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Abstract

Neuromuscular diseases (NMDs) like Duchenne muscular dystrophy (DMD), limb-girdle
muscular dystrophy (LGMD), and amyotrophic lateral sclerosis (ALS) are rare, progres-
sive disorders with complex molecular mechanisms. Traditional transcriptomic analyses
often struggle to capture systems-level dysregulation, especially given the small sample
sizes typical of rare disease studies. Our differential expression analysis of eight public
RNA-seq datasets from various cell types in DMD, LGMD, and ALS revealed not only
disease-relevant pathways but also unexpected enrichments, such as renal development,
suggesting systemic impacts beyond muscle tissue. To address limitations in capturing
broader molecular mechanisms, we applied an integrative systems biology approach com-
bining differential expression data, protein—protein interaction (PPI) networks, and network
embedding techniques. Comparative functional enrichment revealed shared pathways,
including glycosaminoglycan binding in both DMD and FUS-related ALS, implicating
extracellular matrix—protein interactions in FUS mutation effects. Mapping DEGs onto the
human PPI network and assessing their proximity to causal genes uncovered dysregulated
non-coding RNAs, such as PAX8-AS1, SBF2-AS1, and NEAT1, potentially indicating com-
mon regulatory roles. We also found candidate genes within disease-proximal clusters,
like HS3ST3A1, which may contribute to pathogenesis. Overall, this integrative approach
reveals shared transcriptional programs and novel targets, advancing our understanding
and potential treatment strategies for NMDs.

Keywords: neuromuscular diseases; integrative analysis; differential gene expression;
network-based analysis

1. Introduction

Neuromuscular diseases (NMDs) encompass a diverse group of disorders that affect
the function of muscles and the nerves that control them, often leading to progressive
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weakness, loss of motor function, and significant disability [1-4]. Among these, Duchenne
muscular dystrophy (DMD) and amyotrophic lateral sclerosis (ALS) are two of the most
extensively studied NMDs [5,6]. Although less prevalent than DMD or ALS, limb—girdle
muscular dystrophy (LGMD) represents an important subgroup within the muscular dys-
trophies due to its phenotypic similarities with DMD, particularly in terms of progressive
weakness affecting the shoulder and pelvic girdle muscles. While DMD is primarily charac-
terized by progressive muscle degeneration due to mutations in the DMD gene [7], ALS
involves the degeneration of motor neurons, with a multifactorial etiology involving both
genetic and environmental factors [8]. Regarding LGMD, it encompasses a genetically
heterogeneous set of disorders caused by mutations in various genes (including CAPN3,
TNPO3 and LMNA, among others) involved in muscle fiber integrity, membrane repair,
or sarcomere organization [9,10]. Even the age of onset and rate of progression may vary;
LGMD often mirrors the muscle degeneration patterns seen in DMD, which can be useful in
studies exploring shared molecular mechanisms among diseases [11]. Despite the clinical
and pathological differences between DMD and LGMD and ALS, these diseases have
overlapping clinical features, including progressive muscle weakness and dysphagia [12],
suggesting they may share common molecular pathways that remain poorly understood,
contributing to delays in diagnosis and limited therapeutic options [13].

One of the significant challenges in the study of NMDs is the heterogeneity of their
pathological phenotypes and the associated genetic profiles [14]. For instance, while DMD
is typically linked to a single gene mutation [7], its clinical progression can vary due to mod-
ifier genes and environmental influences [15]. In contrast, ALS exhibits remarkable genetic
heterogeneity [16], with mutations in over 40 genes implicated in its familial and sporadic
forms [17]. Similar to ALS, LGMD includes multiple subtypes of the disease depending on
the gene affected [9]. This complexity complicates the establishment of universal diagnostic
biomarkers and therapeutic targets [18], resulting in prolonged diagnostic timelines and
suboptimal treatment strategies. Moreover, the lack of comprehensive insights into the
molecular mechanisms underlying these diseases hinders the development of effective
interventions [1].

Identifying common molecular mechanisms and genetic factors shared by NMDs
could provide critical insights into their pathogenesis and open new avenues for diagnostic
and therapeutic advancements [1]. Transcriptomic studies, which analyze gene expression
changes at the RNA level, offer a powerful approach to unravel the molecular underpin-
nings of these diseases [19,20]. Differential gene expression analysis, in particular, has been
instrumental in identifying genes and pathways dysregulated in NMDs [20,21]. However,
interpreting these data in isolation often falls short of capturing the complex interactions
among genes and their regulatory networks.

To address this limitation, network-based approaches have emerged as complementary
tools to integrate transcriptomic data and elucidate the relationships between differen-
tially expressed genes (DEGs) [22]. By mapping DEGs onto biological networks, such as
protein—protein interaction (PPI) networks, researchers can identify clusters of DEGs that
are close to the disease-causal gene and determine pathways that could play central roles
in disease pathogenesis [23]. More recently, the application of network embedding tech-
niques has further advanced this field by enabling the transformation of complex network
topologies into low-dimensional vector spaces that preserve neighborhood and connectivity
information. In biological terms, these techniques allow us to convert a large, intricate
interactome, comprising thousands of proteins and their interactions, into mathematical
representations (vectors) where proteins with similar interaction patterns are placed close
together in the new space. Unlike traditional clustering methods that rely uniquely on
topological features, like node degree (number of direct connections between nodes) or



Int. J. Mol. Sci. 2025, 26, 9376

3 0f 31

direct neighbors (nodes directly connected to a node of interest), embeddings can capture
higher-order structures, such as indirect connections or community contexts, which are
often biologically meaningful. For example, two genes that are not directly connected
but share similar interaction environments may be projected nearby in the embedded
space, reflecting potential co-regulation or shared functional roles. These embeddings
facilitate more accurate clustering, gene prioritization, and pathway inference, thereby
improving the detection of functionally relevant modules and enhancing our capacity to
pinpoint potential biomarkers and therapeutic targets in a systems-level context [24-26].
With these considerations, this integrative framework not only enhances the understanding
of molecular mechanisms but also facilitates the prioritization of potential biomarkers and
therapeutic targets.

In this study, we aim to leverage differential expression and network-based analyses to
identify shared genetic factors and molecular mechanisms in DMD, LGMD, and ALS. By in-
tegrating RN A-seq data with PPI networks, we seek to uncover critical genes and pathways
implicated in these diseases. Our findings have the potential to enhance the understand-
ing of NMD pathogenesis, improve diagnostic accuracy, and inform the development of
targeted therapies that address common aspects of these debilitating conditions.

2. Results

The results of the read pre-processing indicated good overall quality across all sam-
ples. In nearly all samples, the percentage of reads uniquely mapped to the reference
genome was very high, with the exception of one control and one patient from the
ALS_iN_C90RF72 dataset (Supplementary Figure S1G). No signs of adapter contami-
nation or major sequencing artifacts were found (Supplementary Figure S2). In addition,
for each dataset, Supplementary Figure S3 illustrates the total number of reads remaining
after pre-processing, the number of reads that aligned uniquely to the reference genome,
and, among these, the subset that mapped to annotated genes.

2.1. Quality Assessment and Differential Expression Analysis Across Datasets

Differential expression analysis was performed with ExpHunter Suite independently
for each neuromuscular disease (NMD) dataset. It includes a data quality control mod-
ule that performs principal component analysis (PCA) to assess the distribution of sam-
ples and a Hierarchical Clustering on Principal Components (HCPC) that groups sam-
ples in clusters sharing similar characteristics. For the DMD datasets, in the case of the
DMD_myot dataset (Figure 1a), it is noteworthy that the control iCtrl_R2_120 does not
appear grouped with the rest of the controls in the principal component of the PCA,
which accounts for 33.20% of the explained variability. In the HCPC of this comparison,
we can see three well-differentiated clusters of samples: two with controls and patients
perfectly grouped in their categories and another one including iCtrl_R2_120 along with
the DMD_R3_120 patient sample (Supplementary Figure S5A). However, in the case of
DMD_pCard (Supplementary Figure S4A), a clear separation of the samples between the
two groups is observed: control (“ctrl”) and patient (“treat”). Specifically, the sample
iCtrl_R1_REF is the one that is furthest from the control group, as can be seen in the HCPC
(Supplementary Figure S5B). Regarding the DMD_cfib dataset, the PCA revealed certain
separation between control and DMD patient samples (Supplementary Figure S4B); how-
ever, it is observed that Ctrl_1 and Ctrl_2 samples are somehow closer to DMD samples
than to the rest of controls. This is also clearly observed in the HCPC (Supplementary
Figure S5C), in which both controls are grouped with DMD samples in two different
clusters, and Ctrl_3 and Ctrl_4 are included in another cluster. And in the case of the
DMD_myob dataset, a clear separation between control and DMD samples is observed
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(Supplementary Figure S4C). Additionally, three distinguishable groups of patient samples
are also observed. This is confirmed by the HCPC (Supplementary Figure S5D). These
results are consistent with the original study, since three replicates were extracted from
each individual.

Regarding the results obtained for the analysis of the datasets corresponding to LGMD,
in the case of the LGMD_myob dataset, a clear separation is observed between the two
groups of samples in the PCA (Supplementary Figure S4D), in which the principal com-
ponent accounts for 96.38% of the explained variability, as well as a very close clustering
between the samples that are part of the sick group, while there is more distance between
the samples of the control group, with Ctrl_1 being the most distant. In the HCPC, this
separation of samples is reflected in three distinct clusters, one of them including the patient
samples and two with control samples (Supplementary Figure S6A). The LGMD_pbmc
dataset (Figure 1b) exhibits substantial heterogeneity among its samples. The first principal
component accounts for 22.64% of the explained variability and reveals the presence of
distinct sample groupings, such as the control samples Ctrl_1, Ctrl_2, and Ctrl_3, and the
patient samples LGMD_2, LGMD_3, and LGMD_10. This pattern is further supported by
the dendrogram generated through HCPC analysis (Supplementary Figure S6B), which
identifies up to seven distinct clusters: two clusters composed exclusively of control sam-
ples, three containing only patient samples, and two including a mix of both sample types.

