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Abstract

Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide.
However, the spatial and temporal dynamics underlying its development remain poorly
characterized. This study employs spatial transcriptomics (ST) to investigate the progres-
sion of intestinal tumors in APC Min/+ mice across multiple time points. We identified
distinct transcriptional profiles between tumor and normal tissues, resolving six major cell
types through integrated dimensionality reduction and pathological annotation. Pseudo-
time trajectory analysis revealed increased expression of MMP11 and MYL9 in later stages
of tumor progression. Analysis of human CRC cohorts from the TCGA database further
confirmed that high expression of these genes is associated with advanced clinical stages
and promotes tumor proliferation and invasion. Temporal gene expression dynamics
indicated enrichment of cancer-related pathways concurrent with suppression of lipid and
amino acid metabolism. Notably, genes in the DEFA family were significantly upregulated
in normal tissues compared to tumor tissues. Functional validation showed that DEFA3
inhibits colon cancer cell migration and proliferation in vitro. These demonstrate the value
of ST in resolving spatiotemporal heterogeneity in CRC and identify both MMP11/MYL9
and DEFA3 as potential biomarkers and therapeutic targets.

Keywords: colorectal cancer; spatial transcriptomics; pseudo-time analysis; enrichment
analysis; bioinformatics

1. Introduction
Colorectal cancer (CRC) is the second-most deadly cancer in the world, which occurs in

the colorectal mucosa and gland malignant tumors, and accounts for nearly 900,000 annual
deaths [1,2]. In recent years, the mainstay treatments for CRC have included minimally
invasive techniques for early-stage disease [3,4] and surgical resection for advanced cases [5].
Among the key molecular pathways involved, the WNT signaling pathway plays a critical role.
Mutations or inactivation of the APC gene can impair the function of the destruction complex,
leading to constitutive activation of the WNT pathway [6]. This results in the stabilization
and nuclear translocation of β-catenin, where it activates target oncogenes, ultimately pro-
moting glandular epithelial hyperplasia and adenoma formation [6,7]. Despite advances, the
molecular mechanisms underlying CRC remain incompletely understood. Recent advances

Int. J. Mol. Sci. 2025, 26, 9256 https://doi.org/10.3390/ijms26189256

https://doi.org/10.3390/ijms26189256
https://doi.org/10.3390/ijms26189256
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-9119-1062
https://orcid.org/0000-0001-5486-8903
https://doi.org/10.3390/ijms26189256
https://www.mdpi.com/article/10.3390/ijms26189256?type=check_update&version=2


Int. J. Mol. Sci. 2025, 26, 9256 2 of 18

in molecular biology and sequencing technologies have enabled a deeper investigation into
colorectal carcinogenesis. However, conventional RNA sequencing approaches are often
limited in their ability to capture the complete transcriptomic landscape, as they lack spatial
and cellular resolution. In comparison, single-cell sequencing technology has emerged as a
powerful tool for characterizing genetic and functional heterogeneity by profiling gene expres-
sion at the single-cell level [8,9]. Its application to tumor tissues has provided valuable insights
into cancer biology and mechanisms of tumorigenesis. Nevertheless, single-cell sequenc-
ing requires tissue dissociation, which disrupts native spatial architecture and loses critical
contextual information on the cellular microenvironment. Analyzing location-dependent
gene expression patterns is essential for understanding tumor initiation and progression. To
address this limitation, spatial transcriptomics (ST) has been developed [10]. ST provides
genome-wide expression profiling within the spatial context of intact tissue, offering valu-
able opportunities to elucidate tumor-related processes. As a result, the application of ST to
investigate the dynamics of tumor development has become a major research focus.

2. Results
2.1. Spatial Transcriptomics Delineates the Cellular Architecture of Colorectal Tissues

We used spatial transcriptome data from intestinal tumor tissues of APC Min/+ mice. A
total of 2482 capture points were obtained from the slices. We first labeled the locations of
tumor tissue and normal tissue (Figure S1A) stained with H&E and then performed cluster
analysis on all points and visualized the clusters using the uniform manifold approximation
and projection (UMAP) method. All points were aggregated into six clusters (Figure 1A)
according to the pathological information of the cell type (Figure S1B), which can be divided
into six categories through different cell markers, namely, endothelial cells, epithelial cells,
tumor cells, immune cells, and fibroblasts (Figure 1B). Here, we found that unsupervised
clustering analysis could cluster ST points with similar characteristics, such as immune cells
and tumor regions, and we located various types of cells back on the spatial transcriptome
map (Figure 1C). Our analysis results show that S100A6 and CLU exhibit high expression in
intestinal tumor tissue (Figure 1D–G).

Figure 1. ST to study CRC (n = 4): (A) UMAP plot of the principal component analysis, first (PCA)
clustering the results profiled in the present work; (B) UMAP plot of cell types; (C) spatial images of
unsupervised clustering results; (D,E) spatial plots showing the spatial expression pattern of S100A6
and CLU; (F,G) violin plots showing the expression of S100A6 and CLU.



