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Abstract

As the demand for biodiesel continues to rise, there is a pressing need for efficient and
continuous monitoring of the transesterification reaction at the industrial level. However,
there is a lack of straightforward online monitoring methods capable of accurately following
the course of ethanolysis under various reaction conditions. In this work, simple linear
regression (SLR) and multiple linear regression (MLR) models were developed to assess
Fourier transform infrared spectroscopy (FTIR) data from a continuous flow cell, enabling
real-time ethanolysis monitoring without sample pretreatment. Gas chromatography (GC)
was utilised as the reference method to accurately characterise the reaction mixture’s
composition during ethanolysis. Extensive correlation analysis was performed to identify
spectra regions where the reaction system’s state changes are observable. The gained
regions were subsequently applied in the linear regression model’s development. This
novel approach resulted in the performance of simple linear regression comparable to
complex partial least squares (PLS) regression model (RMSEP = 2.11). The developed
online monitoring system was validated in a wide range of reaction conditions (40–60 ◦C;
0.25–1.0% w/w NaOH); it effectively identifies dynamic changes in the ethanolysis process
and confirms achieving the threshold value of ester content set by EU regulation directly in
the production process.

Keywords: FTIR-ATR spectroscopy; ethanolysis; vegetable oils; fatty acid ethyl esters;
biofuels; online monitoring; real-time monitoring

1. Introduction
With the rapid development of industrial processes and the global surge in energy

demand, the need for sustainable alternatives with a reliable process monitoring system
becomes ever more pressing. The European Union, recognising this urgency, has set am-
bitious targets of achieving a minimum of 14% renewable energy in the transportation
sector by 2030, including 3.5% from advanced biofuels. Biodiesel, emerging as a promising
contender among alternative energy sources, plays a significant role in this transition [1,2].
Its roots trace back to Rudolf Diesel’s pioneering experiments with peanut oil as a substitute
for diesel engines in the last century [3]. This renewable and biodegradable fuel, a blend
of long-chain fatty acid alkyl esters, has found applications beyond biofuels, impacting
diverse industries. From enhancing the effectiveness of agricultural sprays to serving
as essential ingredients in drug formulations, fatty acid alkyl esters, the building blocks
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of biodiesel, prove to be versatile oleochemicals [4–7]. Their synthesis is predominantly
achieved through a method known as transesterification. The transesterification reaction
converts vegetable oils and animal fats (i.e., triglycerides), via successive reactions, into
biodiesel, accompanied by the production of glycerol as a by-product [8]. While methanol
is a commonly employed transesterification agent, ethanol is a promising alternative, offer-
ing environmental benefits [9,10]. Transesterification is prone to saponification [11]—an
unwanted side reaction; consequently, ensuring optimal conditions, including nearly anhy-
drous environment, is crucial for achieving high conversion, yield and smooth downstream
processing [12,13]. Hence, effective process control of biodiesel synthesis at the industrial
level is essential for achieving and maintaining the desired product quality and for dynamic
optimisation of the process efficiency [14]. Nevertheless, without a reliable feedback mech-
anism, managing process control becomes a challenging endeavour. Therefore, continuous
straightforward and precise monitoring of the actual biodiesel content during production
is imperative.

