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Abstract

Quantitative proteomics relies on robust statistical methods for differential expression,
critically impacting downstream functional enrichment. This meta-analysis systemati-
cally investigated how statistical hypothesis testing approaches and criteria for defining
biological relevance influence functional enrichment concordance. We reanalyzed five in-
dependent label-free quantitative proteomics datasets using diverse frequentist (t-test,
Limma, DEqMS, MSstats) and Bayesian (rstanarm) approaches. Concordance of Gene
Ontology (GO) and KEGG pathways was assessed using Jaccard indices and correlation
metrics, grouping comparisons by statistical test and biological relevance consistency. The
results demonstrated highly significant differences in similarity distributions among the
comparison groups. Comparisons varying only hypothesis testing methods (with constant
relevance criteria, FC or Bayesian) showed the highest consistency. Conversely, compar-
isons with differing biological relevance criteria (or varied methodological choices) yielded
significantly lower consistency, highlighting this definition’s critical impact on GO term
overlaps. KEGG pathways displayed more uniform, method-insensitive concordance.
Sensitivity analysis confirmed the findings’ robustness, underscoring that methodological
choices profoundly influence functional enrichment outcomes. This work emphasizes the
critical need for transparency and careful consideration of analytical decisions in proteomics
research to ensure reproducible and biologically sound interpretations.

Keywords: proteomics; meta-analysis; functional enrichment; statistical methods;
reproducibility

1. Introduction
The “omics” era has revolutionized our understanding of biological systems, with

quantitative proteomics emerging as an indispensable tool for deciphering cellular com-
plexity, discovering biomarkers, and elucidating pathological mechanisms [1]. Mass spec-
trometry (MS)-based proteomics has become the gold standard for large-scale protein
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identification and quantification. Quantitative MS workflows are typically classified ac-
cording to two major dimensions: the quantification strategy (label-based vs. label-free)
and the acquisition method (data-dependent vs. data-independent acquisition).

Label-based quantification, including metabolic labeling (e.g., Stable Isotope Labeling
by Amino Acids in Cell Culture, SILAC), chemical labeling (e.g., Isobaric Tags for Relative
and Absolute Quantitation, iTRAQ), and isobaric tagging (e.g., Tandem Mass Tags, TMT),
reduces technical variability by allowing multiplexed measurements in a single run. These
methods improve relative quantification but can be costly, limit multiplex capacity, and
suffer ratio-compression due to co-isolated precursors [2]. By contrast, label-free approaches
(spectral counting or MS1 intensities) are more scalable and cost-efficient [3] but are typically
more sensitive to run-to-run variability; appropriate normalization and alignment are
therefore essential to obtain robust results.

Traditionally, MS data acquisition has relied on Data-Dependent Acquisition (DDA),
where the most intense precursor ions are selected for fragmentation. While powerful, DDA
suffers from run-to-run variability and stochastic sampling, which can lead to missing data.
In response, Data-Independent Acquisition (DIA) has emerged as a compelling alternative.
In DIA, all precursor ions within defined m/z windows are fragmented systematically,
improving reproducibility and proteome coverage across samples. Combined with spec-
tral libraries or recent library-free algorithms, DIA workflows enable deep, consistent
quantification in both label-based and label-free contexts.

In parallel to these quantification strategies, protein identification remains a corner-
stone of proteomics. Most workflows rely on database-driven peptide matching, but de
novo sequencing—as implemented in tools like PEAKS—can enhance identification in
cases where reference databases are incomplete or sample-specific variants are expected.
Nonetheless, all these approaches face challenges: the precision and accuracy of protein
quantification are highly sensitive to various experimental and technical variables, which
can introduce noise and affect the reliability of biological conclusions. Identifying and miti-
gating these sources of variability is therefore essential to ensure biologically meaningful
and reproducible results [4].

Variability originates from multiple stages. The pre-analytical stage is critical; sample
type, quality and protein lysis/extraction methods significantly influence recovery and
representativeness. Different extraction protocols, for instance, often yield low overlap
in identified proteins due to selective solubilization, leading to biased profiles [5]. At
the protein level, intrinsic characteristics like size, hydrophobicity, and post-translational
modifications (PTMs) impact proteolytic digestion, solubility, and ionization efficiency.
Peptide amino acid sequence also directly influences fragmentation and thus identifi-
cation/quantification efficiency [6]. The instrumental stage is influenced by ionization
efficiency and peptide ion mobility, among others. Optimization of mass spectrometer
acquisition parameters (e.g., injection time, resolution, collision energy), co-elution, inter-
ference, and the quality/stability of the liquid chromatogram are also crucial [6]. Poor
chromatographic reproducibility or high background noise severely compromise accurate
peptide quantification.

After mass spectra acquisition, bioinformatic decisions profoundly alter results [7].
The choice of protein sequence database and its comprehensiveness is fundamental since
an incomplete database leads to missed protein identifications. Customized databases are
increasingly vital in proteogenomics, improving identification rates for organisms with
incomplete genomes or specific genetic variants [8]. Databases should be complete, up-to-
date, and include relevant isoforms and known variations. Search parameters in engines
are equally decisive, based on enzymatic digestion (e.g., trypsin), PTMs, and expected mass
errors [9]. Strict mass tolerances can omit valid identifications, while lax ones increase false
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positives. These parameters directly affect peptide detection, identification, and subsequent
protein quantification. Mass spectrometry search engines (e.g., Mascot, Sequest, Proteome
Discoverer, MaxQuant, Comet/X! Tandem) use distinct algorithms. While often yielding
similar results, they differ in sensitivity and specificity, particularly for low-abundance or
complex peptides [10]. Engine choice and parameter optimization influence PSM (Peptide-
Spectrum Match) identification quantity and quality. Later, peptide-to-protein inference
is a non-trivial next step, requiring critical decisions to avoid protein over-identification.
It involves grouping PSMs corresponding to unique peptides to infer protein presence;
therefore, proteotypic peptides are crucial for unambiguous protein identification [11].
Parsimony principles and handling shared peptides among multiple proteins are key, often
forming inferred protein groups. Setting FDR (false discovery rate) thresholds, typically 1%
at the peptide and/or protein level, is critical for controlling false positives and ensuring
identification confidence [9].

Quantitative intensity data derived from PSMs require normalization to correct for
technical variability [12]. Various methods exist for intra-replicate (e.g., total chromatogram
intensity) and inter-replicate (e.g., median of total peptide intensities, quantile normaliza-
tion) correction. More sophisticated methods like LOESS or VSN normalize for variance-
intensity dependencies [12]. Label-free specific methods like iBAQ and LFQ (in MaxQuant)
perform internal normalizations across replicates [13,14]. The choice of normalization
significantly impacts downstream results and the detection of biological changes [15].

