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Abstract

Computational metagenomics has revolutionized our understanding of the human micro-
biome, enabling the characterization of microbial diversity, the prediction of functional
capabilities, and the identification of associations with human health outcomes. This re-
view provides a concise yet comprehensive overview of state-of-the-art computational
approaches in metagenomics, alongside widely used methods and tools employed in
amplicon-based metagenomics. It is intended as an introductory resource for new re-
searchers, outlining key methodologies, challenges, and future directions in the field. We
discuss recent advances in bioinformatics pipelines, machine learning (ML) models, and
integrative frameworks that are transforming our understanding of the microbiome’s role
in health and disease. By addressing current limitations and proposing innovative solu-
tions, this review aims to outline a roadmap for future research and clinical translation in
computational metagenomics.

Keywords: computational metagenomics; microbiome; 16S sequencing; bacterial genomics;
computational tools; phylogenetic colocation; machine learning (ML)

1. Introduction
The human microbiome, a complex ecosystem of microorganisms, plays a fundamen-

tal role in host physiology and disease [1]. High-throughput sequencing technologies have
provided unprecedented insights into its composition and function. However, the sheer
volume and complexity of metagenomic data—characterized by high dimensionality, spar-
sity, and compositionality—present formidable analytical challenges that require robust
computational solutions [2,3].

Microbial communities residing in and on the human body have a profound impact
on host physiology, immunity, and metabolic processes [1]. The advent of next-generation
sequencing (NGS) technologies, particularly whole-genome shotgun (WGS) sequencing and
16S rRNA gene sequencing, has revolutionized our ability to profile the microbiome with
high resolution [2]. These techniques have enabled researchers to move beyond traditional
culture-based microbiology and investigate the microbiome in its native environment.
However, the complexity of microbial ecosystems and the vast amounts of sequencing data
generated necessitate sophisticated computational approaches for accurate characterization
and interpretation [3].
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Computational metagenomics involves the application of bioinformatics tools to pro-
cess, analyze, and interpret metagenomic sequencing data. Key methodologies include
reads clustering, genome assembly and binning, taxonomic classification, and functional
annotation and comparative analyses across health and disease states [2]. Recent advances
in machine learning (ML) and artificial intelligence (AI) have further enhanced the ca-
pacity to identify disease-specific microbial signatures, predict functional pathways, and
model host-microbiome interactions [4]. These innovations hold immense potential for
identifying microbial biomarkers, understanding disease etiology, and guiding therapeutic
interventions [5].

Despite these advances, several challenges persist. The reliance on reference databases
introduces biases in taxonomic and functional classification, and the high dimensionality
of metagenomic data complicates statistical modeling and interpretation [3]. Additionally,
integrating metagenomics with other omics data, such as transcriptomics, metabolomics,
and proteomics, remains an open challenge in systems biology [4]. Overcoming these
hurdles will be essential to fully harness the potential of computational metagenomics in
translational research and clinical applications [2].

This article offers a comprehensive overview of state-of-the-art computational ap-
proaches in metagenomics, complemented by widely used methods and tools employed
in amplicon-based metagenomics. Aimed at new researchers entering the field, it high-
lights key methodologies, challenges, and future directions, discussing recent advances in
bioinformatics pipelines, ML models, and integrative frameworks that are reshaping our
understanding of the microbiome’s role in health and disease [3]. By addressing current
limitations and proposing innovative solutions, it outlines a roadmap for future research
and clinical translation in computational metagenomics.

The content of this review is based on a comprehensive literature search conducted on
PubMed, Google Scholar, Scopus, arXiv, and bioRxiv. We used Boolean combinations of
English keywords mapped to the article’s sections to capture section-relevant literature—for
example:

Overview of Metagenomics and Microbiome Analysis: “metagenomic sequencing”,
“microbiome diversity and dynamics”, “microbial ecology and community structure”,
“computational metagenomics”, “high-throughput environmental microbiomes”.

Computational Methods for Metagenomics and Microbiome Analysis: “shotgun
metagenomics assembly & binning”, “16S rRNA sequencing pipelines”, “taxonomic pro-
filing and read classification”, “genome-resolved metagenomics”, “gene prediction and
functional annotation”.