The quality of biodiesel, a fundamental factor in assessing overall production effi-
ciency, is outlined in the standards [15–17]. To address this, various analytical methods
have been designed, predominantly for offline monitoring at the end of the production
process [18,19]. However, this approach is unsuitable for real-time (online) process monitor-
ing. Despite the prevalent industrial standard of post-production quality control through
offline analyses, these methods, while unsuitable for online control, provide valuable
principles and techniques for designing online sensors and measurement systems. Gas
chromatography (GC) is widely recognised as the predominant method for biodiesel com-
position analysis, endorsed by international standards [15–18]. It offers comprehensive
quality assessment, including determination of alkyl esters, glycerides, and free glycerol
contents [20]. High-performance liquid chromatography (HPLC), requiring no sample
derivatisation, is another method with diverse detection approaches [21]. Spectroscopic
methods such as 1H-Nuclear magnetic resonance (NMR) and 13C-NMR have been utilised
for offline and real-time monitoring [22,23]. Near-infrared spectroscopy (NIR) and flu-
orescence spectroscopy provided online monitoring options with lower sensitivity than
GC [24–28]. The viscosity difference between triglycerides and methyl esters was explored,
with viscosity measurements aligning well with GC analysis [29,30]. Density deviation,
impedance, speed of sound, and refractive index (RI) were investigated as cost-effective
monitoring methods, with RI measurements showing promise for process control [30–32].
These varied analytical methods contribute to a comprehensive toolbox for monitoring
biodiesel production, each with advantages and considerations. However, most of these
methods involve offline procedures or lack the required accuracy for real-time monitoring,
presenting challenges for seamless integration into supervisory control systems. While
offline methods are generally applicable in process control, it is crucial to anticipate a
significant time delay in the feedback loop, with an expected delay of 45 min (sample
preparation and analysis), as illustrated in [20].

Spectroscopic data, providing molecular-level information, holds great promise for
unravelling intricate mechanisms within complex reactive systems. Leveraging data-driven
methods becomes crucial for implementing automated supervisory control, which ensures
process safety and product quality. Methods involving Fourier transform infrared spec-
troscopy (FTIR) have been developed to track the course of transesterification. Yet, most are
associated with offline procedures, including offline sample purification through centrifuga-
tion [33–39]. Available studies focused predominantly on methanolysis [33–38,40–43], with
limited exploration of ethanolysis [39,44,45]. Calibration standards were typically formu-
lated using blends, and validations employed various reference techniques, including GC,
HPLC, NMR, etc. Spectra were obtained in a broad range, and authors explored specific
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regions or peak intensities without correction or applied baseline correction, smoothing,
or other techniques. Different accessories, such as discs or windows with various crystals,
have been utilised. While Attenuated total reflection (ATR)-FTIR is recognised for creating
multivariate calibration models, it often employs only offline monitoring due to the need
for sample purification [46]. However, some authors have explored online monitoring
using probes or flow cells, providing representative spectral data for detecting changes
in transesterification processes [40,42,44]. IR spectroscopy employing in situ ATR-FTIR
has also proven valuable for studying of reaction mechanism of transesterification under
supercritical conditions, revealing unique molecular interactions and homogeneous phase
formation at elevated temperatures and pressures [47]. Regarding ethanolysis monitor-
ing, the sole online method was published by Trevisan et al. [44], who introduced FTIR
method for determining fatty acid ethyl esters (FAEE) yield, providing an alternative to
1H-NMR. Nevertheless, using NMR as a reference method for calibration compromises
the accuracy due to the lower sensitivity of NMR compared to GC for quantifying minor
components [25]. Let it be noted that accuracy is an essential feature of a sensor suitable
for reliable control of the ethanolysis process. In summary, online monitoring systems
suitable for process control are limited, and the majority of FTIR-based approaches have in-
herent limitations in accuracy, emphasising the need for further advancements in biodiesel
monitoring techniques.

Our previous work focused on a refractive index method for offline monitoring and
quality control of FAEE in final biodiesel products [32]. While suitable for batch-end
analysis, such offline methods introduce feedback delays and lack real-time control capa-
bility. In contrast, this study aims to develop a robust measuring system for the online
monitoring of ethanolysis, employing FTIR as a dependable real-time feedback tool for
process control. The monitoring process utilised a flow cell on the ATR-FTIR, enabling
continuous sampling, while a standardised GC method [20] was concurrently employed for
validation. In contrast to common practices of utilising multivariate calibration techniques
such as principal component analysis (PCA) [35,36,48,49] or partial least squares (PLS) re-
gression [24,36,40,44] for FTIR calibration models, this study introduces correlation analysis
intending to construct a straightforward and reliable linear regression calibration model
with accuracy comparable to the GC analysis. The extensive calibration was rigorously
validated, demonstrating promising results compared to previously published outcomes
employing different approaches. To the best of our knowledge, this is one of the first studies
to demonstrate that a simple linear model, trained on real process data and applied to
spectral derivatives, can rival PLS in real-time biodiesel production monitoring accuracy.