Regarding the PCA results for ALS datasets, in the case of ALS_iN_C90ORF72 we
carried out the comparison of controls vs. ALS patients for cytoplasmic samples. As can be
seen in Figure 1c, there is a clear separation between control and patient groups, with the
exception of the samples labeled R3. These do not cluster with their expected groups: the
control R3 sample clusters with ALS patients, while the ALS R3 sample appears separated
from both groups (Supplementary Figure S6C). In the case of the ALS_fib_FUS dataset
(Figure 1d), PCA reveals a separation between both groups of samples (controls and FUS-
mutated ALS samples) not very well defined between the control and patient groups on
the basis of the second component, which accounts for 9.79% of the explained variability.
Samples ALS_1 and ALS_10 are the most distant in the PCA space compared to the others;
however, we chose not to exclude them from the analysis to maintain sample balance in the
comparison. As observed in the HCPC for this dataset (Supplementary Figure S6D), the
samples cluster into different groups. Samples ALS_1, ALS_3, ALS_6, and ALS_10 form
clusters on their own. There are two clusters that include only control samples and one
with four ALS patient samples and a final cluster that combines both sample types.

For each dataset, differential expression analysis was performed by comparing samples
as specified in Section 4. Table 1 summarizes the number of differentially expressed genes
(DEGs) identified in each dataset, specifying how many were over-expressed and how many
were down-regulated based on the log, fold change (log,FC). Supplementary Tables S1
and S2 present, for DMD and for LGMD and ALS, respectively, the top five over-expressed
and down-regulated genes identified in each dataset, ranked by their logo FC values.

Overall, the average number of expressed genes across the eight datasets is 13,429.1.
Among these, a higher number of expressed genes is observed in samples taken from
different tissues, like iNeurons, cardiac fibroblasts, and myoblasts, than from PBMC and
fibroblasts (Table 1). Likewise, a higher number of over-expressed genes is observed than
down-regulated genes, except in the case of DMD_pcard and LGMD_myob, where 91.3%
and 63.6% of DEGs, respectively, have negative log, FC values.
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Table 1. Summary of expressed and differentially expressed genes (DEGs) across datasets, includ-
ing counts of over-expressed and down-regulated genes. DMD: Duchenne muscular dystrophy;
LGMD: limb-girdle muscular dystrophy; ALS: amyotrophic lateral sclerosis.

Dataset Expressed Genes DEGs Over-Expressed Down-Regulated
DMD_myot 13,085 176 137 39
DMD_pCard 12,832 437 38 399
DMD_cfib 13,157 80 30 50
DMD_myob 14,466 580 356 224
LGMD_myob 13,838 548 199 349
LGMD_pbmc 13,598 160 108 52
ALS_iN_C90REF72 13,453 325 284 41
ALS_fib_FUS 13,004 171 96 75
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Figure 1. Principal component analysis (PCA) performed for the following datasets (each
one representing a different causal gene): (a) DMD_myot (DMD), (b) LGMD_pbmc (TNPO3),
(c) ALS_iN_C90RF72 (C9ORF72), and (d) ALS_fib_FUS (FUS). The centroid of each group of samples
compared (Ctrl and Treat) is displayed. DMD: Duchenne muscular dystrophy; LGMD: limb—girdle
muscular dystrophy; ALS: amyotrophic lateral sclerosis; iCtrl: isogenic control. The centroid of the
control and treatment groups is represented in magenta.
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Differential expression analysis across the DMD and LGMD datasets revealed both
dataset-specific and, in some cases, shared transcriptional alterations. Notably, a subset
of the most significantly expressed genes is common to different datasets, suggesting
potentially conserved molecular signatures. For instance, MEG3 and ENSG00000225746
are over-expressed in both DMD_myot and DMD_myob; PAX8-AS1 appears among the
top over-expressed genes in DMD_pCard and DMD_cfib; GSTM1 and TRPV?2 are shared
between DMD_myob and LGMD_myob; and SFRP4 is down-regulated in both DMD_cfib
and ALS_fib_FUS. The results of the functional enrichment analysis for each dataset, pre-
sented as over-representation analysis (ORA) graphs generated by ExpHunter Suite, are
shown in Supplementary Figure S7. In DMD_myot and DMD_myob, DEGs were en-
riched in biological processes related to renal system development, synaptic organization,
and immune responses, including type I interferon signaling and hypoxia response. In
contrast, DMD_cfib (the dataset with the fewest DEGs) had more limited enrichment,
mainly involving extracellular matrix organization and nutrient response. In DMD_pCard,
over-expressed genes, such as PAX8-AS1 and GJD2, were linked to functions in connec-
tive tissue development, ossification, coagulation, and nervous system regulation. In
LGMD_myob, strong over-expression of ACSM5 and GSTM1 reflected robust enrichment
in muscle-specific processes, including muscle cell differentiation, sarcomere organization,
and cardiac function. On the other hand, LGMD_pbmc showed a distinct immune-related
signature, with DEGs involved in chemokine response, leukocyte migration, and immune
cell activation, consistent with high expression of MMP1, CXCL5, and SERPINB2. The
two ALS datasets also showed contrasting profiles. ALS_iN_C9ORF72 exhibited over-
expression of TUNAR and TMEM132E, with enriched functions overlapping with those
observed in DMD_myot, including renal morphogenesis, axon guidance, and glial differen-
tiation. In contrast, ALS_fib_FUS displayed more moderate expression changes and lacked
enrichment for neuronal processes. Instead, functional categories were related to cardiac
muscle tissue growth, blood circulation, and mesenchyme morphogenesis, suggesting a
fibroblast-specific response.

Comparative Functional Profiling Across Neuromuscular Disease Transcriptomes

To explore the functional relationships among DEGs across NMDs, we used Ex-
pHunter Suite to perform a comparative functional enrichment analysis (Figure 2). This
approach enabled us to identify enriched Gene Ontology (GO) biological processes associ-
ated with each dataset to determine which functional categories are shared among different
NMDs and which are unique to specific conditions. We used a p-value of 0.05 to select
significant annotations.

There are several functional categories shared among the eight datasets, as well
as clusters specific to each of them, which share some connection with more general
functions, establishing a highly interconnected network. Exceptionally, some isolated
functions are observed, generally belonging to the same dataset. The functional categories
extracellular matrix binding and glycosaminoglycan binding are shared by most of the
datasets. Other categories, such as actin binding and structural constituent of muscle,
are shared by both LGMD_myob and DMD_pCard, and both functions connect directly
with other, more dataset-specific functions, such as filament actin binding and calmodulin
binding, specific to the LGMD_myob dataset, and with cadherin binding and cytokine
binding, specific to the DMD_pCard dataset. There are also shared functions among
several datasets of different diseases taken from similar tissues, such as integrin binding
for DMD_myob, LGMD_myob, and DMD_pCard and growth factor binding and collagen
binding for the DMD_pCard, DMD_cfib, and LGMD_myob datasets. It is also worth noting
that some of the functions associated with the DEGs of DMD_myob, LGMD_myob, and
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LGMD_pbmc form clusters of functions characterized exclusively for those datasets. Also
noteworthy is the peptidase regulator activity function, shared between the LGMD_pbmc
and ALS_iN_C90REF72 datasets, belonging, respectively, to two very different NMDs in
phenotypic terms.
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Figure 2. Comparative functional enrichment network. It represents the top enriched functional
categories, specifically Gene Ontology (GO) biological process terms, identified across the differ-
ent datasets (DMD_myot, DMD_pCard, DMD_cfib, DMD_myob, LGMD_myob, LGMD_pbmc,
ALS_iN_C90RF72, and ALS_fib_FUS). Nodes correspond to GO biological process terms (when
both parent and child terms are present in the network, only the child terms are retained, and the
parent terms are removed), and edges indicate functional relationships based on shared DEGs. Edge
thickness reflects the number of shared DEGs connecting two GO terms, with thicker edges denoting
stronger functional overlap.

2.2. Mapping Differential Expression Profiles onto the Human Interactome

Combining protein—protein interactions from all datasets allows the construction of a
comprehensive network capturing interactions consistently present across multiple NMD
models, providing a global perspective on how disease-causal genes relate to the observed
differential expression profiles and enabling the identification of shared modules, conserved
pathways, and core disease mechanisms that might not be apparent in individual datasets.
We constructed a unified network composed of all expressed genes across the eight datasets
(Figure 3). The network layout is generated using an attraction-repulsion algorithm that
organizes nodes by connectivity: highly connected hubs cluster toward the center, while
barely connected or isolated nodes are displaced to the periphery. We will refer to this
network as the dataset view to differentiate it from other representations used in this study.
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In this dataset view representation, DEGs from each dataset were mapped onto the human
protein—protein interaction network. To improve visualization clarity, DEGs from the
four DMD-related datasets (linked to the DMD gene) and the two LGMD-related datasets
(linked to TNPO3) were merged into single DEG sets. Additionally, the four disease-causal
genes corresponding to each NMD were used as seed nodes (starting reference points in
the network) to explore and analyze the relationships between these causal genes and the
DEGs. For further details and a complete network exploration, the interactive report is
available in the integrative analysis results repository https:/ /github.com/ElenaRojano/
INTRINSED_datasets/blob/main/network_all_SAFE.html (accessed on 27 July 2025).

.,,.. :".._

Figure 3. Protein—-protein interaction network belonging to the dataset view, based on the union of
all expressed genes across all the datasets (white body). Each differentially expressed gene list is
represented in different colors, depending on the dataset to which they belonged. Those from the
four DMD-related and the two LGMD-related datasets were collapsed into two aggregated DEG
lists for visualization clarity. Green: DMD-related datasets; red: LGMD-related datasets; purple:
ALS_iN_C90RF?72 dataset; and brown: ALS_fib_FUS dataset. Disease-causal genes (DMD, TNPO3,
CIORF72, and FUS) for all datasets are represented as orange nodes.