Int. J. Mol. Sci. 2025, 26, 9256 3 of 18

2.2. Gene Changes in the Development of APCMin/+ Tumor Tissue over Time

We aimed to investigate the progression of APC Min/+ from tumorigenesis to the stabiliza-
tion of tumor numbers, spanning from 18 days to 90 days, to describe the changes in tumor
tissue. According to the pseudo-time analysis of cell differentiation, we divided it into five
states (Figure 2A) and then mapped each state to its corresponding time point. We found
that there were two types of differentiation tracks in the intestinal tissue of mice from 18 days
to 90 days, one of which was a process of transitioning from 18 days to 80 days along the
time axis and, finally, reaching 90 days, and the other was a process of transitioning from
18 days along the event to 35 days and from 50 days to 65 days, based on the results of the
time points (Figure 2B). State 4 can be through of as the middle stage and State 5 as the late
stage. We identified two genes with high expression in the late stage. The expression level of
matrix metalloproteinase-11 (MMP11) tends to increase over time (Figure 2C,D). Additionally,
the expression level of the myosin light chain 9 (MYL9) gene is very high in advanced CRC
(Figure 2E,F). We found that the KRAS (Figure 2G,H) and TGF-β (Figure 2K,L) genes continue
to be expressed during differentiation, with relatively high levels of expression, while there is
a fluctuation in the expression level of Tp53 (Figure 2I,J). These results are consistent with the
changes in gene expression in tumor tissue prior to the onset of disease. The expression level
of the BRAF gene is relatively low during the overall differentiation process (Figure 2M,N).
We divided all gene expression patterns into four clusters by analyzing gene expression in
pseudo-time analysis (Figure S1C).

Figure 2. ST discovery of differential genes through pseudo-time analysis (n = 4): (A,B) trajectory of
differentiation of the different time points predicted by monocle; (C) differential expression of MMP11
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at distinct time points; (D) gene expression levels at single spots ordered along the pseudo-time for
MMP11; (E) differential expression of MYL9 at distinct time points; (F) gene expression levels at
single spots ordered along the pseudo-time for MYL9; (G) differential expression of KRAS at distinct
time points; (H) gene expression levels at single spots ordered along the pseudo-time for KRAS;
(I) differential expression of P53 at distinct time points; (J) gene expression levels at single spots
ordered along the pseudo-time for P53; (K) differential expression of transforming growth factor-beta
(TGF-β) at distinct time points; (L) gene expression levels at single spots ordered along the pseudo-
time for TGF-β; (M) differential expression of BRAF at distinct time points; (N) gene expression levels
at single spots ordered along the pseudo-time for BRAF.

2.3. MMP11 and MYL9 Exploration and Functional Assays Using Publicly Available Datasets

We downloaded relevant data on CRC patients from the TCGA database, encompass-
ing a total of 620 cases. Subgroup analyses were conducted based on MMP11 expression
levels (MMP11 high-expression group, n = 157; MMP11 low-expression group, n = 157,
top 25%) and MYL9 expression levels (MYL9 high-expression group, n = 156; MYL9 low-
expression group, n = 155, top 25%), including a control group of para-tumoral tissue
(n = 51). We utilized the aforementioned four subgroups to compare differences in clinical
p-TNM staging. Specifically, for p-T staging (Figure 3A), p-N staging (Figure S2C), p-M
staging (Figure S2D), and p-TNM staging (Figure 3B), the percentage of patients with high
MMP11 and MYL9 expression significantly increased, with statistical significance observed
for p-TNM stages III and IV (p < 0.05). Moreover, in tumor tissues from CRC patients, the ex-
pression levels of MMP11 and MLY9 showed a positive correlation (Figure 3F). We analyzed
the relationship between MMP11 and MYL9 gene expression and tumor mutational burden.
We found that high expression of MMP11 and MYL9 genes was negatively correlated with
tumor mutation burden (TMB) scores (p < 0.05) (Figure 3D,E). By comparing differentially
expressed genes between the MMP11 and MYL9 high-expression groups and the adjacent
non-cancerous tissue group, we found that 1728 genes were upregulated and 1038 genes
were downregulated in the MMP11 high-expression group. In the MYL9 high-expression
group, 1608 genes were upregulated and 891 genes were downregulated. GO analysis
indicated that Biological Process terms in both groups clustered around extracellular matrix
organization and extracellular structure organization; Molecular Function terms clustered
around signaling receptor activator activity and receptor ligand activity; Cellular Com-
ponent terms clustered around collagen-containing extracellular matrix and endoplasmic
reticulum lumen (Figure S3A,B). KEGG pathway enrichment analysis revealed that path-
ways in both groups were primarily concentrated in the cell cycle, protein digestion and
absorption, and p53 signaling pathways (Figure 3C,G).
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Figure 3. (A,B) Presents the distribution of tumor (T) and p-TNM staging in different sample groups,
with the x-axis representing the different sample groups, the y-axis representing the percentage
of clinical information contained in the corresponding grouped samples, and the different colors
representing various clinical information. Significance, as a p-value, was analyzed by chi-square test,
where the numerical size is −log10 (p-value). (C,G) Differentially expressed genes were screened
based on samples from the MMP11 high-expression group (n = 157), MYL9 high-expression group
(n = 156), and para-tumoral tissue group (n = 51), which was followed by KEGG analysis of the
upregulated genes. According to the KEGG pathway enrichment results, the different colors represent
the significance of the functional enrichment results, with larger values indicating smaller p-values.
The size of the circle represents the number of enriched genes, with larger circles indicating more
genes. (D,E) Illustration of the Scatter plot and fitted line of the Spearman correlation analysis
between TMB and MMP11 and MYL9 gene expression. Each point represents a sample. The x-axis
represents the distribution of gene expression, and the y-axis represents the score distribution of
TMB. The density curve on the bottom depicts the distribution trend of the TMB scores and the gene
expression. The top of the figure displays the p-value, correlation coefficient, and the method used for
correlation calculation. (F) Multiple gene Spearman correlation circle plots, where the different colors
represent correlation coefficients (red indicates a positive correlation and blue indicates a negative
correlation in the diagram), with darker shades denoting stronger correlations among variables.