2. Results and Discussion
2.1. Calibration Data Acquisition

As detailed in Section 3, the ethanolysis reaction was performed multiple times under
varying conditions to ensure comprehensive data collection. Figure 1a shows the progress
of the ethanolysis under the selected reaction conditions expressed by the concentration of
individual reaction components. The presented data were obtained using a reference GC
method [20].

To monitor the progress of ethanolysis and confirm the endpoint of the reaction, the
transesterification course was expressed by FAEE content (2) based on offline data from
GC analyses. The obtained GC data were subsequently interpolated using an nth order
reaction kinetics model, as illustrated in Figure 1b. This allowed the estimation of FAEE
content between the sampled points, ensuring that the number of FAEE content values
matched the number of spectra obtained from the FTIR measurements.



Int. J. Mol. Sci. 2025, 26, 9381 4 of 16

Figure 1. (a) GC results from a single experiment (40 ◦C; 0.25% w/w NaOH) depict the progression of
reaction compounds over time. (b) The course of ethanolysis expressed by FAEE content calculated
from GC results for each experiment—interpolated by nth order reaction kinetics mode.

Figure 2 presents a 3D graph depicting the spectra measured over time during a
single experiment. However, extracting meaningful insights from this graph alone is
challenging due to the similarities in the spectra of oil and biodiesel. Additionally, the
high chemical similarity between TG and FAEE further complicates their differentiation
based solely on FTIR spectra. Prior studies have shown visible differences in spectra, but
they typically relied on blends, a mixture of pure vegetable oil and final biodiesel, as a
calibration dataset. [33,34,40] This work employs real reaction mixtures containing ethanol
and catalyst to train the models. Notably, the differences in the spectra of these authentic
reaction mixtures are not readily apparent. Using these reaction mixtures, the models can
better capture the complexities and variations inherent in the chemical processes, leading
to more accurate differentiation between the reaction system states.

Figure 2. Surface plot—Raw FTIR-ATR Spectra of reaction mixture measured online over time during
a single experiment.

2.2. Correlation Analysis of the Dataset

Correlation analysis was conducted to identify the relationship between the state of
the reaction system determined by GC analysis and FTIR online spectra. This analysis
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aids in pinpointing regions (i.e., selected wavenumbers) in the spectra where changes in
the reaction system are evident. The correlation, documented in Figure 3, is quantified by
the coefficient of determination calculated individually for each wavenumber concerning
FAEE content. This analysis provides insights into the extent to which variations in spectral
features correspond to changes in the reaction system’s state.

Figure 3. Correlation analysis: Coefficient of determination calculated for each wavenumber con-
cerning FAEE content. Comparison of raw spectra correlation in original dataset vs. dataset
without outliers.

After analysing the whole dataset for each experiment individually, it was found a
consistent issue occurred at the beginning of some reactions. This problem likely stemmed
from the heterogeneity of the reaction mixture at the onset of the reaction. Based on the
observation, the empty flow cell equipped on the ATR accessory required more time to
establish a stable flow of homogeneous reaction mixture, leading to a delay in obtaining
accurate spectra. In this case, measurements commenced only one minute after initiat-
ing the pumping of the reaction mixture through the cell. This hypothesis was further
supported by evaluating spectra comparisons from a single experiment, as depicted in
Figure S1 (Supplementary Materials), which clearly shows the spectral instability at reac-
tion initiation and the effect of water vapour on certain spectral regions. Additionally, it
was observed that the spectra could be affected by air/vapour (gas bubbles in the reaction
mixture) during the flow-through process, particularly evident in the range of approxi-
mately 1200–2200 cm−1. The described noise slightly increased during the entire reaction;
however, in a few reactions, noise was not observed at all. While not explicitly addressed
in this work, this observation can serve as a recommendation for further improvements.
Following these comprehensive analyses, selected spectra at the beginning of the reaction
(obtained before 5 min), which differed from the rest in the set where the cell’s flow-through
was not stabilised, were omitted.