This integrated dataset view representation reveals notable patterns of proximity
among disease-causal genes. Interestingly, despite being linked to distinct disorders,
CIORF72 (ALS) and TNPO3 (LGMD) are positioned closely within the network. The
DEGs surrounding these two genes primarily originate from the DMD- and LGMD-related
datasets (Figure 3, green and red nodes, respectively), rather than from ALS_iN_C9ORF72
(Figure 3, purple nodes). In the case of TNPO3, this is consistent with the phenotypic
similarities between DMD and LGMD, both phenotypically similar NMDs [11]. Conversely,
DMD is situated closer to CIORF72 than to TNPO3, despite the stronger phenotypic
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resemblance between DMD and LGMD. In addition, FUS (also associated with ALS)
appears distant from CIORF72 in the network, suggesting that they may be involved in
distinct molecular pathways or operate within separate topological contexts. Interestingly,
the disease-causal gene DMD shows a marked spatial separation from its nearest DEGs
in the interaction network, in contrast to the other three disease-causal genes, which are
surrounded by DEGs in close proximity. In addition, the distribution of DEGs in the
ALS_fib_FUS dataset is particularly striking, as the disease-causal gene FUS is spatially
distant from its associated DEGs (Figure 3, brown nodes), which instead appear closer in
the network to the DMD gene.

To consolidate this information, Table 2 summarizes the integrative analysis across
all datasets, including the number of DEGs successfully mapped to the human protein—
protein interaction network. Notably, the number of mapped DEGs varies substantially
between datasets. For example, DMD_pCard (247 mapped DEGs) and DMD_myob (239)
showed the highest number of DEGs mapped onto the interactome. LGMD_myob and
ALS_iN_C90RF72 also showed substantial mapping, with 206 and 127 DEGs, respectively.
In contrast, datasets such as DMD_myot (34), DMD_cfib (13), LGMD_pbmc (19), and
ALS_fib_FUS (21) exhibited much lower numbers of mapped DEGs. It is worth noting that
these datasets yielded fewer DEGs in the differential expression analysis compared to the
other datasets (all with >300 DEGs, Table 1), which partly explains their lower number of
mapped genes.

Table 2. Summary of the integrative analysis results across datasets. It includes the number of
differentially expressed genes (DEGs) that mapped against the interaction network (Mapped DEGs),
the number of DEGs that were left out of the network of interactions, referred to as unmapped
differentially expressed genes (uDEGs), the number of coding uDEGs (Coding uDEGs), non-coding
RNAs (ncRNAs), and pseudogenes (Pseudo), and the number of DEG clusters. DMD: Duchenne
muscular dystrophy; LGMD: limb-girdle muscular dystrophy; ALS: amyotrophic lateral sclerosis.

Dataset Mapped DEGs uDEGs Unmap. Coding ncRNA Pseudo Clusters
DMD_myot 34 17 2 13 2 8
DMD_pCard 247 31 6 22 3 17
DMD_cfib 13 14 2 9 3 4
DMD_myob 239 164 14 114 30 13
LGMD_myob 206 120 11 85 20 15
LGMD_pbmc 19 53 12 19 19 4
ALS_iN_C90ORF72 127 50 3 40 2 10
ALS_fib_FUS 21 36 5 25 3 4

Analysis of Unmapped Differentially Expressed Genes

Looking closely at the information provided in Table 1 on the total DEGs for each
dataset, there are a number that do not map against the human interactome network. In
this work, we referred these DEGs as unmapped differentially expressed genes (WUDEGs). The
reasons why these DEGs are left out of the network may be either due to the absence of
known interactions or annotation limitations. uDEGs are classified into three categories:
coding uDEGs, which are protein-coding genes not represented in the interaction network;
non-coding RNAs (ncRNAs), which mainly include long non-coding RNAs (IncRNAs);
and pseudogenes.

In our study, ncRNAs were the most represented category among uDEGs in all datasets,
followed by pseudogenes and unmapped coding genes. The datasets DMD_myob and
LGMD_myob presented the highest numbers of uDEGs, with 164 and 120, respectively. In
both cases, the majority of uDEGs were ncRNAs (114 and 85, respectively), followed by
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pseudogenes and unmapped coding genes. Similarly, ALS_iN_C9ORF72 (50 uDEGs) and
ALS_fib_FUS (36 uDEGs) also showed a predominance of ncRNAs (40 and 25, respectively),
suggesting a potential regulatory contribution of these transcripts in ALS pathology. In
contrast, datasets such as DMD_myot (17 uDEGs), DMD_cfib (14 uDEGs), and DMD_pCard
(31 uDEGs) had a lower number of unmapped genes overall, with ncRNAs still representing
the majority. LGMD_pbmc, despite its relatively low number of mapped DEGs (19), had
a notable 53 uDEGs, including 19 ncRNAs and 19 pseudogenes, suggesting a potential
enrichment of non-coding elements in this dataset. In Supplementary Table 54 we include
all the uDEGs shared between datasets. Most of them are IncRNAs. For example, PAX8-AS1
exhibits a striking expression pattern: down-regulated in DMD myoblasts (logr FC = —4.97)
but consistently over-expressed in all other DMD datasets, as well as in the LGMD_myob
dataset (logo FC = 4.69). A similar pattern is observed for MEG3, which is strongly over-
expressed in DMD_myot (logoFC = 9.32) and DMD_myob (logFC = 8.56) but down-
regulated in DMD_pCard (logoFC = —2.16). Notably, SBF2-AS1 and NEAT1 emerged
as differentially expressed IncRNAs in different diseases and tissues, but with opposing
expression patterns: SBF2-AS1 was over-expressed in LGMD_myob (log,FC = 3.71) yet
down-regulated in ALS_iN_C90ORF72 (log,FC = —2.26), while NEAT1 was over-expressed
in DMD_myob (log,FC = 2.15) and down-regulated in ALS_fib_FUS (log,FC = —1.46). No
differentially expressed ncRNAs were found in common between LGMD_pbmc and the
rest of the datasets.

2.3. Mapping Disease-Associated Transcriptional Profiles onto the Human Interactome

To gain deeper insights into the molecular mechanisms underlying NMDs, we per-
formed a network-based integrative analysis by projecting the DEGs from each dataset
onto the human protein—protein interaction network. We refer to this representation as the
disease view to distinguish it from the previously described dataset view. In this context,
we define functional groups as clusters of DEGs that interact closely with one another in
the network and are also connected to the disease-associated gene specific to each dataset:
DMD for the DMD_myot, DMD_pCard, DMD_cfib, and DMD_myob datasets, TNPO3
for both LGMD_myob and LGMD_pbmc datasets, COORF72 for the ALS_iN_C90ORF72
dataset, and FUS for the ALS_fib_FUS dataset. For simplicity, we selected representative
datasets for each disease: DMD_myot, LGMD_myob, ALS_iN_C90ORF72, and ALS_fib_FUS
(Figure 4A-D, respectively). The rest of the datasets are included in Supplementary Fig-
ure S8. For each of the datasets, the report with the interaction network resulting from the
integrative analysis and the functional analysis of the clusters that will be detailed in the
following sections is available in the results repository at https:/ /github.com/ElenaRojano/
INTRINSED_datasets/blob/main/network_all_SAFE.html (accessed on 27 July 2025).

In the case of the DMD-related datasets, a pairwise pattern of similarity emerges. The
DMD_myot dataset (Figure 4A) shows clusters with fewer DEGs that are more widely
dispersed across the network. A similar distribution is observed in the DMD_cfib dataset
(Supplementary Figure S8B), which also displays a reduced number of clusters. This is
consistent with the low number of DEGs identified in this dataset (80; see Table 1), although
some remain in close proximity to the disease-causal gene DMD. In both datasets, DEGs
exhibit a dispersed pattern throughout the network, potentially suggesting a more het-
erogeneous or less coordinated transcriptional response. In the case of DMD_pCard and
DMD_myob (Supplementary Figure S8A,C), both display comparable network organiza-
tions, with multiple DEG clusters positioned near the disease-causal gene DMD, suggesting
a more coherent functional or topological response to disease perturbation in these tissues.
A similar pattern to that observed in the DMD_myot and DMD_cfib datasets was found
in LGMD_pbmc (Supplementary Figure S8D), which contains a relatively low number
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of DEGs (160) compared to LGMD_myob (Figure 4B). This difference likely contributes
to the reduced number of clusters detected in LGMD_pbmc. In LGMD_myob, DEGs are
more heterogeneously distributed across the network, with several clusters forming around
the disease-causal gene TNPO3, as well as additional clusters located in more peripheral
regions. In contrast, LGMD_pbmc displays two smaller DEG clusters located at greater
topological distances from TNPO3, although some genes within another cluster appear
relatively close to the disease-associated gene in the network. Regarding the ALS-related
datasets, ALS_iN_C90ORF72 (Figure 4C) exhibits a higher number of clusters with a denser
distribution of DEGs compared to ALS_fib_FUS (Figure 4D). In this ALS_fib_FUS dataset,
DEGs are strikingly distant from the disease-causal gene FUS within the interactome, rein-
forcing the observation from the dataset view that these genes occupy separate topological

regions in the network.

Figure 4. Protein—protein interaction networks from the disease view representation. Colored
nodes correspond to clusters of differentially expressed genes (DEGs) for each dataset. Orange dots
represent the disease-related gene used as a reference. (A) DMD_myot (DMD), (B) LGMD_myob
(TNPO3), (C) ALS_iN_C90RF72 (C9ORF72), and (D) ALS_fib_FUS (FUS).