Once reached, determining significantly changing proteins requires careful experi-
mental design and appropriate statistical approaches for differential expression analysis.
Designs range from simple two-group comparisons to complex multifactorial or time-
series experiments (Table 1). While conventional parametric methods like Student’s t-test
and ANOVA are widely used, their assumptions (normal distribution, homoscedasticity,
independence) are often violated in proteomics due to variability, missing values, and
heterogeneous measurement error [16]. These classical methods limit statistical power and
increase false positive/negative rates, especially in low-replication designs.

Table 1. Recommended statistical tests for quantitative proteomics differential expression analysis
based on experimental design.

Experimental Design Most Commonly Used Test Other Possible Test

Simple Comparison (A vs. B) Student’s t-test [16] Limma (moderated t-test) [17], DEqMS [18], Bayesian models [19]
Multiple Conditions One-way ANOVA [16] Limma [16], DEqMS [18], Bayesian models [19]

Time Series Experiments ANOVA/Linear Regression [16] Linear mixed-effects models (MSstats) [19], Limma [17],
DEqMS [18], Bayesian [19]

Multifactorial (e.g., treatment × time) Factorial ANOVA [16] Mixed-effects models (MSstats) [13], Limma [17], DEqMS [18],
Bayesian [19]

Controlled Reference Mixtures ANOVA/t-test [16] Limma [17], DEqMS [18], Bayesian [19]
Spectral Count Data QSpec [14] QSpec [14], hierarchical Bayesian count models [19]

Extended Time Series (>4 points) Regression/Clustering [16] Linear mixed-effects models (MSstats) [13], Bayesian time
series [19]

Low Replication Designs t-test/PLGEM-STN [20] PLGEM-STN [20], Limma [17], DEqMS [18], Bayesian [19]

More robust alternatives address these limitations. Limma performs moderated t-tests
using empirical Bayes shrinkage, improving variance stability with low replicates [17].
DEqMS models protein-level variance dependence on identified peptides for precise esti-
mates [18]. Bayesian methods (e.g., BDiffProt, BNIH) encode uncertainty and incorporate
prior information, improving false discovery rate control and effect size estimation under
non-normal conditions [19]. For longitudinal and multifactorial designs, linear mixed-
effects models (MSstats) control for intra-subject correlation, repeated measurements, and
batch effects [13]. These models, combined with variance moderation (Limma, DEqMS),
outperform classical methods in high-dimensional data with missing values or low repli-
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cation [21]. Beyond statistical significance, biological relevance must be evaluated. While
p-values indicate probability, effect size or fold change (FC) quantifies the magnitude of dif-
ference, directly indicating biological relevance. Bayesian approaches offer direct inference
about effect magnitude and the probability of biologically relevant differential expression,
often using a Null Interval of Relevance for more intuitive interpretation [22].

The quantitative proteomics workflow lead to the performance of enrichment anal-
yses to transform data into interpretable biological knowledge. These analyses identify
disproportionately represented biological functions, processes, or pathways within lists of
quantitatively changed proteins by integrating proteomic information with databases like
GO (Gen Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes), and Reactome.
This provides a high-level view of underlying molecular mechanisms. The robustness of en-
richment results could be intrinsically linked to methodological decisions made throughout
the proteomic workflow. Variability from sample preparation, data acquisition, normaliza-
tion, missing value imputation, and differential expression analysis propagates, could affect
input protein lists for enrichment and thus pathway interpretation. Understanding factors
biasing or affecting enrichment consistency is essential for reliable biological conclusions.
This study precisely addresses this fundamental need. Through a meta-analysis using the
Jaccard similarity coefficient on real proteomic datasets, we aim to quantify and understand
how different methodological decisions influence the robustness and reproducibility of
pathway enrichment results (Figure 1). This approach will empirically illuminate how se-
lections within the quantitative proteomics bioinformatics pipeline directly affect biological
interpretation, providing a basis for optimizing workflows and enhancing confidence in
biological inferences.

Figure 1. General workflow of the analytical pipeline. The schematic diagram illustrates the step-by-
step methodology for the comparative analysis. Quantitative proteomic datasets from five different
studies (W1-W5) were subjected to differential expression analysis using six distinct Hypothesis
Testing Methods (HTMs). The results were then filtered using Criteria for Biological Relevance (CBR)
and segregated into lists of upregulated and downregulated proteins. Over-Representation Analysis
(ORA) was performed on these lists to identify functional categories, followed by a meta-analysis
using various similarity and correlation metrics to assess the impact of methodological choices.

2. Results
Quantitative proteomics experiments aim to identify and quantify changes in protein

abundance across different biological conditions. A critical downstream step involves path-
way and functional enrichment analysis, which translates lists of differentially expressed
proteins into biologically meaningful insights. The statistical methods employed for dif-
ferential expression analysis can vary significantly, broadly categorized into frequentist
approaches (e.g., t-tests, ANOVA, linear models) and Bayesian methods (e.g., typically
incorporating prior information or empirical Bayes). The choice of method could pro-
foundly impact the resulting list of significant proteins, consequently affecting the outcome
of subsequent enrichment analyses.
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In this work, five previously published quantitative proteomics independent studies
(“Works”) were reanalyzed to elucidate the impact of the non-biological component of
sample-to-sample comparison experiments using label-free quantitative proteomics. All
were analyzed using the same parameters in MaxQuant (Table S1), thus limiting the
differences to the biological parameters of the experiment itself and those derived from
the statistical decisions under study. Principal Component Analysis (PCA) was performed
to explore the overall variance among samples and visually assess sample clustering
(Figure S1).

2.1. Characterization of Dataset Variability and Its Influence on Proteomic Outcomes

Prior to examining the differential expression results, we analyzed the variability
within each experimental condition (Table 2 and Figure S1). The median coefficient of
variation (CV) offers insights into the reproducibility of protein quantification within each
condition. CV revealed disparities in reproducibility across conditions. For instance, in
Work 4, Cond2 showed a considerably higher CV (31.95%) than Cond1 (18.62%), while in
Work 5, Cond1 had a higher CV (36.42%) compared to Cond2 (31.99%). In contrast, Works
1 and 3 displayed relatively low and similar median CVs between conditions, indicating
more consistent quantification.

Table 2. Protein groups variability. Cond1, condition 1 (Cold, Glu, NaCl, BNF and PM, respectively,
for each Work); Cond2, condition 2 (RT, Gly, No saline stress, no BNF, no PM, respectively, for each
Work). Levene p value shows the result of the Levene’s test (equality of variances): p-value > 0.05:
There is no significant evidence to reject the null hypothesis that the variances between groups
are equal; p-value ≤ 0.05: There is significant evidence to reject the null hypothesis of equality of
variances (the variances between groups may be different).