2.4. Temporal Dynamics of Pathway Activation and Suppression During Tumor Progression

We chose to integrate these data for analysis. We took 18 days, 35 days, and 40 days as
the pre-tumor stage; 50 days, 64 days, and 65 days as the mid stage of tumor development;
and 80 days and 90 days as the late stage of tumor development. We conducted GO and
KEGG analyses on these three stages. Based on the analysis results, it was found that
biological processes related to DNA, RNA, and ribosomes were activated in the early
stages of tumor development, and splicing-related biological processes were also activated.
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Therefore, splicing is very important for the tumorigenesis process, which requires the
synthesis of a large number of proteins. The intestinal absorption function, digestion
process, lipid catabolism, and carbohydrate metabolism biological processes were all
inhibited (Figure S1D).

We explored the KEGG pathways during this period (Figure S1F), and the signal-
ing pathways activated in the early stages of tumor development include the ribosome
signaling pathway. The pathways suppressed in the later stages of tumor development
were largely consistent with those in the previous two stages (Figure S1). We studied the
difference in gene expression between tumor tissue and peripheral tissue in more detail.
We confirmed the obvious separation between tumor tissue region and normal tissue using
PCA (Figure S2A). Then, we integrated all time points, and the integrated results are
basically consistent with the activation and inhibition of related biological processes at
each time period (Figure 4A). Compared to normal epithelial cells, genes in tumor tissue
are enriched in different types of cancer-related pathways, including proteoglycans in
cancer, nucleocytoplasmic transport, renal cell carcinoma, CRC, central carbon metabolism
in cancer, small-cell lung cancer, and endometrial cancer (Figure 4B).

Figure 4. Enrichment analysis of tumor-related pathways: (A) GO analysis across all stages of tumor
development; (B) KEGG analysis across all stages of tumor development. Red indicates activation;
blue indicates suppression.

2.5. Spatial and Temporal Analysis Identifies DEFA Family Genes as Potential Tumor Suppressors

We integrated data from all points in time. A volcano map and heatmap show that
compared with the tumor tissue the expression of DEFA genes in the normal tissue increased
(Figure 5A,B), including in DEFA3, DEFA21, DEFA22, DEFA24, DEFA29, and DEFA30. We
first analyzed the expression of DEFA genes in several parts of tissues by a violin diagram.
The results show that the expression of DEFA genes in tumor tissue increased first and then
decreased (Figure 5C). In contrast, the expression of DEFA in immune cells increased over
time (Figure 5D), while the expression of DEFA in Paneth cells did not exhibit a difference
over time, which may be because DEFA was produced by Paneth cells (Figure S2B). There
were also differences in the expression of DEFA genes in other types of cells, such as
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endothelial cells (Figure S2E), fibroblasts (Figure S2F), and enterocytes (Figure 6F). We
located these DEFA genes on the spatial transcriptome map and found that the expression
of DEFA in tumor tissue was significantly lower (Figure 6A–E).

Figure 5. Differentially expressed genes between tumor and normal peripheral tissues: (A) volcano
plot of significantly differentially expressed genes between tumor and normal peripheral tissues;
Each point represents a gene. (B) heatmap of the most variable genes between tumor and normal
peripheral tissues at different time points; (C) violin plots showing the expression of DEFA genes
at different time points in tumor tissue; (D) violin plots showing the expression of DEFA genes
at different time points in immune cells. Each point in (C,D) represents a measurement from an
organizational spatial unit (capture point).

We aimed to verify the function of DEFA further to determine whether it affects
the proliferation, migration, and invasion of CRC cells. We selected the CT26 CRC cell
line as the research object. The wound-healing assay showed that, compared with the
control group, the addition of DEFA3 in vitro could effectively inhibit the migration of
tumor cells (Figure S3C); then, the CCK-8 assay showed that the proliferation of CRC cells
treated with DEFA3 decreased (Figure S3D). Finally, we treated CT26 cells with DEFA3
and used Ki-67 to detect the proliferation for immunofluorescence. Here, we found that
the fluorescence intensity of the CT26 cell line treated with DEFA3 decreased (Figure S3E),
which further showed the inhibitory effect of DEFA3 on tumor cell proliferation. Finally,
we conducted a gene network analysis of the DEFA gene (Figure S5) and found that there



Int. J. Mol. Sci. 2025, 26, 9256 8 of 18

were tumor-suppressor-related genes associated with DEFA, including FGF21 and ITLN1,
as well as tumor-promoting genes associated with DEFA, including GNB3, CRB2, DIO3,
HPD, and Dll3. These results suggest that DEFA plays a crucial role in the development
and progression of tumors.