These intra-group analyses reveal notable differences in the network organization
of DEGs across datasets associated with the same disease gene. When comparing across
disease groups, particularly between DMD, LGMD, and ALS datasets, distinct spatial
patterns emerge: DMD-related datasets tend to have more compact DEG neighborhoods
around DMD, while ALS datasets, especially ALS_fib_FUS, show more scattered DEG
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distributions. Furthermore, analyzing the distribution of the number of clusters and the
number of DEGs per cluster provides insight into the heterogeneity and connectivity
patterns of disease-associated expression changes within the network. In Table 2, we
observe the highest number of DEG clusters (17) for the DMD_pCard dataset, followed
by LGMD_myob (15) and DMD_myob (13) datasets, which also exhibited a substantial
number of clusters. The DMD_cfib, LGMD_pbmc, and ALS_fib_FUS datasets showed the
lowest number of clusters (4). Certainly, it is observed that datasets derived from non-
specific tissues, like fibroblasts (DMD_cfib and ALS_fib_FUS) and PBMCs (LGMD_pbmc),
show a lower number of DEGs per cluster compared to those obtained from specific tissues.
For example, as can be observed in Supplementary Figure S10B, the median number of
genes per cluster is 3 for DMD_myot and DMD_cfib and 5 for ALS_fib_FUS, whereas in
DMD_myob the median rises to 20 and in DMD_pCard to 15.

Regarding the distribution of DEGs per cluster, in the four DMD datasets (Supplementary
Table S15) we observe a lower number of DEGs per cluster in the datasets with a lower num-
ber of clusters (DMD_myot and DMD_cfib), compared to the DMD_pCard and DMD_myob
datasets. Interestingly, in these last two datasets, the first two clusters have the same num-
ber of DEGs (32 and 29, respectively, in clusters 0 and 1), but there are no shared genes
between any of the clusters between the different datasets. In the case of the LGMD datasets
(LGMD_myob and LGMD_pbmc, Supplementary Table S16), more clusters and a higher
abundance of DEGs are observed in the LGMD_myob dataset. This dataset, along with
DMD_myob, both from samples of the same cell type (myoblasts), are the ones that re-
turned the most DEGs in the differential expression analysis. And, despite not being the
cluster with the highest number of DEGs, the ALS_iN_C90OREF72 dataset has the cluster
with the most DEGs per cluster (35).

2.4. Embedding-Based Prioritization of DEG Clusters Relative to the Disease-Causal Gene

Given the complexity of the network structure, considering the large number of
DEG-derived clusters and the substantial set of isolated genes, traditional topological
measures may be insufficient to capture the nuanced relationships required to identify
disease-relevant genes [27]. Classical approaches often rely on direct connectivity and may
overlook functionally important nodes that are not topologically central or well-connected
but may still be biologically proximal to the disease-causal gene.

In this context, we adopt a network embedding strategy to project the high-
dimensional interactome into a continuous latent space, which enables a more sensitive
assessment of gene proximity and reflects functional similarity beyond direct edges. Impor-
tantly, embedding allows us to prioritize both clustered and non-clustered (or “isolated”)
DEGs according to their spatial proximity to the disease-causal gene under the hypothesis
that genes closely located in the embedded space are more likely to participate in shared
biological processes or pathways relevant to disease mechanisms. Thus, embedding pro-
vides a robust framework for integrative prioritization in complex disease networks where
gene interactions may be indirect or context-dependent.

2.4.1. DEG Cluster Priorititazion and Functional Analysis

Applying network embedding to each dataset reveals a higher number of clusters
and mapped DEGs in datasets derived from differentiated tissues, such as LGMD_myob
(Figure 5D), ALS_iN_C90RF72 (Figure 5C), DMD_pCard (Supplementary Figure S9A),
and DMD_myob (Supplementary Figure S9C). In contrast, a lower number of clusters is
observed in the datasets that are of undifferentiated tissues: DMD_cfib (Supplementary
Figure S9B), LGMD_pbmc (Supplementary Figure S9D), and ALS_fib_fus (Figure 5D). It
is interesting to remark that, in the case of both DMD_myot and DMD_myob datasets
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(Supplementary Figure S9B and D, respectively), a noticeable spatial separation between
the disease-causal gene (DMD) and the surrounding DEGs in the closest clusters is ob-
served. This trend can be also seen in the LGMD_pbmc (Supplementary Figure S9D)
and ALS_fib_FUS (Figure 5D) datasets. The opposite trend is observed for the rest of
datasets (all from differentiated tissues). For example, in the case of both DMD_pCard and
ALS_iN_C90RF72 datasets (Supplementary Figure S9A and Figure 5C, respectively), DEGs
in the clusters nearest to the respective causal genes (DMD and CIORF72) are placed in a
similar region within the interaction network, suggesting closer functional relationships.
Furthermore, the number of genes per cluster is clearly higher in these tissue-specific
datasets compared to the others.
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Figure 5. Two-dimensional embedding of gene interaction networks. Each panel represents the
reduced vector space (coordl vs. coord2) of the full gene interaction network based on STRING
“Experimental” evidence. Background grey dots correspond to all expressed genes included in
the network. The disease-causal gene (seed) for each condition (DMD, TNPO3, C9ORF72, and
FUS) is represented as a blue rhombus. Panels correspond to the DMD_myot (A), LGMD_myob
(B), ALS_iN_C90RF72 (C), and ALS_fib_FUS (D) datasets. Colored dots represent differentially
expressed genes (DEGs), grouped by cluster (CL).

To avoid possible biases in the visual representation of the data and the possibility of
overlapping of the causal gene with any cluster, in Supplementary Tables S5 and S6 the
ranked information, based on their similarity score, of the clusters closest and furthest to
the causal gene is included. With this information, we can confirm that the closest cluster
with respect to the DMD causal gene is observed for the DMD_cfib (cluster 0, score: 1.00)
and DMD_pCard (cluster 8, score: 1.00) datasets, closely followed by DMD_myob (cluster 7,
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score: 0.94). In the case of DMD_myot, cluster 3 is the one with the highest clustering
score for this dataset (score: 0.77). The rest of the clusters, except for cluster 10 for the
DMD_myob dataset (score: 0.11), present score values very close to 0. No clusters are
observed that could be relevant for the LGMD-related datasets and their association with
the disease causal gene (TNPO3), and in ALS, cluster 9 of the ALS_iN_C9ORF72 dataset has
a score of 0.31, a substantially lower clustering score value compared to those calculated
for the mentioned DMD datasets. In the fibroblast-derived ALS dataset, cluster 2 is the
closest to the FUS causal gene, with a similarity score of 0.02, the lowest among the four
datasets for the cluster nearest to its corresponding causal gene. The close proximity of
these clusters to the causal gene suggests that the associated DEGs may interact directly
with it and be involved in related biological processes. Based on this assumption, we
performed a functional enrichment analysis of the DEGs within each cluster, prioritizing
those closest to the causal gene.

The functional enrichment analysis of DEGs in cluster 0 (DMD and ANLN) for the
DMD_cfib dataset revealed a strong association with molecular functions central to cy-
toskeletal organization and muscle integrity (Supplementary Table S8). Among the signifi-
cantly enriched terms were dystroglycan binding, nitric-oxide synthase binding, vinculin
binding, actin binding, and structural constituent of muscle. These functions are closely
related to the biological role of dystrophin. It is interesting to mention that in the com-
parison performed for the differential expression analysis of this dataset, the DMD gene
appears strongly down-regulated (logoFC = —2.12). In the case of the DMD_pCard dataset
(Supplementary Table S9), cluster 8 included genes enriched in biological processes related
to the negative regulation of coagulation and hemostasis, including negative regulation
of blood coagulation, negative regulation of hemostasis, and innervation among them.
These functions may suggest that dystrophin deficiency in cardiac tissue may also influence
vascular homeostasis and neural regulation. Functional analysis of cluster 7 DEGs in the
DMD_myob dataset included key molecular functions associated with extracellular matrix
organization and protein processing, like dystroglycan binding, apolipoprotein binding, ex-
tracellular matrix structural constituent, serine-type endopeptidase activity, and serine-type
peptidase activity (Supplementary Table 510). These functions suggests a possible role for
this cluster of DEGs in maintaining tissue structure and regulating proteolytic activity, pro-
cesses that are often dysregulated in DMD. For the DMD_myot dataset, cluster 3 included
DEGs enriched in terms related to cardiac and muscle function, including the regulation
of cardiac muscle cell contraction, specifically in ventricles, bundle of His cell-to-Purkinje
myocyte communication, and actin-mediated cell contraction (Supplementary Table S7).
These processes are critical for maintaining coordinated cardiac conduction and contractile
function, suggesting that genes in this cluster may reflect the broader impact of dystrophin
deficiency beyond skeletal muscle, potentially contributing to the cardiomyopathic features
frequently observed in DMD. Regarding the ALS datasets, in the case of ALS_iN_C9ORF72
we found that genes in cluster 9 were enriched in biological functions related to synaptic
structure modification and mitochondrial apoptotic processes, like modification of post-
synaptic structure, positive regulation of release of cytochrome c from mitochondria, and
apoptotic mitochondrial changes (Supplementary Table S11). These results suggest a dis-
ruption in both neuronal connectivity and mitochondrial integrity in COORF72-associated
ALS. And in the case of the ALS_fib_FUS dataset (Supplementary Table 512), cluster 2
DEGs were enriched in biological process that are mainly related to connective and adipose
tissue development, Wnt signaling regulation, and pattern specification, which may point
to potential alterations in mesenchymal tissue remodeling and developmental signaling
pathways and contribute to disease mechanisms in ALS linked to FUS mutations.
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2.4.2. Prioritization of Isolated DEGs

In addition to clustered DEGs, we also identified a subset of network-mapped DEGs
that do not form significant interactions with other DEGs and thus remain outside of defined
functional clusters. We refer to these as “isolated DEGs”. Despite their lack of clustering,
these genes may still play important roles in disease pathogenesis, particularly if they are
located in close proximity to the disease-causal gene within the human interactome, as this
spatial closeness can suggest potential functional relevance through shared or convergent
biological processes.