Downstream Analysis: “functional profiling and pathway inference”, “differential
abundance analysis”, “multi-omics integration (metagenome + metatranscriptome/meta-
bolome)”, “compositional data analysis (log-ratio methods)”, “network and
interaction analysis”.

Current use of metagenomics in Human Health: “microbiome and metabolic disease
(obesity, diabetes)”, “microbiome-associated liver disease”, “maternal–fetal microbiome
and pregnancy outcomes”, “gut–brain axis and neurological disorders”, “microbiome
therapeutics (probiotics, prebiotics)”.

AI and ML in Metagenomics: “machine learning for microbiome classification”, “pre-
dictive modeling of treatment response”, “microbial feature selection and representation
learning”, “functional trait prediction from metagenomes”, “explainable AI/interpretability
in microbiome models”.

Data Sharing and Open Science: “FAIR microbiome data & metadata harmo-
nization”, “sequence repositories and database curation”, “benchmarking of reference
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databases and tools”, “privacy, re-identification risk, and controlled access”, “minimal
metadata standards”.

We applied the following inclusion criteria: peer-reviewed primary research and
reviews; computational tools with active development or wide adoption; studies show-
ing notable methodological advances or significant applications; and selective preprints
addressing urgent gaps. Foundational papers were kept for context, but we prioritized
literature from the last five years to provide a state-of-the-art perspective.

1.1. Overview of Metagenomics and Microbiome Analysis

Consider exploring the hidden world of microorganisms that profoundly influence
our health and environment. Metagenomics is the study of the collective genetic material
of microorganisms recovered directly from environmental samples, typically referring
to DNA. However, it is important to note that RNA viruses can also be studied within
metagenomic frameworks by converting their RNA into complementary DNA (cDNA)
prior to sequencing. This approach broadens the scope of metagenomics, enabling the
characterization of both DNA-based and RNA-based microbial communities and providing
a more comprehensive view of their diversity and ecological roles. At its heart lies the
microbiome—a dynamic community of bacteria, archaea, fungi, and viruses that thrive
in specific environments, from the depths of the ocean to the human gut [1,2]. While the
terms “microbiota” and “microbiome” are often used interchangeably, they hold subtle
distinctions: microbiota refers to the living microorganisms themselves, such as those in
our oral or gut ecosystems, whereas the microbiome encompasses their genetic blueprint
and functional potential. In this review, we focus on the analysis of microbiota, particularly
its role in human health and disease, and explore the state-of-the-art computational tools
and methods that are transforming our understanding of these microbial ecosystems.

Unlike traditional culture-dependent methods, metagenomics enables the analysis
of both culturable and unculturable microorganisms, providing a comprehensive view
of microbial diversity and their functional potential [6]. Metagenomics relies on high-
throughput sequencing technologies (e.g., next-generation sequencing) to generate vast
amounts of sequence data from environmental samples.

1.2. Significance of Computational Approaches in Analyzing Microbial Communities

Metagenomic studies generate massive and complex datasets that require sophisti-
cated computational tools for analysis and interpretation [3]. Computational approaches
are thus crucial for tasks such as quality control (QC) of sequencing reads, assembly of
DNA fragments into longer contigs, taxonomic classification of microbial sequences, and
functional annotation of genes. These approaches enable researchers to identify micro-
bial communities, predict their functional capabilities, and uncover their roles in various
ecosystems [4]. Additionally, computational methods facilitate comparative analyses across
different microbiomes, allowing for the identification of microbial signatures associated
with specific environmental conditions or host phenotypes [2].