Figure 6. (A–E) Spatial plots showing the spatial expression patterns of the DEFA family; (F) violin
plots showing the expression of DEFA genes at different time points in enterocytes. The dots above
the violin plot represent the actual expression measurements of the DEFA gene at each specific time
point, derived from all individual spatial capture points identified as intestinal epithelial cells.

3. Discussion
Tumor research has advanced in tandem with sequencing technologies, transitioning

from bulk sequencing to single-cell sequencing. Single-cell sequencing enables investiga-
tion of cellular heterogeneity at a single-cell resolution and has become widely used for
detecting tumor genes [11,12]. However, the tissue dissociation step required for single-cell
sequencing inevitably disrupts the native spatial architecture of tissues and erases critical
contextual information about the cellular microenvironment, limiting efforts to decipher
tumor-related mechanisms. ST, named Nature’s Method of the Year in 2020 [13], addresses
this gap and has since been applied to study a range of diseases. For example, Kuppe
et al. employed ST to construct an integrated molecular atlas of spatial gene expression
in human myocardial infarction, providing valuable insights for mechanistic and thera-
peutic research in heart disease [14]. Similarly, Chen et al. employed ST combined with
in situ hybridization to reveal multicellular gene co-expression networks in Alzheimer’s
disease, two of which were driven by amyloid plaque accumulation [15]. This study has
applied spatial transcriptome sequencing to characterize the temporal progression of CRC
in APC Min/+ mice. We constructed a spatial transcriptomic map of CRC development
and further defined molecular differences between tumor and normal tissues, as well as
differences validated, in part, through known cell markers like S100A6 and CLU. S100A6, a
calcium-binding protein of the S100 family, localizes primarily to the cytoplasm of tumor
cells [16,17], while CLU, a multifunctional protein, is significantly upregulated under cel-
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lular stress in diseases including cancer [18]. Our data confirm their high expression in
murine intestinal tumor regions.

A key focus of our work was analyzing intestinal tumors in mice at various time
points. This approach allowed us to identify differentially expressed genes in APC Min/+

mice during the late stages of intestinal tumorigenesis and track how tumor-related gene
expression changes over time. Notably, our results show that MMP11 and MYL9 are highly
expressed in late-stage tumors. MMP11 serves as a key mediator of normal physiological
tissue remodeling, and its upregulation has been previously associated with tumor initiation
and malignant progression [19]. Our data confirm its expression increases progressively
over time in APC Min/+ mice. MYL9, a fibroblast marker associated with CRC severity, is
also highly expressed in advanced CRC [20]. This finding is consistent with our observation
of elevated MYL9 in late-stage murine tumors. Both genes are known to promote tumor
proliferation and invasion [19,20], and our spatial transcriptomic data further reinforce
their association with intestinal tumor progression. Additionally, we identified several
genes associated with canonical colorectal cancer pathways, such as the proto-oncogenes
KRAS [21] and BRAF [22] and the tumor suppressor TP53 [23], as well as components of the
TGF-β signaling pathway [23]. KRAS and TGF-β were consistently expressed throughout
differentiation, whereas the expression of TP53 exhibited dynamic fluctuations—a pattern
consistent with previously reported pre-tumor gene expression dynamics [22]. Expression
of BRAF remained consistently low throughout the process, reflecting its context-dependent
role in CRC pathogenesis. We also observed temporal changes in other key genes: lipid
metabolism-associated genes such as APOA4, FABP1, and FABP2 were upregulated over
time [23], which is consistent with reports that excess lipids promote tumor cell proliferation,
colonization, and metastasis. In contrast, expression of gastrointestinal factor 1 declined
gradually, mirroring its downregulation in gastric cancer tissues [24] and suggesting a
conserved role across gastrointestinal malignancies.

The integration of murine spatial transcriptomic data with human CRC datasets, which
enhances the translational relevance of our findings [25]. We validated key observations
using data from 620 human CRC cases in TCGA database. For instance, in human CRC,
high MMP11 and MYL9 expression correlated with advanced p-TNM stages (III/IV) and
showed a positive correlation with each other—mirroring the temporal upregulation of
these genes in late-stage murine tumors. TMB is a critical biomarker for predicting response
to immunotherapy [26,27]. Furthermore, our analysis showed that high expression of
MMP11 and MYL9 in human colorectal cancer was inversely correlated with TMB. This
suggests that MMP11 and MYL9 may drive CRC progression by contributing to therapy
resistance—possibly through reduced tumor immunogenicity or the establishment of an
immunosuppressive microenvironment. These findings were consistently observed in both
murine and human datasets, supporting the potential of MMP11 and MYL9 as clinical
biomarkers or therapeutic targets. KEGG analysis also revealed that genes upregulated
in human CRC tissues exhibiting high MMP11/MYL9 expression were enriched in key
pathways, such as cell cycle and p53 signaling—pathways similarly activated in late-stage
murine tumors, strengthening the cross-species relevance of these findings.