The top ten isolated DEGs for each dataset are ranked by their similarity score, from
highest to lowest, and included in Supplementary Table S13 for the DMD-related datasets
and in Supplementary Table S14 for LGMD and ALS datasets. In the case of the DMD_myot
dataset, the DMD gene, which is the causal gene for DMD, is excluded from the identified
gene clusters. This is an intriguing observation, as it suggests that despite being central
to the disease, DMD may not directly interact with the rest of DEGs. It is interesting that
the gene CDH12 appears shared between two datasets of the same disease, DMD_pCard
and DMD_cfib, but even more so is the case of HS35T3A1, which appears shared in the
datasets LGMD_myob and ALS_fib_FUS, both belonging to two different diseases caused
by mutations in different genes. In the case of the DMD_myob dataset, it should also
be noted that the EPSTII gene appears with a very high score (0.99), and, despite not
having clustered with other DEGs, this fact suggests some kind of functional relationship.
In addition, it is interesting to mention ABCB11 and PTPRN genes in DMD_pCard and
DMD_cfib, respectively, as the isolated DEGs with the highest scores for these two DMD
datasets. In the LGMD_myob dataset, the high-scoring isolated genes ST6GALI (score:
0.99), SRPK3 (score: 0.96), and P2RX5 (score: 0.89) may reflect downstream effects of
TNPO3 dysfunction. In the case of the LGMD_pbmc dataset, the isolated genes CHERP
(score: 0.84) and EPHA1 (0.82) may also represent functionally relevant downstream targets
of TNPO3-related dysregulation due to its proximity in the network to the causal gene of
LGMD. And regarding the DEGs that did not cluster in the ALS datasets, the proximity
of NREP (neuronal regeneration-related protein, score: 0.93) to C9ORF72 in the network
may reflect shared roles in neuronal plasticity, cytoskeletal remodeling, and cellular stress
responses. In addition, the second closest DEG to C9ORF72 is MAP1LC3C, which encodes
a protein involved in the regulation of microtubule dynamics and autophagy. Finally, the
isolated genes JMJD6 and VRK1, in the ALS_fib_FUS dataset, showed high similarity scores
with FUS in the interaction network, suggesting potential functional connections.

3. Discussion

Understanding neuromuscular diseases (NMDs), such as Duchenne muscular dystro-
phy (DMD), limb—girdle muscular dystrophy (LGMD), and amyotrophic lateral sclerosis
(ALS), requires a comprehensive exploration of their genetic and molecular bases. They
are severe NMDs with distinct genetic origins: mutations in the DMD gene for DMD [7],
different genes depending on the LGMD subtype (like TNPO3 [28]), and alterations in more
than 40 genes in ALS [16], including C9ORF72 [29,30] and FUS [31,32] among the most com-
mon ALS-associated genes, along with SOD1 and TARDBP [33]. Despite their phenotypic
differences, they converge in the disruption of fundamental biological processes, including
cellular homeostasis, inflammation, and synaptic function [11,34]. Thus, comprehending
the molecular basis of these NMDs is crucial for the development of targeted and effective
therapeutic strategies [1].

From a molecular perspective, transcriptomic analysis has proven to be a power-
ful approach for identifying gene expression alterations associated with neuroinflamma-
tory and neurodevelopmental diseases [35], offering valuable insights into dysregulated
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pathways and potential biomarkers [36]. In the context of DMD, LGMD, and ALS, tran-
scriptomic analysis through differential gene expression (RNA-seq) is crucial to elucidate
the downstream molecular consequences of genetic alterations in key disease-associated
genes, such as DMD [37,38], TNPO3 [28], C9ORF72 [29,39], and FUS [32], which may
lead to altered expression profiles contributing to pathogenesis. First of all, to perform
this study, we made sure to have at least two datasets for each of the diseases we an-
alyzed, and we also performed sample selection from different tissue types to ensure
biological relevance and enhance the interpretability of transcriptomic signatures. With
this consideration, we selected samples from differentiated tissues, such as myoblasts (in
the case of the DMD_myob and LGMD_myob datasets), cardiac fibroblasts (DMD_cfib
dataset), iNeurons (ALS_iN_C90ORF72), and myotubes derived from reprogrammed skin
fibroblasts (DMD_myot), and undifferentiated tissue samples, including fibroblasts, as
in the DMD_cfib (cardiac fibroblasts) and ALS_fib_FUS datasets, and peripheral blood
mononuclear cells (PBMCs) in the LGMD_pbmc dataset. Fibroblasts serve as a useful
reference due to their accessibility and broad transcriptomic representation but may not
fully capture tissue-specific pathological mechanisms. Therefore, we included cardiomy-
ocytes for DMD, given the cardiac involvement commonly associated with dystrophin
deficiency [40], and induced neurons (iNeurons) for ALS, as they more closely reflect the
neurodegenerative processes central to the disease [41]. In addition, we incorporated
datasets derived from myoblasts and myotubes to better characterize muscle-specific alter-
ations in DMD and LGMD [42] and PBMCs to investigate systemic immune responses in
LGMD [43], thus ensuring a broader representation of disease-relevant biological contexts.
This strategy enabled a comprehensive view of both shared and tissue-specific alterations
across NMDs, despite the challenge of limited high-quality data due to their rarity and our
selection criteria.

3.1. Differential Expression Analysis Reveals Novel Insights from NMD
Dataset-Specific Comparisons

Our differential expression results largely aligned with original studies, supporting
the robustness of our pipeline and the biological relevance of the findings. Careful sample
selection and dataset-specific comparisons enabled the identification of novel insights
across NMDs. In all datasets except ALS_fib_FUS and DMD_cfib, we recovered expected
processes such as morphogenesis, synaptic regulation, muscle integrity, inflammation, and
extracellular matrix organization [43-48]. In DMD_cfib, unlike Soussi et al. [49], we did not
detect glycolysis or mitochondrial dysfunction but found structural organization functions.
Similarly, in ALS_fib_FUS, our findings contrasted with those of Kumbier et al. [31], who
reported enrichment in metabolism, gene expression, and antigen processing. Instead, we
detected functions such as cardiac tissue development, kidney morphogenesis, and blood
circulation regulation, also present in other differentiated tissue datasets (Supplementary
Figure S7). These differences likely reflect divergent methodological aims, as Kumbier et al.
focused on subtle progression-related biomarkers through machine learning [31], while
our approach emphasized broader transcriptional patterns.

3.2. Comparative Functional Enrichment Extends Original DEG Findings

The comparative functional enrichment analysis of DEGs across the different NMD
datasets revealed a complex and interconnected landscape of biological functions (Figure 2).
While each dataset reflects specific disease contexts, our results show an overlap in func-
tional categories, indicating shared molecular mechanisms that transcend clinical and
genetic heterogeneity. Among the most recurrently enriched functions were extracellular
matrix binding and glycosaminoglycan binding, present across most datasets. These terms
suggest a conserved dysregulation of extracellular matrix (ECM) interactions across NMDs,
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which may contribute to impaired tissue integrity and aberrant cell signaling in both myo-
genic and neurogenic contexts [50-52]. A noticeable results is the frequent occurrence of the
glycosaminoglycan binding term in most DMD-related datasets and in the ALS_fib_FUS
dataset. Glycosaminoglycans are vital ECM components that regulate growth factor signal-
ing, neuronal growth, synaptic plasticity, and tissue organization, dysregulation of which
has been previously associated with muscular dystrophies like DMD [53,54]. In the context
of ALS, and particularly FUS-associated ALS, recent studies have emphasized the role of
ECM alterations and synaptic dysfunction mediated by RNA-binding proteins like FUS [55].
The enrichment of glycosaminoglycan binding shown in the ALS_fib_FUS dataset could
suggest that ECM—protein interactions may be implicated in the downstream effects of FUS
mutations, potentially influencing synaptic integrity and motor neuron survival. And the
convergence of this function between DMD and ALS_fib_FUS datasets, despite their genetic
heterogeneity, could reflect the potential involvement of ECM dysregulation as a shared
pathological mechanism across these diseases. In addition, muscle-related functions, such
as actin binding and structural constituent of muscle, were shared specifically between
DMD and LGMD datasets derived from cardiomyocytes and myoblasts (DMD_pCard
and LGMD_myob, respectively), underscoring common disruptions in cytoskeletal and
contractile protein networks. These findings align with the known involvement of cy-
toskeletal integrity in muscle pathophysiology and suggest that even when different genes
are causative, downstream effects on actin filament organization and contractility are pre-
served across muscular dystrophies [56]. Interestingly, functions such as integrin binding,
growth factor binding, and collagen binding were found in DMD- and LGMD-related
datasets of similar tissue origins, indicating that tissue context strongly influences which
shared pathways are activated or disrupted. Moreover, the detection of peptidase regulator
activity as a shared functional category between LGMD_pbmc and ALS_iN_C90ORF72, de-
spite their distinct pathological phenotypes, raises the possibility of convergent regulatory
mechanisms involving proteostasis or inflammatory modulation [34].

3.3. Insights from Mapping Differential Expression onto the Human Interactome

Despite differences in disease type and cell context across the datasets, the identi-
fication of shared genes and conserved biological functions reveals core mechanisms of
neuromuscular pathology that are likely of broad significance. This principle drives our
integrative systems-level methodology: by mapping differential expression onto the hu-
man interactome, we aim to uncover molecular signatures and pathways that consistently
emerge across heterogeneous datasets, providing insights not only into disease mechanisms
but also into potential therapeutic targets.