1.3. Recent Advancements in Computational Tools for Biological Research

The field of computational metagenomics has witnessed significant advancements in
recent years, driven by the development of novel algorithms and bioinformatic tools [3].
There has been a surge in tools leveraging AI, particularly ML and deep learning, to handle
the high dimensionality and complexity of metagenomic data [3,4]. These advanced tools
provide more accurate taxonomic profiling, enhance functional predictions, and enable
the identification of novel microbial biomarkers. Furthermore, the integration of multi-
omics data (e.g., metagenomics, metatranscriptomics, metaproteomics) with computational
models is facilitating a more holistic understanding of microbial communities and their
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interactions within complex ecosystems [7]. These advancements in computational metage-
nomics are playing a crucial role in accelerating biological research and unlocking the full
potential of microbiome studies in areas such as human health, agriculture, food safety,
and environmental science [5]. The field of computational metagenomics has witnessed
significant advancements in recent years, driven by the development of novel algorithms
and bioinformatic tools [3]. There has been a surge in tools leveraging AI, particularly
ML and deep learning, to handle the high dimensionality and complexity of metagenomic
data [3,4]. These advanced tools provide more accurate taxonomic profiling, enhance
functional predictions, and enable the identification of novel microbial biomarkers. Fur-
thermore, the integration of multi-omics data (e.g., metagenomics, metatranscriptomics,
metaproteomics) with computational models is facilitating a more holistic understanding
of microbial communities and their interactions within complex ecosystems [7]. These
advancements in computational metagenomics are playing a crucial role in accelerating
biological research and unlocking the full potential of microbiome studies in areas such as
human health, agriculture, food safety, and environmental science [5].

2. Computational Methods for Metagenomics and Microbiome Analysis
In metagenomic research, as in many other scientific fields, experimental design plays

a pivotal role, as it provides the framework to address specific biological questions or phe-
nomena. The formulation of these questions not only guides the overall study design but also
determines the sequencing methodology to be applied. The choice of sequencing technology,
in turn, shapes critical downstream steps, from sample processing and library preparation
to the selection of bioinformatic tools and computational strategies for data analysis. To
establish a coherent narrative of a traditional metagenomic workflow, the following section
offers a brief introduction to sequencing approaches, setting the stage for the subsequent
discussion on bioinformatic tools. This decision cascade—beginning with research objectives
and extending through sequencing choices—ultimately dictates the achievable taxonomic
resolution, analytical depth, and resource requirements, as outlined in Figure 1.

Figure 1. Schematic representation of the wet lab workflow in metagenomic studies. The biological
question and study design are critical as all subsequent methodologies and approaches depend on
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them. (1) Representative samples are collected from the microbiome of interest. (2) Genetic material
(DNA or RNA) is extracted using an appropriate extraction kit. (3) Marker genes or whole genome
libraries are prepared. (4) The libraries are sequenced, selecting the appropriate sequencing platform
and format. (5) The resulting raw sequencing data is processed following bioinformatic pipelines
workflows (figure made with Biorender.com (Created in BioRender. Hernandez-Lemus, E. (2025)
https://BioRender.com/ozn2z0p).

2.1. Method Approach and Sequencing Technologies
2.1.1. Technology Selection Framework

Short-read sequencing (SRS) using Illumina platforms remains the standard for cost-
effective, high-accuracy sequencing, while long-read sequencing (LRS) technologies from
Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) offer superior
assembly capabilities and structural variant detection [8]. The choice between these plat-
forms creates distinct downstream analytical pathways, with each technology requiring
platform-specific quality control, assembly algorithms, and taxonomic classification tools.

2.1.2. Resolution Capabilities: Species Versus Strain-Level Analysis

The transition from technology selection to analytical capabilities reveals fundamental
differences in taxonomic resolution potential. For species-level identification, shotgun
metagenomics using either short- or long-read platforms generally outperforms 16S rRNA
sequencing, which struggles with species-level discrimination due to sequence conservation
within certain bacterial taxa [8]. Recent benchmarking studies demonstrate that nanopore
sequencing promises improved classification through longer reads [9], with LRS showing
superior performance in detecting low-abundance species with high accuracy compared to
SRS methods.

Strain-level resolution presents more complex challenges and requires careful consider-
ation of both technology limitations and analytical approaches. While 16S rRNA sequencing
typically provides genus to species-level classification, strain-level differentiation demands
either shotgun approaches with sufficient depth or targeted approaches focusing on vari-
able genomic regions. Long read DNA sequencing allowed for the reconstruction of higher
quality and even complete microbial genomes [10], making it particularly valuable for
strain-level analyses that require detailed genomic context. However, strain resolution
depends heavily on community complexity, sequencing depth, and the availability of
high-quality reference genomes.

PacBio’s HiFi technology demonstrates very high accuracy, while ONT platforms
generate ultra-long reads but with moderate base-calling accuracy in homopolymeric
regions, making them suitable for assembly-focused applications where contiguity is
prioritized over single-base precision [8]. The choice between these platforms directly
impacts the sequencing depth requirements and bioinformatics workflows outlined in
subsequent processing steps of Figure 1.