To better contextualize these temporal gene expression patterns, we analyzed stage-
specific pathway activation and inhibition in APC Min/+ mice. During the early stages
of tumor development, biological processes involving DNA, RNA, and ribosomes were
upregulated, along with splicing-related activities. Pre-mRNA splicing removes introns
to produce mature mRNA, which then directs protein synthesis during translation [28].
Moreover, this process is critical for tumorigenesis, as cancer cells require massive protein
production to sustain their uncontrolled proliferation. Conversely, functions—such as
intestinal absorption, digestion, lipid catabolism, and carbohydrate metabolism—were



Int. J. Mol. Sci. 2025, 26, 9256 10 of 18

suppressed, which is consistent with established tumor phenotypes in which cancer cells
disrupt normal tissue function to prioritize their own survival. For instance, tumor cells
can induce lipolysis in adjacent adipocytes to acquire fatty acids for energy production
or lipid accumulation, while suppression of cell-killing mechanisms enables unlimited
proliferation [29–31]. KEGG analysis of early-stage tumors revealed activation of the ribo-
some signaling pathway, which is critical for synthesizing cellular components required for
rapid cell growth, particularly in cancer cells undergoing uncontrolled proliferation [32],
as well as the Hippo signaling pathway, which is closely associated with tumor initia-
tion and progression [33]. The estrogen signaling pathway was also activated. Although
estrogens promote normal endometrial proliferation, sustained estrogen signaling is a
well-established risk factor for endometrial cancer [34]; its activation in early-stage CRC
may indicate shared mitogenic mechanisms across cancer types. Additionally, the nucleocy-
toplasmic transport pathway was activated. In non-tumor cells, APC protein is distributed
evenly between the nucleus and cytoplasm, but in approximately 80% of CRC patients,
APC mutations result in accumulation of a truncated, stable protein within the nucleus [35],
disrupting normal transport mechanisms and promoting WNT pathway dysregulation.
The cell cycle pathway was also activated, driven by continuous cyclin-dependent kinase
activation via ubiquitin-mediated proteolysis of cyclins and kinase inhibitors [36]. Further-
more, focal adhesions, which regulate directional cell migration [37], were upregulated.
The PI3K-Akt pathway, which regulates cell proliferation, differentiation, and survival [38],
was activated, as was the TGF-β pathway, with enrichment of tumor-related pathways, in-
cluding those related to proteoglycans in cancer and renal cell carcinoma. Notably, histidine
metabolism was inhibited; recent work shows histidine catabolism enhances methotrexate
efficacy by increasing cancer cell sensitivity to the drug [39], suggesting this inhibition may
impact chemotherapy responses in early CRC.

In the middle stages of tumor development, enriched biological processes included
positive regulation of cell motility, locomotion, and cell division—all of which promote tu-
mor cell proliferation, migration, and invasion. Suppressed processes remained consistent
with those observed in the early stages, and KEGG analysis revealed more differentially
expressed genes enriched in CRC-specific pathways, such as colon cancer and microR-
NAs in cancer. The oxidative phosphorylation pathway was inhibited, reflecting the
well-documented shift in cancer cells toward glycolysis, which leads to downregulated
oxidative phosphorylation in many cancers [40]. In the late stages, activated biological
processes mirrored those of earlier stages but with greater inhibition of immune-response-
related pathways, likely contributing to immune evasion, as well as more differential genes
enriched in diverse tumor-related pathways, such as melanoma and pancreatic cancer. Prin-
cipal component analysis confirmed clear separation between tumor and normal tissues,
and integrated analysis across all time points showed tumor tissues were enriched in cancer-
related pathways such as nucleocytoplasmic transport and central carbon metabolism in
cancer, which is consistent with human CRC biology.

Also, our study has several limitations that merit detailed discussion. First, the sample
size for the murine spatial transcriptomic analyses was relatively small. Larger cohorts of
APC Min/+ mice would help confirm the reproducibility of our temporal gene expression
trends and reduce the risk of false-positive or negative findings. Second, the inherent
technical constraints of the ST platform used in this study impact data resolution. While
we combined ST data with pathological annotation to refine cell type assignments, the
lack of a single-cell resolution prevents us from dissecting cell–cell interactions at the
individual cell level, which are critical for understanding tumor progression. Third, our
functional validation of DEFA3, MMP11, and MYL9 was limited to in vitro assays and
lacked in vivo confirmation. Although we demonstrated that DEFA3 inhibits proliferation
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and migration of CT26 cells in vitro, and linked MMP11/MYL9 expression to advanced
CRC in human datasets, we did not test the functional impact of these genes in living tumor
models. For example, genetic manipulation of DEFA3, MMP11, or MYL9 in APC Min/+

mice would directly reveal their causal roles in tumor initiation, progression, or metastasis.
Additionally, the functional assays for DEFA3 were limited to a single murine CRC cell
line, which may not fully represent the genetic diversity of human CRC. Human CRC
subtypes harbor distinct mutations—such as BRAF V600E, NRAS mutations or mismatch
repair deficiency—which can alter cellular responses to regulatory factors like DEFA3.