Following the discussed removal of outliers—identified by visual inspection as spectra
affected by flow instability—approximately 5% of the dataset was excluded. This adjust-
ment resulted in a notable enhancement in correlation, particularly in the spectral regions
around 1137, 1206, and 1753 cm−1, as depicted in Figure 3.

During the method development, the literature review, and investigation of the gained
spectra, it was found that the main peak (1670–1770 cm−1) in the spectra of the reaction
mixture was moving during the reaction (mainly its leading edge around 1750 cm−1). A
derivative of the spectra was also used to address this observation. The derivative spectrum
enhances peaks and features in the original spectrum, aiding in identifying and analysing
individual bands. It helps distinguish closely spaced peaks and resolves overlapping bands
not visible in the original spectrum. However, it may amplify noise, so careful management
is necessary to prevent compromising data quality [50].
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Figure 4 compares the correlation of spectra and spectra derivatives with the
FAEE content at different wavenumbers. It is evident that applying the derivative sig-
nificantly enhanced the correlation in certain regions, particularly around 1750 cm−1

and 1000–1300 cm−1. Additionally, a new region of improved correlation emerges
around 3000 cm−1.

Figure 4. Correlation analysis: Coefficient of determination calculated for each wavenumber concern-
ing FAEE content. Comparison of correlation in raw spectra vs. spectra derivative.

Identified regions of significant correlation corroborate existing findings in spectro-
scopic literature, which frequently underscore specific regions and characteristic peaks
associated with ester functional groups. For instance, esters are known to exhibit distinctive
peaks in regions such as 1730–1750 cm−1 (related to C=O stretching), 1250–1300 cm−1 (as-
sociated with C-O stretching), and 1050–1150 cm−1 (pertaining to C-O-C stretching) [51,52].
This consistency underscores the robustness of the correlation analysis in identifying spec-
tral features that accurately reflect the reaction system’s state.

2.3. Development and Comparison of Regression Models

The obtained correlation results prompted the exploration of various approaches.
During the development process, the calibration dataset, generated using interpolation
(see Section 3.1), was designed. At the same time, a smaller subset derived from GC results
served as the validation dataset for the regression model. Validation performance was
assessed using only FTIR spectra aligned with actual GC measurements. This ensures an
independent comparison with ground-truth reference values and avoids circular validation
using interpolated data. The coefficient of determination (R2) and root mean square error
on prediction (RMSEP), described in Section 3, were employed as key evaluation metrics for
comparing different methods and benchmarking against other approaches in the literature.
The PLS method is a common approach found in the literature, usually applied on FTIR
data for analysing transesterification reactions [36,40,44]. This method does not require
additional correlation analysis, as the PLS algorithm functions independently. More PLS
model approaches were performed for comparison to obtain the best possible result, as
shown in Figure 5.

Figure 6 illustrates the calibration and validation datasets using the PLS model with
10 components within the range of 650–4000 cm−1 of FT-IR spectra. Interestingly, employing
more than 10 components did not significantly increase the method’s performance. The
coefficient of determination for the validation set reached 0.99, with an RMSEP of 0.94,
underscoring the robustness and accuracy of the model within this spectral range.
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Figure 5. RMSEP dependency on the number of components (PLS)/regions (selected wavenumbers)
(MLR) and data (raw spectra vs. spectra derivative), in comparison with prior studies by Mwenge
et al. [40] and Trevisan et al. [44].

Figure 6. Calibration and validation of the PLS model with 10 components using spectra.

As was mentioned, the PLS regression is widely used. However, it has its disad-
vantages. Despite their power, PLS models face challenges with large datasets, complex
relationships, and potential overfitting. Outliers and multicollinearity can further impact
their performance. Consequently, model interpretation becomes intricate, especially with
numerous latent variables (components). Therefore, careful preprocessing and considering
alternative methods are essential for reliable outcomes in FTIR data analysis, emphasising
thorough model selection, validation, and interpretation.