2.1.3. Practical Experimental Design Recommendations

These technological capabilities translate directly into specific experimental design
requirements that bridge the wet-lab and computational phases of metagenomic studies.
Sequencing depth guidelines vary substantially depending on community complexity
and host contamination levels. For shotgun metagenomics, typical ranges of 5–20 million
reads per sample suffice for basic community profiling, while metagenome-assembled
genomes (MAGs) recovery requires 50–200 million reads depending on target genome
completeness and community diversity. Recent comparative studies suggest that hybrid
strategies can provide enhanced resolution while balancing cost considerations [10]. LRS

https://BioRender.com/ozn2z0p
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typically requires lower read counts (0.5–5 million reads) due to increased information
content per read, though detecting rare taxa may require proportionally higher coverage.

DNA extraction considerations become critical when implementing LRS workflows, as
these technologies are more sensitive to input DNA quality than traditional short-read ap-
proaches. High-molecular-weight DNA extraction is essential for optimal LRS performance,
requiring specialized protocols that minimize shearing. Kim et al. [8] recommend avoiding
extraction kits that fragment DNA below 50 kilobases, suggesting specific commercial kits
including Circulomics Nanobind, QIAGEN Genomic-tip, or QIAGEN MagAttract HMW
DNA systems. Sample handling protocols must minimize freeze–thaw cycles and avoid
exposure to extreme pH conditions or intercalating dyes that can compromise long-read
library preparation.

QC measures should include extraction blanks, PCR negatives for amplicon studies,
and standardized mock communities for benchmarking taxonomic classification accuracy.
For LRS applications, DNA integrity assessment using gel electrophoresis or automated
fragment analysis systems ensures fragment sizes exceed 20 kilobases before costly library
preparation steps.

Maximizing taxonomic resolution often benefits from hybrid approaches that combine
the high accuracy of SRS with the assembly capabilities of LRS, leveraging the strengths of
each technology while mitigating individual limitations [10,11]. For targeted strain-level
analysis, supplementing 16S data with alternative markers such as gyrB or 18S rRNA, which
exhibit higher variability than 16S in specific taxonomic groups, can enhance resolution
without the costs associated with shotgun approaches.

2.1.4. Strategic Technology Selection

The optimal sequencing strategy depends on study scale, taxonomic targets, and
analytical goals, with hybrid approaches offering particular promise for comprehensive
microbiome characterization. Large-scale epidemiological studies typically benefit from
cost-effective short-read approaches, while detailed mechanistic studies requiring precise
genome reconstruction should prioritize long-read technologies or hybrid strategies that
combine both approaches strategically. Table 1 provides a comparative framework for
selecting appropriate sequencing technologies based on study-specific requirements and
resource constraints.

Table 1. Sequencing Technology Comparison for Metagenomic Applications. * Species-level
resolution variable depending on taxa and database completeness ** Strain-level resolution requires
high depth and/or assembly-based approaches.

Technology Taxonomic
Resolution

Typical Input
DNA

Typical
Sequencing

Depth

Main
Strengths

Primary
Limitations

16S rRNA
(Illumina) Genus → Species * 5–50 ng 10–100 K

reads/sample

Standardized
workflows,
extensive
databases,

cost-effective

Limited to
prokaryotes,
poor species

resolution, no
functional data

Shotgun SRS
(Illumina) Species → Strain ** 100–500 ng 5–50 M

reads/sample

High accuracy,
established tools,

functional
profiling

Poor repetitive
region assembly,

reference-
dependent
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Table 1. Cont.

Technology Taxonomic
Resolution

Typical Input
DNA

Typical
Sequencing

Depth

Main
Strengths

Primary
Limitations

PacBio HiFi Species → Strain 1–10 µg HMW
DNA

0.5–5 M
reads/sample

Very high
accuracy,

excellent MAG
recovery,
complete
genomes

Higher cost,
shorter reads

than ONT

ONT Min-
ION/GridION Species → Strain 1–10 µg HMW

DNA
0.5–5 M

reads/sample

Ultra-long reads,
real-time

sequencing,
structural
variants

Moderate
accuracy in

homopolymers,
specialized
workflows

2.2. Bioinformatics Pipelines

Different bioinformatics pipelines are tailored for various microbiome sequenc-
ing approaches, including marker gene (16S, 18S, ITS) sequencing and WGS metage-
nomics. These workflows are summarized in Figure 2. This section outlines these com-
putational workflows, starting from raw sequence processing to data-ready outputs for
downstream analysis.