Work Median CV (Cond1) (%) Median CV (Cond2) (%) SD del|Log2FC
(Cond1 vs. Cond2)| Levene (p Value)

1 13.17 12.78 4.28 0.3694
2 26.79 25.50 3.00 0.9991
3 10.16 8.34 2.75 0.0221
4 18.62 31.95 4.72 0.0000
5 36.42 31.99 4.21 0.1310

Levene’s test assesses the equality of variances between the two conditions. This test
revealed significant variance differences in Works 3 (p = 0.0221) and 4 (p < 0.0001), but not
in Works 1, 2, and 5 (0.3694, 0.9991, and 0.1310, respectively). The PCA plots (Figure S1)
further illustrate the spread and variability among datasets.

2.2. Differential Expression Analysis: The Role of Hypothesis Testing Methods in
Protein Identification

Differential expression was assessed with six methods: Student’s t-test [23], Welch’s
t-test [24], Limma [17], DEqMS [18], MSstats [13], and a Bayesian approach implemented in
rstanarm [25]. Although brms was initially considered for the Bayesian analysis, it proved
computationally infeasible for routine use, leading to the adoption of rstanarm, which
achieves greater efficiency by frequently leveraging pre-compiled Stan code [26]. Both
packages are widely applied in quantitative proteomics for differential expression due
to their ability to provide posterior distributions, quantify uncertainty, and incorporate
prior knowledge [27]. The number of differentially expressed proteins (DEPs) varied
substantially across methods and datasets (Figure 2A). For example, MSstats consistently
identified the highest DEP counts in Workflows 1 and 4, whereas the Bayesian method was
the most sensitive in Workflows 2 (61 DEPs), 3 (832 DEPs), and 5 (241 DEPs). Conversely,
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t-tests often identified very few or no DEPs. Conversely, in W1 (1463 DEPs) and W4
(545 DEPs), the Bayesian method yields a more intermediate count. The t-Welch method,
along with t-Student, appears to be the most conservative in certain workflows, notably
identifying very few or no DEPs in W2 (2 DEPs for t-Welch, 9 for t-Student), W3 (0 DEPs for
both), and W5 (7 DEPs for t-Welch, 29 for t-Student). Limma and DEqMS generally show
intermediate numbers, often clustering with t-Student and t-Welch, though their specific
counts vary. It was also observed that the greater the number of identifications per method,
the greater the tendency to contribute a larger set of unique DEPs.

Figure 2. Number and intersection of differentially abundant proteins across Hypothesis Testing
Methods (HTMs) for five quantitative proteomics Works. (A) Bar plots show the total number of
significant proteins identified by each method: Bayesian (B), DEqMS (D), Limma (L), MSstats (M),
Student’s t-test (S), and Welch’s t-test (W). (B) UpSet plots show the intersections of significant protein
sets across methods for each Work. Vertical bars indicate the size of each intersection; connected
dots below the bars identify which methods contribute to that intersection. Shared intersections
highlight proteins consistently identified as significant across methods, while unique intersections
reflect method-specific findings.
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UpSet plots (Figure 2B) show that while a substantial core of proteins is shared across
methods, each method also contributed unique identifications. Distribution analyses of
adjusted p-values (Figure S2) confirmed that MSstats tends to produce broader right tails,
reflecting higher sensitivity, whereas t-tests yield more conservative distributions.

Further analysis of these patterns in relation to the data quality metrics in Table 2
provides additional context. Workflows W2, W3, and W5, where the Bayesian method
identified the highest number of DEPs, were characterized by diverse variance patterns.
For instance, W2 and W5 exhibited relatively high median CVs for both conditions and
non-significant Levene’s test p-values (0.9991 for W2; 0.1310 for W5), indicating more
homogeneous variance but higher overall variability. In contrast, W3 had very low CVs
but a significant Levene’s test p-value (0.0221), suggesting heteroscedasticity despite high
precision. Workflows W1 and W4, where MSstats identified the most DEPs, showed
different characteristics: W1 had low CVs and homogeneous variance (Levene p = 0.3694),
while W4 showed a high CV for Condition 2 (31.95%) and strongly heterogeneous variance
(Levene p < 0.0001).

The distribution of protein intensities and statistical metrics across the six statistical
methods and five workflows is shown in Figure S2. In all cases, a sharp peak near the
origin (low −log10(adjusted p-value) or low probability) was observed, corresponding to
non-significant proteins. The extent of the right tail, representing statistically significant
DEPs, varied across methods. MSstats generally displayed broader distributions that
extended to higher −log10(adjusted p-value) values in several workflows (e.g., W1 and
W4), consistent with its higher DEP counts. In contrast, Student’s t-test and Welch’s t-test
produced distributions concentrated at lower −log10(adjusted p-value) values, with a less
pronounced or absent right tail in workflows where they identified very few or no DEPs
(e.g., W2, W3, and W5). Limma and DEqMS showed intermediate distributions, with right
tails more extended than those of the t-tests but less than those of MSstats. A “spike” near
the significance threshold was observed in some cases, reflecting clustering of proteins close
to the cut-off. Variability in distribution shapes across workflows also reflected differences
in data processing and normalization steps.

2.3. Biological Relevance in Differential Proteomics Analysis

Beyond statistical significance, the biological relevance of identified proteins is para-
mount for meaningful interpretation in proteomics studies. This often involves applying
additional filters, such as fold change thresholds or probabilistic assessments from Bayesian
analyses, to refine the list of potentially interesting proteins. Figure 3 illustrates the overlaps
in significant proteins among different frequentist HTMs (Student’s t-test, Welch’s t-test,
Limma, DEqMS, and MSstats) after the application of these bio-logical relevance filters
across Works 1, 2, 3, 4, and 5 (Panels A to D). Student’s and Welch’s t-tests are not included
in this figure due to an insufficient number of significant results after the initial statistical
testing and subsequent filtering for biological relevance.

In general, it is observed that following frequentist hypothesis testing, the filtering
for determining biological relevance is more stringent when employing Bayesian methods
compared to a simple fold change criterion. This is evidenced by the lower total number of
“retained” proteins (Figure 3) and, consequently, a higher number of discarded proteins
(Figure S3). Consequently, the selection of both the hypothesis testing method and the
biological relevance criterion jointly determines the final set of relevant proteins, directly
influencing downstream pathway and functional enrichment analyses.
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Figure 3. Comparison of overlaps in the significant proteins in the different hypothesis tests after the
biological relevance filter (fold change and Bayesian analysis). The overlap results of the identified
proteins are presented for each of the frequentist methods (Student’s t, Welch’s t, Limma, DEqMS and
MSstats) in Works 1, 2, 4 and 5 (A–E). Work 3 did not yield sufficiently significant results. B, proteins
identified only after applying the biological relevance filter by the Bayesian method; FC, proteins
identified only after applying the fold change filter; O, all proteins present after the hypothesis test.