Mapping disease-causal genes and their associated DEGs onto the human interactome
revealed unexpected patterns of proximity among NMDs, according to results obtained
from the dataset view. Notably, despite belonging to clinically distinct diseases, the causal
genes CIORF72 (ALS) and TNPO3 (LGMD) are positioned closely in the network and share
nearby DEGs primarily from DMD- and LGMD-related datasets. This suggests a potential
molecular overlap involving C9ORF72 and TNPO3, despite their association with distinct
diseases, and reinforces the idea of a shared pathogenic basis between LGMD and ALS,
which may help explain some overlapping molecular features as previously described in the
comparative functional enrichment analysis of DEGs. Conversely, FUS and CIORF72, both
causally linked to ALS, are topologically distant in the interactome, suggesting involvement
in distinct molecular mechanisms. The spatial separation observed between FUS and
its associated DEGs, and similarly between DMD and its DEGs, may reflect complex
regulatory relationships or tissue-specific expression patterns. These findings demonstrate
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that, despite the datasets’ limitations, our integrative approach offers new insights into
shared pathways and potential therapeutic targets across NMDs.

3.4. Biological Relevance of Unmapped DEGs

A notable subset of DEGs across datasets remained unmapped to the human interac-
tome and were classified as unmapped DEGs (uDEGs). Of special interest is PAX8-AS1,
which is known to participate in transcriptional regulation and chromatin remodeling,
with roles in modulating inflammatory and fibrotic responses characteristics of DMD car-
diomyopathy [57]. Its over-expression in differentiated tissues and in LGMD_myob may
reflect shared pathological mechanisms related to muscle remodeling or stress responses
in muscular dystrophies. Given the shared cardiac and fibrotic manifestations in DMD
and LGMD [40], this expression pattern raises the possibility that PAX8-AS1 could serve
as a novel biomarker for disease activity or progression in these NMDs. In the case of
the MEG3 gene, it regulates cell differentiation and apoptosis, with roles that vary de-
pending on tissue context [58]. Its over-expression in skeletal muscle cells may reflect a
compensatory response to dystrophin deficiency, promoting regenerative or stress-related
pathways, while its down-regulation in cardiac cells could indicate a distinct regulatory
landscape where MEG3-mediated mechanisms are suppressed or differently modulated,
possibly contributing to cardiac-specific aspects of DMD [59]. SBF2-AS1, an IncRNA in-
volved in regulating cell proliferation, migration, and stress responses [60], shows opposite
expression patterns in LGMD myoblasts and ALS iNeurons. Its over-expression in LGMD
may reflect a compensatory response to muscle degeneration and inflammation [61], while
down-regulation in ALS suggests impaired stress responses linked to C9ORF72-related
neuronal dysfunction. These tissue-specific differences underscore the role of SBF2-AS1 as
a context-dependent regulatory hub influencing disease progression, making it a promising
target to explore shared molecular mechanisms across NMDs. And regarding NEAT1, a
critical IncRNA for paraspeckle formation and RNA regulation [62], shows contrasting
expression in NMDs: It is over-expressed in DMD myoblasts, potentially as an adaptive
response to muscle stress and inflammation, helping to maintain transcriptional stability
and protect muscle cells. Conversely, its down-regulation in ALS fibroblasts with FUS
mutations aligns with paraspeckle dysfunction observed in ALS [63], which may impair
RNA metabolism and stress responses in neurons. These opposing patterns emphasize
tissue-specific paraspeckle roles in disease, and may position NEAT1 as a promising molec-
ular link and biomarker across muscular dystrophies and neurodegenerative disorders.
These findings suggest that IncRNAs may contribute to disease- and tissue-specific reg-
ulatory programs in NMDs and represent a layer of molecular complexity not captured
by current interactome-based analyses. Nonetheless, these findings should be validated
through experimental approaches.

3.5. Integrating Differential Expression Profiles with the Human Interactome to Elucidate
Disease Mechanisms

The spatial proximity of DEG clusters to causal genes in our integrative network anal-
ysis suggests functional associations relevant to disease pathogenesis. In the DMD_myot
dataset, the proximity of a DEG cluster enriched in cardiac electrophysiology and muscle
contraction functions to the causal gene DMD underscores the systemic impact of dys-
trophin deficiency on both skeletal and cardiac muscle, including disrupted Purkinje fiber
signaling and actin-mediated contraction [40,64]. In DMD_pCard, cluster 8 was enriched
in processes related to coagulation and hemostasis, supporting the involvement of vascular
dysregulation in cardiac manifestations of DMD. Similarly, in DMD_cfib, although fewer
DEGs were detected, cluster 0 showed enrichment in cytoskeletal organization and extracel-
lular matrix anchoring, functions directly tied to the role of dystrophin in cardiac fibroblasts
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and indicative of remodeling processes in the DMD heart. Cluster 7 in the DMD_myob
dataset was enriched in genes involved in tissue architecture, extracellular proteolysis,
and dystroglycan and apolipoprotein binding, reflecting the impact of dystrophin loss on
membrane dynamics, lipid metabolism, and inflammatory remodeling during myogenesis.
In the ALS_iN_C90RF72 dataset, cluster 9 DEGs were enriched in functions related to
neuronal homeostasis, including autophagy, synaptic regulation, and mitochondrial main-
tenance, processes central to COORF72-related ALS. Lastly, ALS_fib_FUS cluster 8 showed
enrichment in connective tissue development and Wnt signaling regulation, indicating
potential systemic and developmental effects of FUS mutations in non-neuronal cells [65].
The identified gene clusters and their associated biological processes represent plausible
candidates for involvement in disease mechanisms; however, experimental validation is
required to confirm their functional relevance.

3.6. Biological Relevance and Interpretation of Isolated DEGs

The analysis of isolated DEGs provides insights into specialized or context-specific
roles not captured by co-regulated modules. These genes may function in parallel or non-
canonical pathways, act in distinct tissues or disease stages, or reflect dynamic regulatory
events not apparent in the current dataset. We identified HS3ST3A1 as a high-scoring,
isolated DEG in both LGMD_myob and ALS_fib_FUS, suggesting a previously unrecog-
nized shared role in LGMD and ALS despite lacking direct interaction with TNPO3 or FUS.
Similarly, CDH12 emerged as a consistently isolated DEG in DMD_pCard and DMD_cfib,
supporting its involvement in fibroblast-mediated cardiac remodeling in DMD [66] and
pointing it out as a potential therapeutic target. Several isolated DEGs in the DMD datasets
are biologically relevant despite not clustering. In DMD_myob, EPSTI1 is linked to inter-
feron signaling and tissue remodeling, suggesting a role in inflammatory responses [67]. In
DMD_pCard, ABCB11 may affect cardiac energetics via lipid transport under stress [68], and
in DMD_cfib, PTPRN may modulate intercellular communication. These DEGs, although
isolated, are functionally proximal to DMD and may contribute to tissue-specific mani-
festations or disease progression. Notably, DMD itself was significantly down-regulated
in DMD_myot, consistent with previous studies [48] and supporting the robustness of
our approach. In the LGMD-related datasets, isolated DEGs found in LGMD_myob, such
as ST6GAL1, SRPK3, and P2RX5, may reflect downstream effects of TNPO3 dysfunction,
impacting glycosylation, splicing, and membrane signaling in myoblasts. In LGMD_pbmc,
CHERP and EPHA1 suggest systemic effects involving splicing and immune signaling,
reinforcing the broad functional impact of TNPO3 [43]. For the ALS-related datasets, in
ALS_iN_C90RF72, isolated DEGs like NREP and MAP1LC3C are associated with neuronal
regeneration, autophagy, and microtubule dynamics, processes disrupted in ALS [30,69].
Their proximity to COORF72 supports their potential contribution to neurodegeneration [70].
In ALS_fib_FUS, JMJD6 (involved in chromatin remodeling) and VRK1 (linked to motor
neuron degeneration) both show strong proximity to FUS, suggesting convergence on
transcriptional and epigenetic dysregulation in ALS pathogenesis [71,72].

3.7. Study Limitations

The datasets analyzed in this study encompass different neuromuscular disease con-
texts (DMD, LGMD, and ALS) and diverse cell types, including myoblasts, myotubes, and
fibroblasts, among others. While this heterogeneity introduces variability, it also enables
the identification of molecular mechanisms that are consistently deregulated across distinct
disease models. Using our integrative approach, we identified convergent alterations, such
as shared DEGs and common functional categories, that show potential core disease mech-
anisms transcending individual cell types or experimental conditions. We note, however,
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that cell-type-specific conclusions cannot be directly drawn from this analysis, and the
findings should be interpreted as reflecting broad, conserved pathways underlying NMDs.

Another limitation consists of the small sample size per dataset, common in rare
disease research, which limits statistical power and may hide subtle but biologically rele-
vant expression changes. Access to patient-derived RNA-seq data is further constrained
by ethical and legal restrictions, impeding broader data integration. Our network-based
framework is also constrained by the incompleteness of current interaction databases, par-
ticularly regarding poorly annotated genes and ncRNAs. This gap can lead to the exclusion
of potentially important regulators from clustering and prioritization analyses. Future
efforts in expanding and curating interaction datasets, especially for IncRNAs, are essential
to better capture the regulatory landscape of NMD. Additionally, variability in RNA-seq
library preparation protocols across datasets introduces technical noise. PolyA-selected
libraries enrich for mature protein-coding RNAs but miss non-polyadenylated transcripts,
while ribodepletion includes a broader range of RNAs at the cost of sequencing depth per
transcript. These protocol differences should be carefully considered in cross-study anal-
yses and indicate the need for methodological harmonization. Expanding this approach
to additional LGMD and ALS subtypes, as more datasets become available (e.g., via SRA),
will help refine disease-specific versus shared molecular signatures. Moreover, future
versions of our pipeline will incorporate regulatory gene-IncRNA relationships, enabling
deeper insight into the non-coding architecture of NMDs. Altogether, our findings generate
testable hypotheses on shared disease mechanisms and identify candidate genes for further
functional validation.