Figure 2. Standard workflow and associated bioinformatic software employed for shotgun and
marker genes metagenomics (Created in BioRender. Hernandez-Lemus, E. (2025) https://BioRender.
com/igjz7bp).

https://BioRender.com/igjz7bp
https://BioRender.com/igjz7bp
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2.2.1. Computational Paths: From Raw Data to FASTQ

The first step in most bioinformatics pipelines is converting raw data into FASTQ
format, where reads are retained with quality information for analysis. Depending on the
sequencing platform, initial processing may include base calling, quality score calibration,
and demultiplexing:

Nanopore: Raw files (FAST5) processed into FASTQ format through EPI2ME, offering
tools for real-time analysis [12].

PacBio: Generates long reads suitable for de novo assembly, with processing per-
formed using the SMRT Portal [13].

Illumina: Converts BCL files to FASTQ using bcl2fastq, typically generating short,
high-quality reads (Illumina) [14].

2.2.2. Preprocessing and Quality Control

QC and preprocessing steps help reduce errors and bias, ensuring reliable downstream
analysis. For each sequencing method, specific tools and workflows are recommended to
filter, trim, and refine the sequence data:

Quality Filtering: FastQC assesses read quality distributions [15], while tools like
Trimmomatic [16] and Fastp [17] filter low-quality bases.

Adapter Trimming: Cutadapt [18] and Porechop [19] identify and trim
adapter sequences.

Comprehensive Platforms: Fastp combines several preprocessing tasks, offering a
high-speed and effective solution for general sequence QC and adapter trimming.

Combining tools often yields the best QC results; for example, FastQC for read quality
assessment, followed by cutadapt for adapter trimming, and then Trimmomatic for low-
quality base filtering.

2.2.3. Contig/Genome Assembly Approaches

Once high-quality reads are obtained, genome assembly is performed to reconstruct
microbial genomes or contigs. Assembly strategies depend on both the type of sequencing
data and the study objectives. Two main approaches are used:

• De novo Assembly:

Assemblers reconstruct genomes without relying on reference sequences. Tools such
as MEGAHIT [20] and metaSPAdes [21]—which use de Bruijn graph algorithms—are
widely employed for short-read metagenomic data. IDBA-UD [22] offers an iterative de
Bruijn graph approach that is particularly effective for handling the uneven sequencing
depths commonly encountered in complex metagenomic communities. For LRS data,
Flye [23] employs an overlap-layout-consensus strategy that can produce highly contiguous
assemblies, though it requires substantial computational resources. De novo methods excel
in exploring diverse and unknown environments but often yield fragmented assemblies
due to uneven coverage and high strain diversity.

• Reference-guided Assembly:

This approach aligns reads to existing reference genomes using tools like BWA [24]
and Bowtie2 [25]. It provides higher resolution for taxa with well-characterized genomes;
however, it is limited when novel organisms are present.

In many cases, hybrid strategies that combine de novo and reference-guided tech-
niques are adopted to maximize assembly quality. To facilitate comparisons among assem-
bly methods, Table 2 outlines the five most important tools, selected based on their citation
frequency in the recent literature, algorithmic novelty, and demonstrated performance
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improvements over existing methods. While other innovative tools may exist, they have
not yet been sufficiently benchmarked to be considered.

Table 2. Comparison of contig/genome assembly tools.

Tool Approach Advantages Limitations

MEGAHIT De Bruijn Graph
Ultra-fast assembly

Extremely low
memory

consumption;
suitable for large

complex
metagenomes

May yield lower
completeness in

complex
communities; shorter
contigs compared to

metaSPAdes

metaSPAdes
De Bruijn Graph
Produces longer

contigs

High fraction of
reads assembled;

optimized for
metagenomic data

Higher mis-assembly
rate; more resource

intensive;
longer runtime

BWA/Bowtie2 Reference-guided
alignment

High accuracy for
known taxa;
improved

resolution for
well-characterized

genomes

Not suitable for
novel or poorly

represented
organisms; requires

high-quality
reference databases

IDBA-UD Iterative De Bruijn
Graph

Handles uneven
sequencing depths

well; good for
complex

communities

Slower than
MEGAHIT; higher

memory
requirements than

succinct graph
approaches

Flye
Overlap-layout-

consensus
(long-read)

