacetin to directly
target key oncogenic proteins such as EGFR, STAT3, and AKT, underscoring its multi-target
potential (Figure 2).

Despite this progress, significant challenges remain in clinical translation. Poor
aqueous solubility, rapid systemic clearance, and metabolic instability hinder effec-
tive bioavailability, highlighting the need for innovative delivery systems, such as
nanoparticles, and rational structural optimization. Additionally, synthetic deriva-
tives and structural analogs of acacetin, particularly glycosylated and methylated
forms, have been investigated to improve metabolic stability and absorption, and
in certain cases cytotoxic potency, underscoring structural modification as a comple-
mentary strategy for future drug development. Moreover, while preliminary studies
suggest synergy with standard chemotherapeutics such as doxorubicin, systematic evalua-
tion of acacetin in well-designed preclinical combination models and early-phase clinical
trials is still required.
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Figure 2. Schematic overview of the multi-target anticancer mechanisms of acacetin based on network
pharmacology, molecular docking, and experimental validation. Acacetin exerts anticancer activity
through an integrated approach combining network pharmacology and molecular docking (in silico)
with in vitro and in vivo validation. These analyses identified multiple oncogenic protein targets,
including EGFR, STAT3, AKT, PI3K, and PTGS2 (validated by docking, in vitro, and in vivo studies),
as well as SRC, HSP90AA1, TNE, IL-6, and MYC (supported by docking only), which collectively
regulate critical signaling pathways. Functionally, acacetin induces apoptosis, promotes cell cycle
arrest, and exerts anti-metastatic and anti-angiogenic effects, thereby underscoring its potential as
a multi-target anticancer therapeutic. Figure created with BioRender.com. AKT, serine/threonine
kinase (also known as protein kinase B, PKB); EGFR, epidermal growth factor receptor; HSP90AA1,
heat shock protein 90 alpha family class A member 1; IL-6, interleukin-6; MYC, myelocytomatosis
oncogene; PI3K, phosphoinositide 3-kinase; PTGS2, prostaglandin-endoperoxide synthase 2 (COX-
2); SRC, proto-oncogene tyrosine-protein kinase Src; STAT3, signal transducer and activator of
transcription 3; TNF, tumor necrosis factor.

Taken together, the current evidence suggests that acacetin holds promise as a multi-
target anticancer agent with potential applications in personalized medicine and combina-
tion therapies. At the same time, tumor heterogeneity may critically influence the clinical
translation of such multi-target activities, underscoring the need to evaluate acacetin’s
efficacy across diverse genetic and molecular tumor contexts. From a safety standpoint,
although preclinical studies have not reported severe toxicity, potential off-target effects
on normal cells and tissues cannot be fully excluded. Accordingly, comprehensive tox-
icology and long-term safety evaluations should accompany efficacy studies. Future
research should prioritize translational studies integrating advanced formulation strate-
gies, structural modifications of synthetic derivatives, rational drug combinations, and
biomarker-driven patient stratification to establish acacetin as a clinically viable anticancer
therapeutic agent.
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Abbreviations

The following abbreviations are used in this manuscript:

ADME Absorption, distribution, metabolism, and excretion
AIF Apoptosis-inducing factor

AKT Serine/threonine kinase (also known as protein kinase B, PKB)
AMPK AMP-activated protein kinase

AP-1 Activator protein 1

Bak Bcl-2 homologous antagonist/killer

Bax Bcl-2—-associated X protein

Bcl-xL B-cell lymphoma-extra large

Bcl-2 B-cell lymphoma 2

Bid BH3-interacting domain death agonist

CDK2 Cyclin-dependent kinase 2

CETSA Cellular thermal shift assay

c-Myc Cellular myelocytomatosis oncogene

DARTS Drug affinity responsive target stability

EGFR Epidermal growth factor receptor

EMT Epithelial-mesenchymal transition

ERK Extracellular signal-regulated kinase

FasL Fas ligand

FYN Proto-oncogene tyrosine-protein kinase Fyn

HIF-1a Hypoxia-inducible factor-1 alpha

HRAS Harvey rat sarcoma viral oncogene homolog
HSP90AA1 Heat shock protein 90 alpha family class A member 1
IkBx Inhibitor of nuclear factor kappa-B alpha

IL-6 Interleukin-6

iNOS Inducible nitric oxide synthase

JAK Janus kinase

JNK ¢-Jun N-terminal kinase

LPS Lipopolysaccharide

MDR1 Multidrug resistance protein 1

MAPK Mitogen-activated protein kinase

mTOR Mechanistic target of rapamycin

MYC Myelocytomatosis oncogene

NF-«B Nuclear factor kappa-light-chain-enhancer of activated B cells
Nrf2 Nuclear factor erythroid 2-related factor 2

PAMPA Parallel artificial membrane permeability assay
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PARP Poly(ADP-ribose) polymerase

PD-L1 Programmed death-ligand 1

PDX Patient-derived xenografts

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
PIK3R1 Phosphoinositide-3-kinase regulatory subunit 1

PI3K Phosphoinositide 3-kinase

PPI Protein—protein interaction

PTGS2 (COX-2) Prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2)
RHOA Ras homolog family member A

RIP1 Receptor-interacting protein kinase 1

ROS Reactive oxygen species

SIRT1 Sirtuin 1

STAT3 Signal transducer and activator of transcription 3

TNF Tumor necrosis factor

u-PA Urokinase-type plasminogen activator

VEGF Vascular endothelial growth factor

Wnt Wingless-related integration site
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