The dual role of the DEFA family in cancer warrants even more cautious interpre-
tation in light of our data limitations. Although our findings suggest that DEFA3 acts
as a tumor suppressor in CT26 cells and is downregulated in murine tumors, previous
reports have described conflicting roles for other DEFA family members. It is worth noting
that DEFA proteins, which belong to the α-defensin family, are well-established for their
broad-spectrum antibacterial and anti-HIV properties [41]. Some studies link DEFA family
members to pro-tumor effects. DEFA1-3 are upregulated in lung cancer, renal cell carcinoma,
and bladder cancer [42,43], and in bladder cancer, their expression in capillary endothelial
cells correlates with in-creased invasiveness [44]. DEFA has also been reported to promote
tumor cell proliferation in late-stage tumor development [45]. Conversely, DEFA1 can
inhibit angiogenesis by impairing endothelial cell proliferation and migration [46], and
high concentrations of DEFA1-3 exhibit cytotoxicity against cancer cell lines [47], the effect
of which was first documented in early studies showing that human and rabbit granulocyte
defensins mediate in vitro tumor cell cytolysis. Lower concentrations of DEFA1-3, however,
may promote cancer cell motility and invasion [48], highlighting the importance of con-
centration in defining function. In our study, DEFA expression in murine immune cells
increased progressively over time, whereas in tumor tissues it peaked during early stages
before declining, suggesting that the role of DEFA may transition from tumor-suppressive
to context-dependent or even pro-tumorigenic as the tumor microenvironment evolves.
It should also be noted that we did not explore cell-type-specific functions of DEFA. For
example, DEFA produced by Paneth cells—the primary source of intestinal defensins—
may exert distinct functional impacts compared to DEFA secreted by tumor-infiltrating
immune cells. Furthermore, although we identified several DEFA-associated genes, such as
FGF21 and GNB3, these interactions still require experimental validation. Finally, while
DEFA6 has been proposed as a potential biomarker in CRC, its specificity and sensitivity
are demonstrated to be inferior to those of carcinoembryonic antigen [45], underscoring
the need for careful interpretation regarding the clinical utility of DEFA family members.
Further mechanistic studies investigating DEFA interactions with signaling components
such as bradykinin receptors [49] may provide deeper insight into its context-dependent
roles in tumorigenesis.

In summary, our spatial transcriptomic analysis of APC Min/+ mice reveals critical
temporal and spatial dynamics in CRC development and validates key findings in human
CRC datasets. We identified MMP11 and MYL9 as potential biomarkers for advanced
disease stages and underscore the context-dependent role of DEFA family genes in tumor
progression—supported by stage-specific pathway analyses and cross-species validation.
Although this study has limitations, as noted above, addressing them in future work will
help elucidate broader mechanistic insights and enhance the translational potential of our
findings for targeted therapy development.
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4. Materials and Methods
4.1. Experimental Animals

The control sources for the study include wild-type (WT) mice used in hybridization to
generate APC Min/+ mice, as well as normal tissue regions within the APC Min/+ mice them-
selves. The sample size was determined based on literature reviews and prior laboratory
research, with strict adherence to the 3R principles. Specifically, the study evaluated tumor
development across seven time points—18 days, 35 days, 40 days, 50 days, 64 days, 65 days,
80 days, and 90 days—with 3–5 mice allocated to each time point. To minimize confounding
factors, multiple strategies were implemented: all experiments were conducted on weight-
matched mice aged 5–6 w, and group allocation was optimized through weight matching
and averaging littermates across groups (18–24 g). All experiments were performed using
male mice. Blinding was rigorously applied, with both testers and analysts remaining
unaware of group allocations throughout the experiment and data analysis.

Housing conditions involved maintaining the mice in a specific pathogen-free (SPF)
facility, with ad libitum access to standard animal chow and water. Regular weight mon-
itoring was performed as part of the animal care, with a predefined humane endpoint:
euthanasia was administered if a mouse experienced 10% weight loss within one week.
Euthanasia for tissue collection was conducted using carbon dioxide asphyxiation. For each
time point, representative tumor sites were selected from the euthanized mice for sectioning.
Ethical approval for all procedures was granted by the Animal Experimentation Committee
of Capital Medical University, with the license number AEEI-2021-083. In addition, the date
on which we received approval for an animal ethics code is 3 March 2022. The health status
of the mice was ensured by SPF housing, and their genetic background was confirmed
as APC Min/+ mice. The primer sequence is Apc-F: 5′-ATACTACGGTATTGCCCAGC-3′

and Apc-R: 5′-TGTTGTTGGATGGTAAGCAC-3′, and the double band on the agarose gel
electrophoresis is APC Min/+ mice.

4.2. Spatial Transcriptomics
4.2.1. Collection and Preparation of Colorectal Cancer Tissues

A small amount of OCT was added to the embedded box and placed in a −80 ◦C
refrigerator. Mice were sacrificed using euthanasia, and the entire intestine was immediately
removed and split into the following three parts: jejunum, ileum, and colon. The intestinal
contents were rinsed with a mixture of PBS and OCT fluids (PBS: OCT = 1:1). All of the above
processes were performed on ice. Subsequently, each part of the intestinal tissue was placed
in the frozen tissue-embedding box mentioned above, wrapped in a Swiss roll form, and OCT
was added until all intestinal tissues were wrapped and quickly stored in −80 ◦C refrigerator.