Excellent for
long-read data;

produces highly
contiguous

assemblies; good
error correction

Primarily designed
for long reads;

computationally
intensive for

large datasets

2.2.4. Binning of Metagenomic Contigs and Genome Recovery

Because de novo assemblies are often fragmented, binning methods group contigs
originating from the same or closely related organisms. These methods fall into three
categories [26]:

• Composition-based Methods:

Rely on nucleotide features such as k-mer frequencies and GC content. Early tools
(e.g., TETRA, CompostBin) assume that sequences from the same taxonomic group have
similar oligonucleotide signatures.

• Abundance-based Methods:

Use read coverage information, since contigs from the same genome should exhibit
similar abundance across samples. Tools like MetaBAT 2 [27] and MaxBin 2 [28] are
prime examples.

• Hybrid Methods:

Combine both composition and abundance features for more robust binning. Re-
cent approaches leverage advanced ML techniques, such as variational autoencoders in
VAMB [29] and contrastive multi-view representation learning in emerging tools like
COMEBin [30]. Additionally, semi-supervised deep learning approaches like SemiBin2 [31]
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demonstrate how leveraging both labeled reference genomes and unlabeled metagenomic
data can significantly improve binning performance across diverse environmental samples.

For a clearer comparison of binning methods, Table 3 outlines the five most important
tools using the same criteria as for Table 2. This selection highlights emerging methods that
underscore the dynamic nature of the field, while acknowledging that other innovative
tools may exist but have not yet been sufficiently benchmarked to be considered.

Table 3. Comparison of metagenomic binning tools.

Tool Approach Advantages Limitations

MetaBAT2
Hybrid clustering

using coverage and
k-mer profiles

Widely used and
well-validated; effective

use of abundance
patterns; good

performance on
diverse datasets

Requires contigs ≥ 1500 bp
for optimal performance;

struggles with low-
abundance species

MaxBin2

Expectation-
maximization with

abundance and
composition

Effective for
low-abundance species;

robust statistical
framework; handles

uneven coverage well

Less effective on very
complex communities;

sensitive to
parameter settings

VAMB
Deep learning with

variational
autoencoder

Robust across different
contig length

thresholds; learns
complex feature
representations;
good scalability

Requires substantial
training data; black-box

approach limits
interpretability

COMEBin

Contrastive
multi-view

representation
learning with Leiden

clustering

Demonstrates higher
recovery of

near-complete bins;
uses advanced

community detection;
data augmentation

improves robustness

Emerging method with
limited field validation;

computationally intensive;
requires expertise to

optimize

SemiBin2
Semi-supervised deep
learning with Siamese

networks

Leverages both labeled
and unlabeled data;
good performance

across diverse
environments;
user-friendly

Requires some reference
genomes for training;

newer tool with growing
but limited validation

2.2.5. Evaluation of MAG Quality

The final step in the reconstruction pipeline is to evaluate the quality of the MAGs.
Quality assessment is critical because it determines the reliability of downstream analy-
ses [32]. The main metrics include:

• Completeness and Contamination:

Tools such as CheckM [33] use lineage-specific marker genes to estimate the proportion
of a genome that is recovered (completeness) and the presence of contaminant sequences
(contamination). BUSCO [34] extends this evaluation by assessing the presence of con-
served single-copy orthologs across various taxonomic groups. The Minimum Information
about a Metagenome-Assembled Genome (MIMAG) standards are the community-accepted
benchmark, classifying MAGs as either medium-quality (≥50% completeness, <10% con-
tamination) or high-quality (≥90% completeness, <5% contamination, and presence of
essential rRNA and tRNA genes) [35].

• De-replication and Cataloging:
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Tools like dRep and Mash facilitate the de-replication of MAGs by comparing genomes
based on average nucleotide identity (ANI) to ensure a non-redundant, high-quality catalog.
Such steps are essential when pooling results from multiple samples or assemblies.