4. Materials and Methods

We selected RNA-seq datasets of two neuromuscular disorders (NMDs) with clin-
ically similar phenotypes [28], Duchenne muscular dystrophy (DMD), caused by muta-
tions in DMD [73], and limb-girdle muscular dystrophy type D2 (also known as LGMD
TNPO3-related or LGMDD?2), a rare condition caused by mutations in the TNPO3 gene [28],
to explore shared molecular signatures. Additionally, we included two datasets from
amyotrophic lateral sclerosis (ALS), a clinically distinct NMD, each involving differ-
ent causal genes, to assess disease-specific and convergent mechanisms across diverse
pathological contexts.

4.1. Dataset Description

We conducted three independent advanced searches in the NCBI Sequence Read
Archive (SRA) online platform (https://www.ncbi.nlm.nih.gov/sra), accessed on 20 May
2025, to identify RNA sequencing (RNA-seq) datasets for DMD, LGMD, and ALS. Search
queries included the terms “Duchenne Muscular Dystrophy”, “Limb-Girdle Muscular
Dystrophy”, and “Amyotrophic Lateral Sclerosis”, restricting results to the Hormo sapiens
organism, “transcriptomic” (RNA) as the source, “Illumina” as the sequence platform, and
“fastq” as the file type. Retrieved datasets were manually curated by selecting only those
with at least three samples per condition, excluding studies that did not meet this minimum
requirement. Additionally, we prioritized datasets generated using paired-end sequencing
over single-end reads. Following this selection process, eight datasets were chosen for
analysis: four corresponding to DMD with mutations in the DMD gene; two for LGMDD2
with mutations in TNPO3; and two for ALS, one involving mutations in C9ORF72 and the
other in FUS genes.

To facilitate dataset tracking, we assigned standardized names based on disease
and cell type and, in the case of ALS datasets, causal gene studied: DMD_myot,
DMD_pCard, DMD_cfib, DMD_myob, LGMD_myob, LGMD_pbmc, ALS_iN_C90RF?72,
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and ALS_fib_FUS. These datasets encompass different Illumina sequencing platforms and
sequencing layouts (single-end and paired-end). Additionally, we ensured that samples
were obtained from different tissues, including, in the case of DMD, myotubes derived
from reprogrammed skin fibroblasts (DMD_myot dataset), cardiomyocytes differenti-
ated from iPSCs reprogrammed from peripheral blood mononuclear cells (PBMCs) in the
DMD_pCard dataset, and human-induced pluripotent stem cell (hiPSC) lines derived from
cardiac fibroblasts (DMD_cfib dataset) and myoblasts (DMD_myob dataset); in the case
of LGMD, primary myoblasts (LGMD_myob dataset) and PBMCs (LGMD_pbmc dataset);
and in the case of ALS, induced neurons (iNeurons) for the ALS_iN_C90ORF72 dataset and
fibroblasts for the ALS_fib_FUS dataset. More information on these datasets is provided
in Table 3.

Table 3. Summary of datasets used in the study, including the name of the dataset, number of samples
per dataset, causal gene, average read size (ARS) per dataset, minimum read length (MRL) set to
trim reads, ExpHunter Suite parameters, including minimum libraries selected (MLS) and log, fold
change (log>FC), and reference of the samples’ original studies. ALS: amyotrophic lateral sclerosis,
DMD: Duchenne muscular dystrophy, LGMD: limb—girdle muscular dystrophy.

Dataset Samples Causal Gene ARS MRL MLS logFC Ref.
DMD_myot 6 (3 isogenic controls + 3 DMD) DMD 75 60 2 1.5 [48]
DMD_pCard 6 (3 CRISPR-Cas9 corrected + 3 DMD) DMD 74 60 2 1.5 [44]
DMD_cfib 8 (4 healthy controls + 4 DMD) DMD 100 85 2 1 [49]
DMD_myob 12 (3 controls + 9 patients) DMD 150 135 2 15 [46]
LGMD_myob 6 (3 controls + 3 patients) TNPO3 150 135 2 25 [47]
LGMD_pbmc 20 (10 controls and 10 patients) TNPO3 76 61 2 1 [43]
ALS_iN_C90RF72 12 (6 controls + 6 COORF72-ALS) CI9ORF72 150 135 2 0.6 [45]
ALS_fib_FUS 25 (13 controls + 12 FUS-ALS) FUS 150 135 8 0.6 [31]

It is important to note that in our study, the differential expression analyses focused
not on the specific location of the mutations within the genes analyzed, but rather on the
broader impact of these genetic alterations on the expression of other genes. Furthermore,
we carefully selected samples for each dataset, prioritizing controls from healthy individuals
over isogenic controls, as they better reflect differential expression between healthy and
diseased conditions. When isogenic controls were used, we chose those generated with the
most effective gene-editing techniques to minimize potential biases in our results. It is also
important to consider that our integrative analysis methodology is specifically designed
with the limitations of rare disease research in mind, particularly the typically low number
of samples available per dataset. Further details of the selected RNA-seq datasets are
included in Supplementary Table S3.

For the DMD_myot dataset, Paredes-Redondo et al. [48] investigated neuromuscular
junction defects and their potential impact on DMD pathogenesis. DMD patient fibroblasts
carrying the ¢.10141C>T (p.R3381X) nonsense mutation, which affects all tissue-specific
dystrophin isoforms, were reprogrammed into expanded potential stem cells, which were
differentiated into embryoid bodies, and an isogenic control line was generated by correct-
ing the mutation via CRISPR-Cas9. To determine whether the impaired differentiation and
fusion observed in DMD-cells stemmed from abnormal myogenic gene expression, they
conducted transcriptome sequencing and analysis of DMD patient-derived myotubes and
the corrected DMD myogenic cultures at 0, 24, and 120 h during secondary differentiation.
To capture more mature transcriptional profiles that better reflect the functional conse-
quences of the DMD mutation, we selected samples belonging to 120 h of differentiation. A
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total of three samples per condition (CRISPR/Cas9 isogenic-corrected controls and DMD
patient samples) were analyzed.

Regarding the DMD_pCard dataset, Atmanli et al. [44] investigated the structural,
functional, and transcriptional differences in cardiomyocytes derived from iPSCs repro-
grammed from PBMS of a DMD patient. The original study comprised nine samples: three
from the patient and six from CRISPR/Cas9 isogenic-corrected controls in which the DMD
open reading frame was restored either by reframing (three samples) or exon skipping
(three samples). For our comparison, we selected samples corrected by reframing, as this
approach aims to preserve the near-full-length protein structure, potentially leading to a
more physiologically accurate rescue of the dystrophin gene [74].

In the case of the DMD_cfib dataset, Soussi et al. [49] analyzed the gene expression
profiles from hiPSC-derived cardiac fibroblasts obtained from DMD patients and healthy
controls. DMD samples lack the full-length dystrophin isoform due to gene mutations,
leading to impaired actin microfilament organization and a metabolic shift from oxidative
phosphorylation to glycolysis. These cells also show disrupted mitochondrial networks,
reduced mitochondrial respiration, and an enhanced myofibroblast phenotype in response
to profibrotic stimuli. As cardiac fibrosis is a hallmark of DMD-related cardiomyopathy, this
model provides insights into how dystrophin deficiency in non-cardiomyocyte cells con-
tributes to disease progression. We used the eight samples available at the SRA, with four
corresponding to control individuals and four corresponding to patients with mutations in
the DMD gene.

Regarding the latest DMD dataset (DMD_myob), Lemoine et al. [46] carried out a
study demonstrating the effectiveness of a single guide RNA CRISPR strategy to delete
exon duplications in the DMD gene (exon 2, exons 2-9, and exons 8-9) in patient-derived
myogenic cells, demonstrating that correction restored dystrophin expression and normal-
ized related gene pathways, as shown by immunostaining and RNA-seq. In our study, we
did not investigate the effects of CRISPR correction. Instead, we focused on performing
differential expression analysis using samples from patients with different DMD mutations
and a healthy control. Regarding this consideration, we analyzed the samples correspond-
ing to myoblasts from patients carrying exon 2, exon 2-9, and exon 8-9 duplications in the
DMD gene, along with samples from an immortalized myoblasts cell line (C25) belonging
to a healthy individual. Each condition was represented by three replicates.

For the case of LGMD, we selected two datasets corresponding to LGMDD2, the
TNPO3-related subtype of LGMD. For clarification, throughout the manuscript we re-
fer to this disease subtype as LGMD. For the first dataset, LGMD_myob, published by
Poyatos-Garcia et al. [47], they used a patient-derived immortalized myoblast model that
recapitulates disease features, including TNPO3 over-expression, impaired muscle differen-
tiation, and autophagy dysregulation. CRISPR-Cas9 correction of the mutation reversed
these phenotypes, eliminating the mutant protein and restoring 44% of transcriptomic
alterations and 50% of dysregulated miRNAs. Muscle biopsies were obtained from the
tibialis anterior of a 33-year-old male patient diagnosed with LGMD and from the quadri-
ceps of a 38-year-old healthy male donor. Primary human myoblasts derived from these
biopsies were immortalized through lentiviral transduction with hTERT and CDK4 vectors,
followed by clonal selection. For each condition (LGMD and healthy control), three inde-
pendent clonal lines were established and used as biological replicates. These immortalized
myoblasts were cultured under standard growth conditions and subsequently differenti-
ated to analyze disease-associated molecular alterations. In our study, we compared the
three samples belonging to the healthy control against the LGMD patient samples.

In the second LGMD dataset (LGMD_pbmc) Diez-Fuertes et al. [43] explored the
molecular basis of LGMD, performing a transcriptome analysis of PBMCs from LGMD
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patients with the c.2771delA mutation in the TNPO3 gene against healthy individuals, re-
vealing differentially expressed genes (DEGs) with pro-inflammatory and antiviral process
functions associated. This dataset includes 20 samples: 10 from LGMD patients with the
deletion c.2771delA in the TNPO3 gene and 10 samples from healthy individuals.