However, this widely used method was compared with SLR and MLR models. For this
purpose, correlation analysis (Section 3.2) was employed to select promising wavenumbers
aiming to challenge the PLS method with easy and straightforward linear regression
from both obtained raw spectra and spectra derivative. The performance of both tested
regression models with a gradual increase in a number of model parameters and thus their
complexity is depicted in Figure 5.
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As depicted in Figure 5, utilising the PLS method with raw spectra necessitates a min-
imum of 7 components to achieve similar results as presented in prior studies [40,44]
(RMSEP around 2). Conversely, employing the MLR method with only 4 selected
wavenumbers—specifically absorbance around 1138, 1206, 1247 and 1753 cm−1—yielded a
model with an RMSEP value of 1.64. In contrast, applying spectra derivatives enhances
precision, requiring fewer components or regions. With spectra derivatives, the PLS model
employed in this study needed only 3 components to achieve an RMSEP value below 2.
Notably, utilising the MLR model with spectra derivatives yielded even more promising
outcomes. Similar results (RMSEP = 2.11) were obtained with only one region (around
1178 cm−1), i.e., with simple linear regression.

In prior investigations, Mwenge et al. [40] delved into methanolysis monitoring us-
ing an FTIR probe and GC as a reference method, pioneering the development of an
FTIR/PLS calibration model that harnessed the power of 11 optimal components. Their
efforts culminated in an RMSEP value of 6.32 when spectra were left unprocessed and
significantly improved to 2.72 upon application of preprocessing techniques such as mean
centring, variance scaling, and spectrum math square root. Similarly, Trevisan et al. [44]
presented an online monitoring methodology tailored for transesterification, using ethanol
and degummed soybean oil datasets derived from multiple batch reactions, with NMR
as the reference method. While NMR is valuable for understanding organic compound
structure, it has limitations in quantification—employing NMR as a reference method
can compromise accuracy [25]. By employing the versatile PLS method in conjunction
with a diverse array of preprocessing methodologies, including derivative, baseline correc-
tion, Savitzky–Golay smoothing, mean-centering, auto-scaling, and iPLS, they managed
to achieve a commendable RMSEP value of 1.9 under optimal conditions. A detailed
comparison of achieved model performance within this study and the discussed literature
is available in Table 1.

Table 1. Summary of achieved results compared with prior findings.

Regression
Method Data Used Spectral Range

[cm−1]

Number of
Components/

Regions [-]

Reference
Method RMSEP Source

PLS preprocessed spectra 650–2500 11 GC 2.72 * Mwenge et al. [40]
PLS preprocessed spectra 814–3707 6 NMR 1.90 Trevisan et al. [44]
PLS raw spectra 650–4000 7 GC 1.95 **
PLS raw spectra 650–4000 10 GC 0.94 ** see Figure 6

PLS spectra
derivative 650–4000 3 GC 1.68 **

PLS spectra
derivative 650–4000 7 GC 0.92 **

MLR raw spectra 650–4000 4 GC 1.64 ** see Figure 7
MLR raw spectra 650–4000 7 GC 1.45 ** see Figure S2

SLR spectra
derivative 650–4000 1 GC 2.11 ** see Figure 8

MLR spectra
derivative 650–4000 9 GC 1.44 ** see Figure S3

* Methanolysis study; ** This study.

Therefore, the results show that applying a novel approach utilising spectral deriva-
tives coupled with simple linear regression achieved comparable RMSEP values as those
reported in prior studies [40,44]. Noteworthy, RMSEP value 2.11 was achieved by focusing
on just one spectral region, showcasing the efficiency and effectiveness of the introduced
method, which is a surprising result of this presented study. Moreover, another impressive
finding was gained without resorting to spectra derivative; with only 4 spectral regions in
use, it managed to attain a highly competitive model with an RMSEP value of 1.64.