• Additional Metrics:

Other important indicators include the number of contigs per MAG, strain heterogene-
ity, and the presence of essential genes such as 16S, 23S, and 5S rRNA as well as a sufficient
number of tRNAs. These metrics are part of the MIMAG standards mentioned above [27].

It is crucial for researchers to recognize that a significant fraction of bins generated
from complex samples, such as the gut or soil microbiomes, may fail to meet these strin-
gent quality thresholds. Factors like high strain-level diversity, the presence of repet-
itive genomic regions, and low sequencing coverage for many community members
can result in fragmented assemblies, which in turn leads to the generation of MAGs
with low completeness [32]. This reality presents a major challenge for downstream
biological interpretation.

Using low-completeness MAGs for downstream inference carries significant risks. A
MAG that is only 50–70% complete is missing a substantial portion of its gene content,
which makes any functional annotation speculative and potentially misleading. For exam-
ple, crucial metabolic pathways may appear absent simply because the genes encoding
them were not recovered in the assembly. Furthermore, the absence of key phylogenetic
marker genes can lead to inaccurate taxonomic placement [36]. Therefore, for reliable func-
tional profiling and comparative genomics, it is strongly recommended that researchers
filter their MAG collection based on established quality standards (e.g., MIMAG medium-
or high-quality) to ensure that biological conclusions are drawn from robust and reasonably
complete genomic data.

Together, these evaluation steps help researchers select the most reliable MAGs for
downstream analyses such as functional annotation, phylogenetic reconstruction, and
biomarker discovery.

2.2.6. Reads Clustering for Taxonomic Classification

Accurate taxonomic classification of metagenomic sequences is fundamental for un-
derstanding microbial community structure. Two main approaches are used:

Marker Gene-Based Clustering:
For targeted taxonomic profiling, marker genes like 16S rRNA are amplified and

sequenced. Tools such as QIIME2 [37] and DADA2 [38] process these sequences into
operational taxonomic units (OTUs) or amplicon sequence variants (ASVs), providing
high-resolution taxonomic assignments for known groups.

WGS Classification:
In shotgun metagenomics, taxonomic labels are assigned directly to raw reads using

k-mer–based classifiers. Tools such as Kraken 2 [39] and Centrifuge [40] rapidly compare
read k-mer signatures against extensive reference databases, offering broad coverage of the
microbial diversity—including rare and novel taxa.

Integration with Binning and Downstream Analysis:
Taxonomic classification is further refined by integrating binning results. Once contigs

are binned and MAGs are reconstructed, tools like GTDB-Tk assign taxonomic labels to
the bins by placing them within a standardized taxonomic framework. This integrative
approach not only validates the binning outcomes but also enhances the resolution of
microbial community analyses.

High-resolution DNA fragments clustered into MAGs or ASVs representing marker
genes form the essential foundation for converting molecular fragments into a close approx-
imation of biological reality, such as taxonomic and functional profiles. The main purpose
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of these profiles is to explore ecological and biological hypotheses through the integration
of microbial identity and function. In the following section, we provide an approximation
to the most widely used tools for analyzing this aspects of a microbiome.

2.2.7. Taxonomic Profiles

An initial step in interpreting the composition of a microbiome is to determine which
organisms it contains. The primary concept behind a taxonomic profile is to group the
most similar sequences from a sample to a particular taxon, most often by matching them
against reference databases. The choice of profiling strategy or tool is generally dictated by
the sequencing methodology employed.

Amplicon Metagenomics

Amplicon based metagenomics offer a rapid and cost-effective strategy for human mi-
crobiome analysis, with low sequencing costs (usually around USD 20–50 per sample) and
small file sizes. Because only a small portion of the genome is being sequenced, taxonomic
profiling can be performed with relatively low computational demands using local align-
ment algorithms such as UPARSE [41] and BLAST [42], or k-mer based approaches such
as DADA2 [37], commonly implemented in pipelines like QIIME 2 [37]. However, these
methods generally achieve resolution only to the genus level because marker genes—such
as the 16S rRNA gene—cannot fully capture evolutionary differences among all bacte-
ria. Additionally, copy number variation in marker genes, and sequence heterogeneity
between operons within the same species, can introduce false positives during taxonomic
assignment [43,44].