2.4. Functional Enrichment Analysis: Consistency Across Methodological Choices

Following the application of biological relevance filters to identify differentially ex-
pressed proteins, functional enrichment analyses were performed. Significant protein
lists were categorized as overrepresented or underrepresented based on the developed
methodology. Table S2 summarizes the interactions between these methods for both over-
represented and underrepresented proteins. In general, comparisons between protein sets
filtered by the Bayesian approach versus fold change showed no substantial differences in
either the number of proteins identified or their absolute log2FC values. Notable exceptions
were observed in Work 1 for underrepresented proteins and in Work 4 for overrepresented
proteins. In Work 1, the msstats_FC_up method (MSstats as method for hypothesis testing,
fold change as filter to determine biological relevance and overrepresented category) ex-
hibited 1190 interactions, whereas the corresponding Up Bayesian method showed only
82 interactions. Similarly, in Work 4, msstats_FC displayed 489 self-interactions in the Up
FC category, compared to 73 for the Up Bayesian category.

To further assess the consistency of the functional enrichment results, we analyzed the
distributions of Euclidean similarity and Jaccard index for each individual ‘Work’ and direc-
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tion of regulation (Figure 4). These metrics were chosen for their distinct yet complementary
strengths in assessing similarity between sets of enriched terms. The Jaccard index, a binary
metric, quantifies the overlap based solely on the presence or absence of shared terms,
providing a direct measure of commonality regardless of their quantitative enrichment
levels. In contrast, Euclidean similarity, a distance-based metric, considers the quantitative
relationships of terms (e.g., based on the % Associated Genes scores from ClueGO), making
it sensitive to both shared terms and the magnitude of their enrichment. Together, these
metrics offer a robust framework to evaluate consistency, capturing both qualitative (Jac-
card) and quantitative (Euclidean) aspects of functional enrichment profiles. Across all five
Works (W1–W5) and for both overrepresented and underrepresented proteins, comparisons
in which the Hypothesis Testing Method (HTM) varied while the Criterion for Biological
Relevance (CBR) remained constant (Intra-HTM_FC_CBR and Intra-HTM_Bayes_CBR cate-
gories) exhibited consistently high similarity values (Figure 4). In contrast, comparisons in
which the CBR varied while the HTM was held constant (Intra-CBR_Fixed_HTM) showed
lower similarity values across most Works and directions. The lowest similarity values
were observed in Inter-HTM/Inter-CBR comparisons, where both HTM and CBR differed.
In contrast, comparisons where the CBR was varied while the HTM was kept constant
(Intra-CBR_Fixed_HTM category) consistently showed lower similarity values for both
Euclidean similarity and Jaccard index across most ‘Works’ and directions (Figure 4).

Figure 4. Euclidean similarity and Jaccard index distributions for each Work and regulation
direction. Each panel contains boxplots of the metric for four comparison categories (Intra-
HTM_FC_CBR, Intra-HTM_Bayes_CBR, Intra-CBR_Fixed_HTM, Inter-HTM_Inter-CBR). Boxes = IQR;
whiskers = 1.5 × IQR; points = individual pairwise comparisons. Asterisks denote pairwise signifi-
cance after Dunn’s test with Bonferroni correction. Note: Jaccard is computed on presence/absence
of enriched terms (%AssociatedGenes > 0), Euclidean similarity is 1/(1 + d) with d the Euclidean
distance on %AssociatedGenes. See Methods for details. ns: not significant, * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.
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A comprehensive summary of identified proteins, including median, minimum, and
maximum log2FC values for each HTM and CBR across all Works, is provided in Table S3.
Additional analyses for Work 1 are shown in Figure S4, including boxplots of Pearson
and Spearman correlation coefficients and heatmaps of Euclidean, Jaccard, Pearson, and
Spearman metrics across the three core ontologies (GO Biological Process, GO Molecular
Function, and KEGG), with separate panels for overrepresented and underrepresented
proteins. These analyses captured both the consistency observed when the CBR is held
constant and the variability arising from changes in CBR, as exemplified by W1 and W4.
Collectively, Tables S2 and S3 and Figures 4 and S4 provided detailed quantitative results
on the consistency of functional enrichment outcomes across methodological choices.

2.5. Meta-Analysis of Functional Enrichment Concordance

Finally, a meta-analysis was performed with the objective of systematically evaluating
the impact of diverse statistical methodologies on the outcomes of biological enrichment
analysis. This meta-analysis compiled Euclidean similarity and Jaccard indices from
multiple quantitative proteomics “Works”, categorizing them into four primary comparison
types based on the interplay between the HTM and the CBR: “Intra-HTM_FC_CBR”,
“Intra-CBR_Fixed_HTM”, “Inter-HTM_Inter-CBR”, and “Intra-HTM_Bayes_CBR”. An
“Unknown” category with very few data points was also observed, representing method
combinations not fitting the primary classifications; due to its sparse representation, the
interpretation focused on the four main comparison types. The distribution of Euclidean
similarity and Jaccard indices, both in their original and arcsin square root-transformed
forms, are presented in Figure 5, Panels A and C (histograms), respectively. The arcsin
square root transformation generally shifts the distribution towards a more symmetrical
form, which is beneficial for statistical analyses. Global distribution and comparison of
Pearson and Spearman indices from meta-analysis are presented in Figure S5.

The results are presented both globally (across all analyzed ontologies and Works com-
bined in Figure 5A,C—boxplots) and specifically for key Gene Ontology (GO) and KEGG
pathway ontologies (Figure 5B,D). The global analysis of Euclidean similarity (Figure 4,
left panels for each category boxplot) revealed a highly significant overall difference in
similarity distributions among the comparison types (Kruskal–Wallis p = 0.00011). For
Jaccard index (Figure 5C, boxplot), a similar highly significant overall difference was ob-
served (Kruskal–Wallis p < 2 × 10−16). When comparing the median Euclidean similarities
and Jaccard indices across the categories, it was observed that “Intra-HTM_FC_CBR” and
“Intra-HTM_Bayes_CBR” showed the highest median similarity, “Intra-CBR_Fixed_HTM”
showed a lower value and “Inter-HTM_Inter-CBR” the lowest levels of consistency.

Ontology-specific analysis (Figure 5B for Euclidean and 5D for Jaccard) largely main-
tains these global trends across ontologies. For instance, in GO Biological Process and
GO Molecular Function, “Intra-HTM_FC_CBR” and “Intra-HTM_Bayes_CBR” generally
exhibited higher overlap, while “Intra-CBR_Fixed_HTM” and “Inter-HTM_Inter-CBR”
consistently showed lower consistency.