Moreover, the comparison with the well-established PLS method sheds light on the
efficacy of the selected approach. While PLS is widely employed in similar analyses,
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the proposed simple method demonstrated competitive performance. The PLS method,
performed in this study for comparison, yielded an RMSEP value of 0.94 using spectra
(with 10 components) and 0.92 using spectra derivative (with 7 components).

Figure 7. Calibration and validation of MLR model using 4 regions from spectra.

Figure 8. Calibration and validation of SLR model using only 1 region from spectra derivative.

Overall, the findings underscore the promising prospects of applying spectra deriva-
tive and simple linear regression in spectroscopic data analysis, particularly in enhancing
accuracy and efficiency while minimising complexity. Refining and optimising these
methodologies are aimed at contributing to advancements in analytical techniques and
facilitating a more robust and reliable method as a tool for online monitoring systems, not
only in biodiesel production.

2.4. Method Application

To demonstrate the practical utility of the developed method, the course of the ethanol-
ysis determined by both offline GC analysis and online FTIR measurements in the flow
cell was performed as documented in Figure 9. Error bars are included to represent the
expected experimental error, even in the case of the reference GC method [20]. Remarkably,
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the PLS and MLR models exhibited errors lower than 3.5% practically in all gained data
points. However, the commonly used PLS model with 10 components demonstrated a
similar error rate as the MLR model with only 4 utilised regions. Hence, achieved results
confirmed the method practical applicability an online monitoring tool, providing accurate
and reliable feedback for process control.

Figure 9. Online FTIR/PLS and FTIR/MLR methods application and comparison with the offline
GC analysis. Colors indicate experimental conditions: red (60 ◦C; 0.98% NaOH), blue (40 ◦C; 0.25%
NaOH), and green (40 ◦C; 0.25% NaOH; failed reaction), consistent with the legend in Figure 1b.

Furthermore, Figure 9 presents the course of 3 different experiments. The red one
was initiated at the highest studied temperature and catalyst concentration yielded higher
FAEE content—beyond the EU biofuel threshold. Blue and green were initiated under
identical conditions; however, one of the experiments resulted in lower FAEE content,
likely attributed to a higher water content in the reaction mixture. This led to catalyst
consumption in saponification and, consequently, lower FAEE content. This observation
underscores the developed method’s ability to discern variations in production process
outcomes and simultaneously its capacity to flag failed batches or reaction states that
successfully surpass the EU biofuel threshold on the other hand. Therefore, such capabilities
enhance the reliability and applicability of the method in real-world scenarios, where
control systems must promptly react to changes in the controlled process, even within a
wide range of conditions.

While this study focused on refined rapeseed oil, the correlation analysis approach
shows promise for adaptation to other feedstocks. The method’s reliance on funda-
mental ester vibrational modes (C=O stretching at 1730–1750 cm−1, C-O stretching at
1250–1300 cm−1) suggests applicability across different vegetable oils and even waste oils,
though recalibration would be necessary to account for varying impurity levels and fatty
acid compositions. The presence of free fatty acids, water, and other contaminants typ-
ical in crude or waste oils may require additional spectral preprocessing or alternative
correlation regions.
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2.5. Economic and Industrial Implementation Considerations

The continuous online measurement of reaction progress makes it possible to identify
the exact endpoint, so the batch manufacturing process can be stopped as soon as the
required FAEE concentration is reached, instead of waiting for a fixed reaction time, which
is usual industrial practice. According to the results in this study (see Figures 1 and 9),
reaction time can be reduced at the tested conditions by 30 min, i.e., 25% time reduction in
the case of a 2 h scheduled reaction. On the other hand, the FTIR system is advantageous
in continuous biodiesel plants as well, where automated dosing and process adjustments
are essential for consistent product quality. By detecting deviations in real time, the system
can trigger corrective actions—such as altering catalyst levels, modifying temperature, or
adjusting residence time—without manual intervention.