4.2.2. Slide Preparation

Spatial transcriptome sample slides contained four capture regions that could accom-
modate four individual tissue sections, each with 5000 barcoded spots, at 6.5 × 6.5 mm
per slide. Due to the small area of the tumor tissue and the low utilization of slides, we
chose to paste two pieces of tissue into a capture area. After rapid staining, if there was
tumor tissue in the rapid section, the tumor location on the slide was marked, the mass
covered with OCT, and the tissue stored at −80 ◦C for preservation. The tissue-embedding
blocks that formed were, subsequently, attached at a thickness of 10 µm on dedicated slides
of the spatial transcriptome. Then, they were incubated for 1 min at 37 ◦C, fixed in 1%
methanol for 5 min, and washed in PBS for 3 min. We applied ST techniques that are
currently applicable to all of the slices, yielding conventional hematoxylin–eosin (H&E)
stained images, as well as gene expression profiles collected by each microarray spot. Tissue
sections were annotated for tumor tissue and normal tissue and were selected.



Int. J. Mol. Sci. 2025, 26, 9256 13 of 18

4.2.3. Tissue Permeabilization

According to the Visium Spatial Tissue optimization slides and kit, provided by
10× Genomics, the tissue permeation conditions were optimized. The main step is to place
tissue slices in the seven capture regions of the Visium tissue optimization slide, one of
which is set as a positive control without the addition of permutase. Slices were fixed,
stained, scanned, and imaged, followed by the addition of translucases, and different pene-
tration times were set. The mRNA released during infiltration can bind to oligonucleotides
in the capture region, followed by reverse transcription synthesis of the fluorescent cDNA
and imaging. The permeation time with the largest fluorescence signal and the smallest
signal diffusion is the best. If the signals are the same, a longer penetration time is the best
penetration time.

4.2.4. Visium-Sequencing Library Preparation

We used the Visium spatial gene expression slide and kit, provided by 10× Genomics,
to perform spatial gene-expression sequencing. The 10 µM tissue sections were attached to
the capture area of the slide. After H&E staining, photos in the open-field mode were taken.
The experiment was conducted based on the optimal tissue-permeation time obtained with
the tissue permeation slide. Then, reverse-transcription experiments were conducted to
obtain cDNA with spatial location information and amplified to build a library.

4.3. Spatial-Transcriptomics Data Processing
4.3.1. Quality Control of Sequencing Data and Gene Quantification

Sequencing data were analyzed using Space Ranger (v4.0), an official software package,
provided by 10× Genomics, specifically for processing its ST data; raw data generated by
high-throughput sequencing were in FASTQ format. Space Ranger first aligned the FASTQ
sequencing data to the reference genome, then counted the unique molecular identifiers
to avoid a PCR amplification bias, as well as conducted barcode filtering based on the
distribution of barcodes (which are used to label spatial positions of capture spots) to,
ultimately, generate a gene-barcode expression matrix. After obtaining this matrix, the
filtered spot–gene expression matrix was further analyzed using Seurat (v4.0.6), which is
capable of integrating gene expression, comparative genomic hybridization arrays, single-
nucleotide polymorphism arrays, and clinical data via interactive visualization. Data
normalization was performed as the initial step of the downstream analysis [50,51].

4.3.2. Dimensionality Reduction and Clustering

Unsupervised clustering of capture spots was implemented using Seurat software
(v4.0.6) [52]. Specifically, linear dimensionality reduction was conducted through PCA
based on gene expression levels, and the UMAP dimensionality reduction method was
applied to visualize the clustering results of capture spots [53]. This UMAP-based visualiza-
tion approach preserves the global structural features of the original data to the maximum
extent, facilitating clear observation of the separation between different clusters.

4.3.3. Cell Type Annotation and Identification

Cell types corresponding to the results of the dimensionality reduction and clustering
were inferred and identified by referencing the descriptions of cell marker genes in the
previous literature. Classification was performed using specific marker genes for different
cell types, including endothelial cells (Cdh5, Pecam1, Cldn5, and Eng), epithelial cells (Epcam
and Krt8), immune cells (Cd79a, Cd79b, Cd3d, Cd86, abd Cd3e), fibroblasts (Dcn, Thy1, Col3a1,
Col5a2, and Col1a2), Paneth cells (Pgc), goblet cells (Muc2), stem cells (Lgr5), and intestinal
tumor cells (Kras and Trp53) [54,55]. Seurat was used to identify marker genes; genes
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that were differentially upregulated in each cell cluster relative to other cell clusters were
screened out, and these differentially expressed genes were defined as potential marker
genes for the corresponding cell type. Finally, dot plots were used to visualize the identified
marker genes.