Finally, a sensitivity analysis was performed by systematically excluding one “Work”
(dataset) at a time and re-running the Kruskal–Wallis test on the remaining data (Fig-
ure 5B,D, bottom bar plots). For Euclidean similarity, excluding Work 1, Work 3, or Work
4 resulted in the Kruskal–Wallis p-value for global differences increasing above the 0.05
significance threshold (e.g., p = 0.22 for W1 excluded in Figure 5B). Similarly, for Jaccard
index, excluding Work 1 also caused the p-value to exceed 0.05.
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Figure 5. Global distribution and comparison of Euclidean similarity and Jaccard indices from meta-
analysis. (A,C) Histogram showing the distribution of the raw Euclidean similarity and Jaccard Index
values, respectively, across all collected data (left), histogram of the arcsin(sqrt)-transformed values,
illustrating how the transformation affects the data distribution (right) and boxplots representing
the arcsin(sqrt)-transformed Euclidean similarity and Jaccard Index values, categorized by four
comparison types: “Intra-CBR_Fixed_HTM” (concordance among CBRs with fixed HTM), “Intra-
HTM_Bayes_CBR” (concordance among Hypothesis Testing Methods with Bayesian-based Criteria
for Biological Relevance), “Inter-HTM_Inter-CBR” (concordance when both HTM and CBR vary),
“Intra-HTM_FC_CBR” (concordance among HTMs with FC-based CBR) (down). Asterisks denote
significance from post hoc Wilcoxon rank-sum tests (ns: not significant, * p < 0.05, ** p < 0.01).
(B,D) Sensitivity Analysis of Kruskal–Wallis Test for Euclidean similarity and Jaccard Index. Bar
plot showing the Kruskal–Wallis p-value for the global comparison when sequentially excluding
one ‘Work’ (dataset) at a time from the meta-analysis. The red dashed line at p = 0.05 serves as a
significance threshold.
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3. Discussion
This study presents a novel meta-analytical approach by combining enrichment results

from diverse real-world, independently published quantitative proteomics datasets rather
than controlled benchmark datasets. This allows for a comprehensive evaluation of the
relative influence of both specific HTMs and distinct CBRs on downstream biological
interpretations, reflecting the variability encountered in actual research. While method
benchmarking studies often utilize specially prepared datasets to validate new approaches,
the use of a meta-analysis on randomly selected or pre-existing “real” datasets is less
common and offers valuable insights into the generalizability and robustness of analytical
choices in routine proteomics research. By analyzing the different Works using parameters
distinct from those in the original studies (which could explain possible differences with
respect to them), we aim to address three key questions regarding the influence of statistical
methodologies on biological enrichment findings:

• Does the specific hypothesis testing method (HTM; e.g., t-Student, t-Welch, Limma,
DEqMS, MSstats, Bayesian) influence the resulting biological enrichments when the
criterion for biological relevance (CBR) is kept constant?

• Does the method used for determining biological relevance (CBR; fold change-based
vs. Bayesian posterior probability-based approaches) influence the resulting biological
enrichments when the hypothesis testing method (HTM) is kept constant?

• What has a greater influence on the observed biological enrichments: the specific
hypothesis testing method (HTM) or the criterion for determining biological rele-
vance (CBR)?

3.1. Methodological Implications of Hypothesis Testing in Proteomics

Our comparative framework demonstrates that a key factor shaping differences in the
number of differentially expressed proteins identified by HTM application is the inherent
variability in protein quantification within each dataset. The analysis of median coefficients
of variation (CVs) across conditions (Table 2, Figure S1) reveals substantial differences
among datasets. Works 4 and 5 display pronounced disparities between conditions: in
Work 4, Cond2 shows a higher median CV (31.95%) compared to Cond1 (18.62%), while in
Work 5, Cond1 exhibits a higher median CV (36.42%) than Cond2 (31.99%). Notably, for
these datasets, Cond2 was derived from the same raw files, indicating that these differences
primarily reflect the impact of normalization strategies applied across replicates rather than
sample composition. High CVs may indicate increased biological heterogeneity, technical
variability, or a combination thereof, and are likely to influence both the identification and
reproducibility of DEPs. Complementary analyses using Levene’s test further highlight
that certain datasets may require HTMs capable of handling unequal variances.

Similarly, the choice of hypothesis testing method (HTM) markedly influences the
number and composition of differentially expressed proteins (DEPs). Methods such as
MSstats and Bayesian modeling tended to produce higher DEP counts, whereas classical
approaches, including Student’s and Welch’s t-tests, were more conservative, occasionally
identifying few or no significant proteins (Figure 2). This variability highlights the de-
pendency of DEP lists on the chosen statistical approach, a well-documented challenge in
proteomic data analysis. Different statistical models emphasize distinct aspects of the data,
potentially due to variations in assumptions regarding variance estimations or outlier han-
dling. When MSstats and the Bayesian method identified the highest DEP counts, this may
reflect greater sensitivity, robustness and adaptability to common proteomics challenges
like missing values and outliers. For instance, MSstats is designed to manage missingness
through imputation or probabilistic modeling, while Limma’s empirical Bayes moderation
stabilizes variance estimates, particularly with small sample sizes. When these methods
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are applied to data where such issues are effectively managed, their convergence on similar
significant findings underscores their reliability, allowing them to capture a broader range
of subtle changes. Conversely, this approach may also yield a higher proportion of unique
findings that are potentially less robust.

Overall, these observations indicate that both the choice of HTM and dataset-specific
characteristics—including within-condition variability, fold change dispersion, and vari-
ance equality—affect the reproducibility and robustness of differential expression results.
Robust methods such as MSstats or Bayesian approaches may be particularly beneficial for
datasets with high CVs or unequal variances, ensuring reliable identification of DEPs and
appropriate contextualization of downstream functional enrichment analyses.

3.2. The Criterion for Biological Relevance as the Key Driver

In contrast, the choice of CBR—fold change versus Bayesian posterior probability—
emerges as the most decisive factor shaping downstream interpretations. Our analy-
ses show a clear reduction in concordance when CBRs are varied under a fixed HTM,
whereas different HTMs under the same CBR yield consistent enrichment profiles
(Figures 4, 5, S4 and S5). This observation is consistent with previously noted discrepancies
in the number of identified proteins for certain Works when comparing Bayesian and fold
change filtering. For instance, the ‘Underrepresented (down)’ panel for W1 in Figure 4
visually confirms lower similarity values in the Intra-CBR_Fixed_HTM category, consistent
with the noted difference in protein counts for underrepresented proteins in W1. Similarly,
while not directly shown for W4’s overrepresented proteins at this specific granularity,
the general trend supports that changes in CBR lead to greater divergence. Additionally,
in the meta-analysis, comparisons of Euclidean similarities and Jaccard indices within
the Intra-HTM_FC_CBR category reveal a consistently high degree of agreement among
different frequentist HTMs when identifying enriched terms using a fold change (FC)-based
criterion for biological relevance. This indicates that, within the frequentist framework, the
specific choice of HTM has a relatively minor impact on the resulting biological enrichments.
This pattern is also observed for the Intra-HTM_Bayes_CBR category since its consistency
remains high when varying HTMs solely within the Bayesian framework (Figures 5 and S5).
Indeed, Intra-CBR_Fixed_HTM showed a profound drop in consistency, highlighting that
changing the criterion for biological relevance (from FC to Bayesian) while keeping the
HTM fixed leads to substantial divergence in functional enrichment results.