Integration into plant control infrastructure is also straightforward since modern FTIR
spectrometers support standard industrial communication protocols. Depending on the
setup, the system can either provide operator notifications or directly drive actuators for
closed-loop regulation of catalyst addition, temperature, and reaction completion. Future
work will focus on developing advanced process control algorithms that leverage this
real-time FAEE content feedback for dynamic process optimisation.

Overall, the proposed FTIR-ATR monitoring system offers significant economic ad-
vantages for industrial biodiesel production. Based on current industrial energy prices
and market prices for feedstock (ethanol, vegetable oil, and catalyst), economic analysis
revealed scale-dependent payback periods. Calculations assumed continuous batch op-
eration (24/7) and an income of 0.05 USD per litre of biodiesel, with payback calculated
solely from increased production capacity due to shortened reaction times. For small-
scale operations producing approximately 10–15 million litres annually, the initial FTIR
equipment investment ($40,000–$60,000) results in payback periods of 3–4 months. For
medium-scale plants (100 million litres annually), the payback time reduces to less than
a month, demonstrating the scale-dependent economic viability of the technology. Even
with smaller time reductions (10%), the payback remains favourable at 1–2 months for
medium-scale plants.

3. Materials and Methods
3.1. Materials

Pure rapeseed oil was obtained from a local grocery store for all experiments. All other
used chemicals were of analytical grade.

3.2. Small-Scale Transesterification System

A standard industrial-scale manufacturing process was realised at the laboratory level.
The different amounts of pure rapeseed oil (500–1000 g) were mixed with ethanol (in a
molar ratio of 6:1 to oil) in a glass reactor equipped with a thermometer, reflux condenser,
and stirrer. Thereafter, the mixture was heated to the required temperature. After reaching
the temperature, a catalyst solution (NaOH in ethanol) was added, marking the initiation
of the reaction. The concentration of NaOH varied within the range of 0.25% to 1.00% by
weight of the oil. The reaction mixture was vigorously stirred (2000 rpm) for 2 h under
reflux at temperatures ranging from 40 ◦C to 60 ◦C. Samples were collected at selected time
intervals (2, 5, 7, 10, 15, 20, 30, 45, 60, 120 min) from the point of catalyst addition into the
reactor. About 2 mL of the reaction mixture were withdrawn and mixed with an n-butanolic
solution of adipic acid (0.1 mol/L, 3 mL) in a vial. The mixture was vigorously shaken to
halt the reaction promptly. The sample thus obtained was subsequently subjected to GC
analysis, following the method described in [20]. A total of 10 ethanolysis experiments
were conducted under 5 different condition sets.
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3.3. Process Monitoring Methods
3.3.1. FTIR

FTIR measurements were performed using an online system with a continuous flow
cell, which involved silicon tubing connected to the reactor. A model KNF Lab Simdos
10 membrane pump facilitated the continuous flow. The FTIR analysis was conducted
using a Thermo Scientific™ Nicolet™ iS50 FTIR spectrometer (Thermo Fisher Scientific
Inc., Madison, WI, USA) with an ATR sampling accessory featuring a diamond crystal.
All spectra were collected with a scan number set to 10, a resolution set to 4 cm−1, and a
background was collected before the experiment—without the cell. The OMNIC® software,
provided with the instrument, was used for spectrum collection and initial analysis. The
measurement process was automated with a one-minute interval.

3.3.2. GC—Reference Method

Gas chromatography served as the reference method for the analysis of the biodiesel
reaction mixture composition, encompassing FAEE, glycerol (G), triglycerides (TG), diglyc-
erides (DG), and monoglycerides (MG). The analysis was conducted using a Master GC
Fast Gas Chromatograph from DANI Instruments S.p.A., following the procedure outlined
in [20]. To ensure the accuracy of the results, each sample underwent at least two injections
into the GC chromatograph.

3.4. Experimental Data Evaluation

The transesterification reaction involves three successive reverse reactions, converting
TG (oil/fats) into DG, DG into MG, and MG into G, as described by (1). An ester molecule
(FAEE) is produced at each stage of this process, yielding three ester molecules from one
TG molecule [8].