4.3.4. Pseudo-Time Analysis

Pseudo-time analysis was carried out using Monocle 2 (available at http://cole-
trapnell-lab.github.io/monocle-release, accessed on 30 May 2023). Prior to conducting
Monocle 2 analysis, marker genes were selected from the Seurat clustering results and the
filtered raw expression counts of cells, and these marker genes were further used to identify
differentially expressed genes that showed expression changes across different clusters,
providing a basis for constructing the pseudo-time trajectory of cell differentiation [56].

4.3.5. Gene Enrichment Analysis

Pathway enrichment analysis was performed using the Cluster Profiler package based
on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases. Among them, GO analysis annotated the functions of relevant genes mainly
from the following three dimensions: cellular component (CC, describing the subcellular
localization of gene products), molecular function (MF, describing the molecular activities
of gene products), and biological process (BP, describing the biological processes in which
genes participate). The KEGG enrichment analysis annotated the signaling pathways
involved in the target genes. For the KEGG analysis, the hypergeometric distribution algo-
rithm was used to calculate the statistical significance of differential gene enrichment in each
pathway, with smaller p-values indicating stronger associations between the corresponding
pathway and the differential genes. A p-value < 0.05 was considered statistically significant.

4.4. Bioinformatics Analysis of Clinical Human Samples

We downloaded the STAR counts data and the corresponding clinical information for
CRC from the TCGA database (https://portal.gdc.cancer.gov). We ultimately selected samples
from the MMP11 high-expression group (n = 157), MMP11 low-expression group (n = 157),
MYL9 high-expression group (n = 156), MYL9 low-expression group (n = 155), and para-
tumoral tissue group (n = 51) for further analysis. We then extracted data in the TPM format
and performed normalization using the log2 (TPM+1) transformation [25], after retaining
samples that included both RNA-seq data and clinical information. The data are presented
as the mean ± standard deviation. Statistical analysis was performed using R software
v4.0.3. A p-value < 0.05 was considered statistically significant [25,57]. Functional enrichment
analysis included the KEGG pathway enrichment results and GO term enrichment results
for the differentially upregulated genes, as well as the KEGG pathway enrichment results
and GO term enrichment results for the differentially downregulated genes. These functional
enrichment results are derived from the R package Cluster Profiler (v3.18.0) [58,59]. We
employed Spearman’s correlation analysis to describe the correlations among quantitative
variables that do not follow a normal distribution [60]. We utilized online platforms to
complete the relevant bioinformatics analyses (https://www.aclbi.com/static/index.html#
/tcga, accessed on 1 September 2025).

4.5. Cell Culture

CT26.WT cells were obtained from ATCC (Manassas, VA, USA, CRL-2638) and main-
tained in RPMI 1640 medium (ATCC, 30-2001). The RPMI 1640 medium was supplemented
with 10% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA), 100 U/mL penicillin,
and 100 µg/mL streptomycin (Life Technologies, Carlsbad, CA, USA), except as indicated.
Cells were grown at 37 ◦C in a 5% CO2 incubator. The CT26.WT cell line was identified

http://cole-trapnell-lab.github.io/monocle-release
http://cole-trapnell-lab.github.io/monocle-release
https://portal.gdc.cancer.gov
https://www.aclbi.com/static/index.html#/tcga
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with short tandem repeat profiling by the ATCC. Upon receipt from the ATCC, the cells
were expanded and, subsequently, stored in liquid nitrogen. The stored vials were thawed
for experiments and used in <2 months. All cell lines were confirmed to be negative for
mycoplasma by ATCC.

4.6. Wound-Healing Assay

The cells were grown as a confluent monolayer in a six-well culture dish. The cell
monolayers were scratched, using a sterile p200 pipette tip to create a wound, and then
washed with PBS to remove cell debris. The cells were incubated in medium supplemented
with culture media with or without DEFA3. Cell migration was monitored under an
inverted microscope equipped with a camera. The wound distance (width) at different
time points was measured and calculated at 0 h, 24 h, and 48 h.

4.7. CCK-8 Assay

Cells were seeded at a density of 3000 per well in 96-well plates and cultured for
24 h in 100 µL medium containing 10% FBS. Next, a 10 µL CCK-8 solution (NCM Biotech,
C6005, Suzhou, Jiangsu, China) was added per well, and the cells were cultured at 37 ◦C.
The number of viable cells was evaluated by measuring the absorbance at 450 nm using a
SynergyH1 microplate reader (Burlington, VT, USA).

4.8. Immunofluorescence

For Immunofluorescence, CT26.WT was processed with PBS or DEFA3 for 12 h.
Then, Ki-67 (Cell Signaling Technology, Boston, MA, USA, 12202, dilution 1:400) was
used overnight at 4 ◦C. The secondary antibodies were horseradish-peroxidase-conjugated
anti-rabbit IgG (Cell Signaling Technology, Boston, MA, USA, 7074, dilution 1:200) and
anti-rabbit IgG (Thermo Fisher Scientific, Waltham, Massachusetts, USA, A-11304, dilution
1:200), incubated at room temperature for 1 h.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms26189256/s1.
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CKIs Cyclin-Dependent Kinase Inhibitors
CRC Colorectal Cancer
DEFA Defensin Alpha
GO Gene Ontology
H&E Hematoxylin and Eosin
HIV Human Immunodeficiency Virus
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