Bayesian filtering, although more conservative, provides a probabilistic and data-
driven measure of biological relevance, limiting the inclusion of spurious findings that
may pass arbitrary fold change thresholds. At the same time, its stringency can exclude
pathways that appear under fold change filtering (e.g., Parkinson’s disease with DEqMS;
ER protein processing with MSstats). This highlights a methodological trade-off between
inclusiveness and robustness, reinforcing that the definition of biological relevance is more
critical than the choice of the statistical test itself.

3.3. Reproducibility, Transparency, and Community Standards

The discrepancies observed between our repeated analyses and the results originally
reported by dataset authors underscore the influence of differences in normalization, search
parameters, and replicate handling. Such variability illustrates the necessity of standard-
ized protocols, careful batch-effect management, and defined quality-control checkpoints to
reduce technical noise. Equally important is transparent reporting: adherence to FAIR prin-
ciples and established proteomics standards (MIAPE, HUPO-PSI) will enable comparability,
method benchmarking, and data reuse. Providing raw inputs to enrichment tools (pro-
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tein IDs, ClueGO outputs, parameters), code, and environment specifications (R package
versions, seeds) minimizes ambiguity and allows direct replication by other groups.

As concrete examples of divergence, in Work 1 (up-regulated proteins) we observed
that some pathways were consistently detected across both filtering strategies. For instance,
the KEGG pathway “Complement and coagulation cascades” (hsa04610) and the GO
term “acute-phase response” (GO:0006953) were significant under both Bayesian- and
FC-based criteria when using DEqMS and MSstats. However, many other terms appeared
exclusively in the FC-filtered lists. With MSstats, pathways such as “Protein processing in
endoplasmic reticulum” (hsa04141) and “translation” (GO:0006412) were enriched only
under FC filtering, whereas the Bayesian approach did not retain them. Similarly, with
DEqMS we found disease-related pathways, including “Parkinson’s disease” (hsa05012), to
be highlighted only under FC filtering. Notably, no terms were found exclusively after these
HTMs with the Bayesian criterion, suggesting that this approach was more conservative.
These examples illustrate how the choice of biological relevance criterion can markedly
alter the biological interpretation, either by converging on robust terms or by excluding
potentially relevant pathways depending on the filtering strategy.

3.4. Limitations and Future Perspectives

Our sensitivity analyses reveal that individual datasets can substantially affect global
statistical significance, indicating that conclusions drawn from meta-analyses are dataset-
dependent. Future studies using more homogeneous biological systems will be needed to
test whether the observed patterns generalize across contexts. Furthermore, proteomics
results require orthogonal validation—Western blot, ELISA, targeted MS (PRM/SRM)—to
confirm protein-level findings and functional assays to contextualize biological signifi-
cance [28]. Another challenge is the dominance of highly abundant proteins, which can
obscure subtler but more informative patterns. Component-based strategies that disentan-
gle “size” and “shape” effects, as proposed by Roden [29], offer a promising complementary
approach to enrichment reproducibility analyses and should be explored in future work.

4. Materials and Methods
4.1. Dataset Selection

Five publicly available mass spectrometry (MS) proteomic works (referred to as Works
1–5) were selected for this study. Works 1, 2, and 3 were chosen randomly based on
three criteria: their acquisition using an Orbitrap Fusion mass spectrometer, utilization of
data-dependent acquisition (DDA) mode, and prior publication in peer-reviewed journals.
Works 4 and 5 were selected from a previously published work by our research group,
adhering to the same criteria. From each work, specific RAW files were obtained to perform
pairwise comparisons. Information for each work is detailed below:

- Work 1 (ProteomeXchange: PXD051640) originated from a study on brown adipose
tissue and liver in a cold-exposed cardiometabolic mouse model [30]. The protein
database used for identification was Mus musculus (C57BL/6J) (UP000000589).

- Work 2 (ProteomeXchange: PXD041209) investigated the Escherichia coli protein acety-
lome under three growth conditions [31]. Protein identification relied on the Escherichia
coli K12 (UP000000625) protein database.

- Work 3 (ProteomeXchange: PXD019139) explored quantitative proteome and PT-
Mome responses in Arabidopsis thaliana roots to osmotic and salinity stress [32]. The
corresponding protein database was Arabidopsis thaliana (UP000006548).

- Works 4 and 5 (ProteomeXchange: PXD034112) were derived from a comprehensive
study on biological nitrogen fixation and phosphorus mobilization in Azotobacter
chroococcum NCIMB 8003 [33]. For dataset 4, raw files from control and biological
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nitrogen fixation conditions were used, while for dataset 5, raw files corresponding
to control conditions were compared to phosphorous mobilization conditions. The
protein database for these works was UP000068210”.

All files were analyzed in MaxQuant, using the parameters specified in Table S1.

4.2. Differential Abundance Analysis

Data processing and statistical analyses were primarily conducted using R (version
4.5.0) [34] within the RStudio 2025.05.0 environment, leveraging various specialized pack-
ages. The initial input for differential abundance analysis consisted of the proteinGroups.txt
and evidence.txt files, which are standard outputs from the MaxQuant processing. As a cru-
cial data preparation step (Script 1), contaminants, proteins identified by only one unique
peptide, and proteins from the decoy database were filtered out from the proteinGroups.txt
file and column names were standardized for consistent downstream processing. The
resulting filtered dataset, named proteinGroups_filtered.txt, was then used as the primary
input for most downstream statistical analyses. For all analyses, LFQ normalized intensities
data were utilized. Missing values were not globally imputed. Instead, missingness was
handled method-specifically, in line with each tool’s underlying assumptions. The selected
statistical methods were robust to incomplete data, allowing valid inference without requir-
ing full imputation. Six distinct hypothesis testing methods (HTMs) were applied to these
prepared datasets (Script 2):

- Student’s and Welch’s t-tests: Performed on the base-2 logarithm of protein intensity
data to compare means between two conditions. Both Student’s t-test (assuming
equal variances) and Welch’s t-test (not assuming equal variances) were applied using
pairwise complete observations; that is, proteins were retained if they had at least
two valid (non-missing) values per group.

- Limma: The Limma R package [17] was used to fit a linear model to log2-transformed
protein intensity data. This method employs empirical Bayes moderation of variances
and tolerates missing values, provided sufficient replicate data are available. In this
way, statistical power in enhanced and variance stabilized, which is particularly critical
in experiments with low biological replicates.

- DEqMS: The DEqMS R package [18] was employed, extending the Limma framework
by incorporating peptide count information to refine variance estimation in differential
protein abundance analysis. It leverages the observation that proteins identified with
more peptide-spectrum matches (PSMs) yield more reliable intensity measurements,
leading to improved statistical power. As with Limma, DEqMS accepts missing
values natively during model fitting and uses empirical variance estimation without
requiring imputation.