For the ALS_iN_C90RF?72 dataset, Castelli et al. [45] investigated the effects of neuro-
protection in induced neurons (iNeurons) derived from ALS patients carrying expansion
mutations in the C9ORF72 gene. The study focused on a gene therapy approach aimed at
inhibiting the SRSF1-dependent nuclear export of COORF72 repeat transcripts. For our anal-
ysis, we first selected 12 human samples from induced neurons (iNeurons) derived from
three healthy individuals and three COORF72-ALS patients from whole-cell (WCT) and
cytoplasmatic (CyT) transcriptomes. However, we realized that for the ALS_iN_C90ORF72
dataset, the samples belonging to the control (Ctr]_ R2_WCT) and patient (ALS_R2_WCT)
R2, in the whole-cell transcriptome (WCT), presented a high percentage of reads with in-
complete alignments (Supplementary Figure S1G), and, consequently, both were discarded
from the analysis. Therefore, due to the limited number of samples in each group, which
would not lead to a robust differential expression analysis (even though this comparison
would have been the most consistent with the rest of this study), we decided to analyze the
comparison between control and ALS patient samples from the cytoplasmic transcriptome
(CyT) instead.

And regarding the ALS_fib_FUS dataset, Kumbier et al. [31] investigated whether
fibroblasts derived from ALS patients could be used to identify phenotypic heterogeneity
in both sporadic ALS and FUS-mutated ALS cases. From the original dataset, we selected
25 samples, comprising 13 controls and 12 FUS-mutated ALS samples.

4.2. Dataset Processing for Differential Expression Analysis

All FASTQ files from the datasets were processed using the analysis methodology
previously described in [75]. It performs a first quality analysis over raw sequence files
using FastQC and then a pre-processing of the reads using SeqtrimBB, an in-house tool
built on the BBmap framework [76]. The minimum Phred quality per nucleotide for all
datasets was set to 26. The pre-processed read files were aligned against the human
reference genome (version GRCh38.p13) using STAR [77], and the count tables obtained for
each sample were aggregated into a single file of counts per gene and sample to analyze
differential gene expression with the R/Bioconductor package ExpHunter Suite [78].

To ensure consistent and biologically meaningful detection of gene expression across
datasets, we applied a filtering threshold of at least two counts per million (CPM) in a
minimum number of libraries, adapted proportionally to the sample size of each compari-
son. For instance, in comparisons with smaller groups (e.g., three vs. three), genes were
retained if they reached this expression level in at least two libraries per group. In larger
datasets, the threshold was scaled accordingly, requiring expression in at least two-thirds
of the libraries per group. This proportional filtering strategy helped minimize noise from
lowly expressed or sporadic transcripts, ensuring a more reliable identification of DEGs
while maintaining comparability across datasets of varying sizes. All differential expression
analyses were conducted using DESeq2 [79], as implemented in the ExpHunter Suite [78],
and log> FC and p-value information is available in Table 3. We selected different log, FC
cutoffs depending on the number of DEGs obtained for the comparisons performed for
each dataset, with the aim of balancing sensitivity and specificity to detect relevant genes
and minimize noise, respectively.

Genes that passed the filtering criteria and were identified by DESeq2 were considered
DEGs and selected for functional analysis. Functional enrichment was performed using the
ExpHunter Suite module based on clusterProfiler [80], with annotations from Gene Ontol-
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ogy (GO) [81]. The over-representation analysis (ORA) method was applied, evaluating
both over-expressed and down-regulated DEGs through a hypergeometric test for each
term in the selected functional categories. An adjusted p-value threshold of 0.05, using the
Benjamini-Hochberg (BH) method, was used across all datasets.

4.3. Integrative Analysis

To perform the integrative analysis, we constructed a protein—protein interaction (PPI)
network using data from the “Experimental” channel of the STRING database (v12.0 [82],
https://string-db.org (accessed on 26 May 2025)), which compiles physical interactions
supported by laboratory evidence. The distribution of the confidence score for this STRING
channel is displayed in Supplementary Figure S10. To ensure reliability, we retained only
interactions with a confidence score above 150. ENSEMBL protein identifiers were mapped
to their corresponding gene identifiers, and we kept all the genes that were found to
be expressed in at least one of the eight datasets. Additionally, a connected component
filter was applied, removing all nodes that belonged to connected components (subsets
of nodes in which every node is reachable from any other) with fewer than five nodes.
Then, DEGs from each study were projected onto the interactome. The resulting DEG
subgraphs were clustered, and for each study, we computed the proximity between each
cluster and the corresponding causal gene (DMD, TNPO3, C9ORF72, and FUS) to identify
biological pathways and potential therapeutic targets. All network analyses were conducted
using NetAnalyzer [83], a Python library developed by our group (v1.0, https://pypi.org/
project/NetAnalyzer (accessed on 27 May 2025)). The complete analysis workflow is
available at https:/ /github.com/lhurtadogarcia/degs2net (accessed on 10 July 2025), and
the interactive reports for all datasets analyzed are available in the integrative analysis
results repository at https:/ /github.com/ElenaRojano/INTRINSED_datasets (accessed on
29 July 2025).

The PPI network derived from each dataset was clustered using the Louvain
method [84], following previous studies [85], and implemented through the main mod-
ule of NetAnalyzer [86]. To ensure structural coherence and biological relevance, we
kept clusters containing three or more nodes. Then, the proximity between each re-
sulting cluster and the corresponding causal gene was computed. To achieve this,
a similarity matrix was constructed by applying the node2vec algorithm [87] with
parameters dimensions = 128, walk_length = 100, num_walks = 10, p =1, q = 1,
window = 10 to the degree-normalized adjacency matrix of the network. The resulting sim-
ilarity matrix represents the dot product of node vectors embedded in a high-dimensional
space. To account for differences in vector magnitudes, we normalized these values using
the cosine similarity metric. With this matrix, the ranker module of NetAnalyzer was used
to estimate the average proximity between all genes in each cluster and the causal gene.

Rather than relying solely on the arithmetic mean of proximities, we defined average
proximity as the probability that a causal gene is functionally associated with the genes
within a given cluster. To estimate this probability, we used a logistic regression model
trained on the similarity scores to predict the likelihood that two genes were originally
connected in the PPI network. For each gene within a cluster, the model provided a
probability of association with the causal gene. Next, we aggregated these probabilities
for all genes within the cluster using Fisher’s combined probability test, which allows for
robust prioritization of candidate genes. The resulting score value is then rank-normalized
based on the distribution of proximities for all genes in the network. In this framework,
clusters with a higher average proximity to the causal gene were those in which the causal
gene had the highest rank in terms of proximity.
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In addition to the quantitative network analyses, an exploratory visual analysis was
conducted to facilitate the interpretation and navigation of the PPI network. For this
purpose, we generated a representation of the identified clusters using net_explorer, a visu-
alization module included in the NetAnalyzer library. This tool offers both an interactive
network graph visualized using the Sigma.js v2 JavaScript library, with 200 layout iterations
to optimize the positioning of nodes, and a UMAP-based dimensionality reduction plot,
enabling intuitive exploration of gene—gene relationships in a two-dimensional space.

For the Uniform Manifold Approximation and Projection (UMAP) visualization,
node embeddings were first computed using the node2vec algorithm (with parameters
dimensions = 64, walk_length = 30, num_walks = 200, p = 1, q = 1, window = 10).
These embeddings provided the coordinates for each node, which were then used as input
for UMAP projection [88] (n_neighbors = 15, min_dist = 0.1, n_components = 2,
metric = ‘euclidean’). This method allowed us to create a simplified, yet informa-
tive, representation of the gene interaction network, making it easier to explore patterns
within gene clusters and to generate hypotheses about which genes are functionally close
to the disease-causing genes.

Finally, a functional analysis of the clusters was performed using clusterProfiler with
GO biological process annotations. A threshold of 0.05 was applied to the p-values, which
were adjusted for multiple testing using the BH method. Figure 6 illustrates a conceptual
scheme of the methodology developed for this study.

1. Quality control, pre-processing and mapping 2. ExpHunter Suite

FastQC SeqTrimBB STAR m Differential Functional
V.19 v2.18 v25.3a r expression analysis analysis
———— td l D—
Count tables
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Figure 6. Workflow overview of the analysis pipeline. (1.) RNA-seq data undergo quality control,

PPI network
clustering

I

Clusters functional
analysis

Mapping DEGs against
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trimming, and alignment to the hg38 reference genome. (2.) ExpHunter Suite is used to identify
differentially expressed genes (DEGs) and perform functional enrichment analysis. (3.) An integrative
network analysis is conducted using a filtered STRING interactome built from the union of expressed
genes across all datasets, allowing the exploration of DEG clustering around each disease-causal gene.

5. Conclusions

Our integrative approach uncovers biologically and clinically relevant patterns across
diverse neuromuscular diseases (NMDs), revealing mechanisms not detectable by differ-
ential expression alone. Comparative functional enrichment analysis of DEGs across all
datasets revealed shared functions among several diseases, including glycosaminoglycan
binding enrichment in both DMD and FUS-related ALS, suggesting that extracellular ma-
trix—protein interactions may contribute to the downstream effects of FUS mutations. By
combining transcriptomic data with protein—protein interaction networks and clustering
based on proximity to causal genes, we identified shared and specific modules enriched in
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immune response, RNA metabolism, and cytoskeletal organization. Recurrently dysreg-
ulated IncRNAs, such as PAX8-AS1, SBF2-AS1, and NEAT1, indicate the regulatory roles
of ncRNAs and their potential as cross-disease biomarkers. The prioritization of genes
like HS3ST3A1, located near both TNPO3 and FUS, illustrates how network context can
reveal hidden connections between genetically distinct disorders. Our framework is appli-
cable to other rare and common diseases, offering a scalable tool for uncovering molecular
mechanisms and identifying novel therapeutic targets through systems-level analysis.

Supplementary Materials: The following supporting information can be downloaded at
https:/ /www.mdpi.com/article/10.3390/ijms26199376/s1.
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