TG + EtOH
catalyst↔ DG + FAE

EDG + EtOH
catalyst↔ MG + FAEE

MG + EtOH
catalyst↔ G + FAEE

(1)

The FAEE content, which follows the course of the reaction during the transesterifica-
tion, was determined using the Formula (2) based on the GC analysis of glycerides and
ethyl esters content in the reaction mixture.

FAEE content [%](τ) = xA =
FAEE[%](τ)

TG[%](τ) + DG[%](τ) + MG[%](τ) + FAEE[%](τ)
(2)

For each experiment, FTIR spectra were collected continuously at one-minute intervals,
yielding 120 spectra per reaction. In parallel, GC analysis was performed at specific times,
providing accurate measurements of reaction components. The progress of each reaction,
expressed by FAEE content, was interpolated using an nth order reaction kinetics model [53].
The kinetic model coefficients were optimised individually for each experiment using
Python’s 3.8 curve_fit function from the SciPy v1.13.0 package, employing non-linear least
squares to fit the function. This model facilitated interpolation and simulation of the entire
reaction course. These interpolated FAEE values were aligned with FTIR spectra and used
to form the calibration dataset.

To validate model performance, we used the FTIR spectra corresponding only to the
time points where GC analyses were actually performed—these served as the validation
dataset, as they were associated with measured, not interpolated, FAEE content. This
strategy ensures that the model is evaluated against true experimental values, not model-
generated approximations.
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3.5. Regression Models and Their Evaluation

Python’s scikit-learn v1.4.1 package was utilised to implement regression models and
calculate evaluation metrics.

Python’s LinearRegression function was used to fit linear models—simple linear
regression (SLR) and multiple linear regression (MLR). Specifically, the residual sum of
squares between the observed targets in the dataset and the targets predicted by the
linear approximation was minimised. The PLSRegression function was employed for
implementing PLS regression.

The coefficient of determination, often denoted as R-squared (R2), and root mean
squared error on prediction (RMSEP) were used as key metrics during the models’ devel-
opment for their evaluation.

4. Conclusions
The proposed FTIR monitoring system offers a simple, rapid, precise, and reliable

means of online monitoring ethanolysis progress across varied reaction conditions. Specifi-
cally, the developed online monitoring system was validated across reaction temperatures
ranging from 40 ◦C to 60 ◦C and a range of initial catalyst concentrations from 0.25% to
1.0%. The method enables the determination of FAEE content (validated in the range of
40–100%) directly in the reaction mixture without sample pretreatment.

Introducing a novel data evaluation method, this approach employs linear regres-
sion, i.e., SLR and MLR, over the more commonly employed PLS regression. Successful
utilisation of linear regression necessitated correlation analysis between spectra obtained
from multiple reactions and sample composition analysed via the reference GC offline
method. Following the removal of outliers, approximately 5% of the dataset, substantial
enhancements in correlation were observed, particularly in specific spectral regions of
esters (1000–1300 cm−1, around 1750 cm−1). Further improvements were achieved by
applying the spectra derivative.

Both SLR and MLR models exhibited remarkable performance with raw spectra and
their derivatives through the identified correlated spectral regions. An RMSEP value of 2.11
was achieved using only one region from the spectra derivative (i.e., in the case of SLR).
Additionally, it was shown the method was able to identify discrepancies in the ethanolysis
process course effectively and to confirm fulfilling the mandated threshold value prescribed
by the European Union standard for biofuel of the batch even during its processing.

These findings underscore the efficacy of FTIR measurements combined with linear
regression models as a suitable online monitoring tool for ethyl ester production control
and quality assurance. The technology demonstrates strong economic viability with rapid
payback periods through increased production capacity, making it attractive even for
small-scale biodiesel operations with payback period around 3–4 months. Future work
will integrate this monitoring tool into a feedback-controlled reactor system for dynamic
biodiesel production optimisation.
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