- MSstats: The MSstats R package [13] is specifically designed for quantitative mass
spectrometry data. Uniquely among these methods, MSstats requires the original
proteinGroups.txt file (not the filtered version) along with the evidence.txt file as input.
Data was pre-processed using the dataProcess function in MSstats, and group compar-
isons were performed using linear mixed-effects models. This approach accounts for
various sources of variability (e.g., biological/technical replicates, batch effects) by
explicitly modeling them as random effects, thus providing robust variance estimates
and increased statistical power. Missing values were handled using MSstats’ default
model-based approach, which treats them as censored (i.e., non-random) and does
not perform global imputation.

- Bayesian Analysis: Differential protein abundance was also assessed using a Bayesian
framework, implemented with the rstanarm R package [25]. This package provides
an interface to Stan for Hamiltonian Monte Carlo (HMC) sampling. For each protein,
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a Bayesian linear regression model was fitted to the log2-transformed intensity data,
utilizing the experimental condition as predictor. Only proteins with at least two
valid values per group were considered. Missing values were implicitly handled
through marginalization over the posterior, without requiring imputation. Model
fitting employed four Markov Chain Monte Carlo (MCMC) chains with 4000 iterations
(including 2000 warm-up iterations) and an adapt_delta of 0.99. Convergence of
the chains was rigorously monitored using Rhat values (ideally ≤1.01) and effective
sample size (ESS, ideally ≥200). This probabilistic approach yields full posterior
distributions for the model parameters, which enables direct statements about effect
sizes and their associated uncertainties. Weakly informative priors were incorporated
to regularize parameter estimates and enhance model stability, particularly beneficial
for proteins with limited measurements [35].

For all frequentist methods (Student’s t-test, Welch’s t-test, Limma, and DEqMS),
p-values were adjusted for multiple testing using the Benjamini–Hochberg (BH) method to
control the false discovery rate. Proteins with an adjusted p-value ≤ 0.05 were considered
significantly differentially abundant. For the Bayesian method, the posterior probabil-
ity of biological relevance was calculated, representing the likelihood that the absolute
effect size (log2FC) exceeded a predefined threshold (e.g., 1). Proteins with a posterior
probability ≥ 0.95 were then considered differentially abundant and biologically relevant.

To provide a comprehensive overview of the differential abundance analysis results,
several types of plots were generated for each pairwise comparison (Script 2): bar plots
(using the ggplot2 package) visualizing the total number of significant proteins identified
by each method; UpSet plots (using the UpSetR package, [36]) representing the intersections
and unique sets of significant proteins across different methods, complemented by tabular
summaries of these intersections; and density plots of −log10(adjusted p-value) (using
ggplot2) to assess overall trends in p-value distributions from frequentist methods, with
non-finite or zero p-values excluded from the transformation for accurate representation,
including a vertical line for the significance cutoff.

4.3. Biological Relevance Filtering and Overlap Analysis

To identify proteins with significant biological relevance beyond mere statistical sig-
nificance, two distinct criteria for biological relevance (CBRs) were applied to the initial
results of differential abundance analysis (Script 3). The first criterion, fold change (FC)
filtering, was applied to proteins statistically identified as differentially abundant by the fre-
quentist methods (t-Student, t-Welch, Limma, DEqMS, MSstats). A protein was considered
biologically relevant if its absolute log2 fold change (|log2FC|) was greater than or equal to
1. The second criterion, Bayesian Biological Relevance Filtering, employed the previously
described Bayesian linear modeling approach. After the initial hypothesis testing, for each
protein, a Bayesian linear model (fitted using the rstanarm R package [25] with the MCMC
parameters and convergence diagnostics as detailed above) was utilized. A protein was
deemed biologically relevant by this criterion as previously described.

To understand the agreement and unique contributions of each filtering strategy,
intersection analysis was performed using UpSet plots [36]. For each statistical method,
three sets of proteins were defined: “Originals” (statistically significant proteins from the
HTMs), “FC” (proteins from the “Originals” set also meeting the fold change CBR), and
“Bayes” (proteins from the “Originals” set also meeting the Bayesian CBR). These sets
of protein identifiers were used as input for the UpSetR package in R. UpSet plots were
generated to visualize the size of unique sets and all possible intersections.
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4.4. Segregation and Functional Enrichment Analysis

Following the HTM analysis and CBR filtering, proteins were classified as up- or down-
regulated based on their log2 FC values and the respective statistical or biological relevance
thresholds (Script 4). For each HTM and CBR, separate lists of up-regulated and down-
regulated protein identifications (Protein.IDs) were generated and Over-Representation
Analysis (ORA) was developed. Importantly, while the res_bayes method originates from
Bayesian inference, its results for biological relevance were also considered under the fold
change criterion for specific downstream applications.

Functional enrichment analysis was performed using ClueGO (v2.5.9) [37] within
Cytoscape (v3.10.0) [38]. For each set of up- and down-regulated proteins, GO (Biological
Process and Molecular Function) terms and KEGG pathways were deliberately interro-
gated to maintain a standardized and comparable analysis framework across species. The
enrichment analysis relied on a two-sided hypergeometric test, with resulting p-values
corrected for multiple testing using the Benjamini–Hochberg method. Only terms with a
corrected p-value < 0.05 were considered significant. To reduce redundancy and improve
interpretability, functionally related terms were grouped based on their kappa score using
the GO Term Fusion option, and the resulting networks were visualized based on the
overlap of associated genes.

4.5. Similarity and Correlation Analysis of Functional Enrichment Outcomes

To systematically evaluate the impact of Hypothesis Testing Methods (HTMs) and
Criteria for Biological Relevance (CBRs), we extracted and analyzed the % Associated
Genes data from each dataset, for both upregulated and downregulated genes. This was
performed for each HTM and CBR framework within individual quantitative proteomics
datasets. This quantitative information, representing the strength of enrichment for each
term, allowed for a comprehensive assessment of agreement using various metrics (Script
5). The following similarity and correlation metrics were calculated:

- Jaccard Index (J(A,B) = |A∪B||A∩B|): This metric was used to quantify the overlap
between the sets of enriched terms (defined as terms with % Associated Genes > 0)
derived from different method combinations. For statistical analysis, Jaccard Index
values were transformed using the arcsin square root transformation (arcsin(x)) to
stabilize variance.

- Pearson Correlation Coefficient: This metric assessed the linear relationship between
the quantitative profiles (vectors of % Associated Genes for all terms within a given
ontology) generated by different method combinations.

- Spearman Correlation Coefficient: This non-parametric metric evaluated the mono-
tonic relationship between the quantitative profiles of % Associated Genes, making it
robust to non-linear associations and outliers.

- Euclidean Similarity: Derived from Euclidean distance, this metric quantified the
closeness of the quantitative profiles of % Associated Genes between different method
combinations. Similarity was calculated as 1/(1 + d), where d is the Euclidean distance,
resulting in values ranging from 0 (maximal dissimilarity) to 1 (maximal similarity).

These similarity and correlation indices were rigorously categorized based on the
nature of the combined HTM and CBR for pairwise comparisons, mirroring the scheme
implemented in our analysis scripts:

- Intra-HTM_FC_CBR: Comparisons between different HTMs where the CBR was
consistently fold change-based (e.g., deqms_FC vs. Limma_FC). This category assesses
the variability introduced solely by the choice of HTM when a fixed FC relevance
criterion is applied.
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- Intra-HTM_Bayes_CBR: Comparisons between different HTMs where the CBR was con-
sistently Bayesian posterior probability-based (e.g., deqms_Bayes vs. Limma_Bayes).
This category assesses the variability introduced solely by the choice of HTM when a
Bayesian relevance criterion is applied.

- Intra-CBR_Fixed_HTM: Comparisons between the two different CBRs (fold change-
based vs. Bayesian posterior probability-based), where the HTM was kept constant
(e.g., tstudent_FC vs. tstudent_Bayes). This category directly evaluates the influence
of the biological relevance criterion itself, controlling for the HTM.

- Inter-HTM_Inter-CBR: Comparisons between combinations where both the HTM and
the CBR differed (e.g., tstudent_FC vs. Limma_Bayes). This category represents the
cumulative variability from changing both methodological aspects.

For each individual “Work” and for each direction of regulation (up/down), a non-
parametric Kruskal–Wallis H-test (p < 0.05) was performed to assess overall differences in
the distributions of each metric (Jaccard, Pearson, Spearman, Euclidean Similarity) across
these defined comparison types. In cases where the test could not be reliably computed
(e.g., due to insufficient data variability resulting in an NA p-value), the test was skipped,
and this was noted in the analysis logs. If significance was detected, post hoc Dunn’s tests
with Bonferroni correction [39] were performed to identify specific pairs of groups with
significantly different distributions.

Furthermore, heatmaps were generated for each similarity and correlation matrix
(Jaccard Index, Pearson Correlation, Spearman Correlation, and Euclidean Similarity) for
each Work, direction, and ontology, providing a visual representation of agreement patterns.
Boxplots illustrating the distribution of each metric across the defined comparison types
were also generated for each Work and direction, as well as a consolidated global analysis
across all Works and directions.

4.6. Meta-Analysis

A comprehensive meta-analysis was performed to evaluate the consistency of bio-
logical enrichment results across various quantitative proteomics datasets and statistical
methodologies. The process began with the consolidation of individual ClueGO enrich-
ment outputs (originally in .xls format) into structured tab-separated value (TSV) files
for each “Work” and direction of regulation (up/down). During this consolidation, for
terms enriched by a given method, the mean of the “Associated Genes” percentage was
calculated if multiple entries for the same term and ontology existed, and missing values
(NA) for non-enriched terms were imputed as zero. This refined data structure, which
included “Term” and “Ontology” alongside the “% Associated Genes” for each applied
method, served as the foundational input for the meta-analysis (Script 6).

Beyond Jaccard similarity, the consistency between all pairwise combinations of statis-
tical methods and biological relevance criteria was quantified using three additional metrics:
Pearson correlation, Spearman correlation, and Euclidean similarity. While Jaccard index
assessed the overlap of enriched terms (terms with “% Associated Genes” > 0), Pearson
and Spearman correlations evaluated the linear and monotonic relationships, respectively,
of the “% Associated Genes” values themselves. Euclidean similarity provided a metric of
overall proximity between the quantitative profiles.

Raw ontology names were systematically standardized to their core functional cat-
egories (e.g., “GO_BiologicalProcess”, “GO_MolecularFunction”, “KEGG”) to facilitate
cross-Work comparisons. All extracted Jaccard indices were then transformed using the
arcsin square root transformation (arcsin(

√
J)) to improve normality and homogeneity of

variance, a common practice for proportional data. Pearson, Spearman, and Euclidean
similarity values were used directly for analysis as their ranges ([−1, 1] for correlations
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and [0, 1] for Euclidean similarity) were already suitable for statistical interpretation.
These transformed (or direct) indices were combined into a single, comprehensive dataset,
along with metadata detailing the original Work, normalized ontology, direction of reg-
ulation (up/down), and their specific methodological comparison category. Four dis-
tinct comparison categories were established: Intra-HTM_FC_CBR (different Hypothesis
Testing Methods (HTMs) with consistent fold change-based Criteria for Biological Rele-
vance (CBR)), Intra-HTM_Bayes_CBR (different HTMs with consistent Bayesian posterior
probability-based CBR), Intra-CBR_Fixed_HTM (different CBRs with a fixed HTM), and
Inter-HTM_Inter-CBR (both HTM and CBR differed).

Statistical analysis for the meta-analysis was conducted using the non-parametric
Kruskal–Wallis test to assess overall differences in metric distributions across these com-
parison types. This was followed by Dunn’s post hoc test with Bonferroni correction for
pairwise comparisons when global significance was observed. The robustness and consis-
tency of the overall findings were further evaluated through a sensitivity analysis, where
the Kruskal–Wallis test was re-run by systematically excluding one ‘Work’ at a time from
the meta-analysis dataset.

All analyses and visualizations were performed using R (version 4.5.0), leveraging
the tidyverse suite for data manipulation, ggpubr for statistical tests and visualization,
patchwork for combining plots, readxl for .xls file input, and dunn.test for post hoc analysis.
Scripts are available in https://github.com/AlfonsoOA/HTM-CRB and on Zenodo (DOI:
10.5281/zenodo.16541357), accessed on 28 July 2025.

5. Conclusions
This meta-analysis underscores the pivotal role of methodological choices in shaping

the outcomes of quantitative proteomics studies. By systematically comparing HTMs and
CBRs across five independent datasets, we demonstrate that the definition of biological
relevance exerts a far greater influence on downstream functional enrichment profiles than
the choice of hypothesis testing method.

The Bayesian per-protein approach provides a more rigorous and probabilistic frame-
work than arbitrary fold change cutoffs, offering greater methodological defensibility
and biological accuracy, albeit with more conservative results. Conversely, fold change
cutoffs can yield broader inclusiveness but risk inflating false positives. Together, these
findings emphasize the necessity of transparent reporting and adherence to community
standards (FAIR, MIAPE, HUPO-PSI) to ensure reproducibility and comparability across
proteomics research.

Ultimately, reliable biological interpretation requires both methodological rigor and
independent validation. By integrating robust statistical criteria, standardized workflows,
and orthogonal validation strategies, proteomics can provide more reproducible and bio-
logically meaningful insights into complex systems.
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