Whole Genome Metagenomics

In recent years, whole genome metagenomics has gained prominence due to im-
provements in accuracy of both short and long sequencing technologies as well as the
rapid expansion and enrichment of reference databases. This has promoted the produc-
tion and enhancement of numerous tools that allow taxonomic classification and profil-
ing. Short reads oriented tools such as Bracken [45], Kraken 2 [39], Centrifuge [40] and
CLARK/CLARK-S [46,47] perform k-mer based matching against reference databases.
This strategy enables high-throughput processing of large datasets (<1 h) if high memory
computational resources are provided (>100 GB of memory).

Across tools, Kraken 2 has proven to offer an effective balance between speed and
accuracy. On the CAMI2 gastrointestinal dataset [48] it achieved a precision of 0.94 coupled
with fewer than 1% false positive and an impressive F1-score of 0.97, highlighting its
robustness for species level assignments. In parallel, Centrifuge reached a very similar
precision of 0.93, however it exhibited a rate of false positives around the 3% rate, while
still obtaining a 0.97 F1-score [49]. From a practical standpoint, Kraken 2 may be favored
in scenarios where minimizing false positives is critical, such as clinical diagnostics or
studies requiring stringent taxonomic confidence. In contrast, Centrifuge offers advantages
in settings where maximizing recall and broad detection are priorities, for instance in
exploratory surveys of highly diverse or poorly characterized communities, even at the
cost of a modest increase in false positives.

Although these tools can achieve species level resolution, their k-mer based approach
often leads to substantial generation of false positives when the sample contains closely
related taxa or organisms present at very low abundance (~0.05–1%). To mitigate this,
researchers often apply abundance thresholds, focusing on retaining only taxa with relative
abundances >1% depending on study objectives.

When computational resources are limited, marker-based approaches such as
MetaPhlAn [50] mOTUs [51], are recommended. These tools rely on databases comprising



Int. J. Mol. Sci. 2025, 26, 9206 13 of 48

a large number of gene families rather than complete reference genomes; however, the
absence of full genome context can result in a high proportion of false positives. For this
reason, the use of the most recent versions of these tools is advised. mOTUs 3 [52] incor-
porates 5165 metagenomes from human associated microenvironments and substantially
improves species level precision and recall, obtaining a F1-score ranging from 0.78 to 0.85
across several CAMI2 human microbiome datasets [48]. MetaPhlAn 4 [53] expands its
database to 19.5 metagenomes from diverse body sites, which has allowed it to obtain F1-
scores of 0.80 to 0.85 when using the OPAL framework [54] and a nearly perfect 0.95 score
when employing genomes from the SGB organization as reference when this method is
applied in several CAMI2 human microbiome datasets [48]. Furthermore, the latest release
(v4.2.2) of MetaPhlAn 4 adds support for long-read sequence profiling through Minimap2-
based alignment.

2.2.8. Gene Prediction and Annotation

Following taxonomic classification, genes are predicted and functionally annotated to
understand microbial activity within communities. Annotation involves assigning function
to gene sequences based on reference databases:

Gene Prediction

Tools like Prodigal [55] are widely used to identify genes in assembled contigs, being
highly optimized for bacterial and viral genomes, and thus remain the preferred choice
in prokaryote-dominated microbiomes. Prodigal has consistently shown high accuracy
in benchmark datasets, achieving >90% sensitivity and specificity in bacterial genomes
and CAMI community challenges [48]. However, when eukaryotic microorganisms such
as fungi constitute a significant component of the community, specialized tools are more
suitable. For example, MetaEuk [56], benchmarked on large-scale marine microbiomes,
demonstrated high sensitivity (~92%) and precision (>85%) for gene recovery from frag-
mented assemblies by leveraging homology-based searches. Similarly, EukMetaSanity [57],
tested on simulated fungal metagenomes and environmental datasets, integrates multiple
predictors and achieved robust gene annotation with F1-scores of ~0.85–0.90. Therefore,
the choice of software should be guided by both the taxonomic composition of the dataset
and its complexity: Prodigal for prokaryotes and viruses, and MetaEuk/EukMetaSanity
when eukaryotic members such as fungi or protists are of interest.

Functional Annotation

Functional annotation, as described by Wang [58], is a computational process that
assigns putative functions to predicted genes discovered during gene discovery. Shotgun
metagenomics enables the reconstruction of contigs and bins, facilitating detailed functional
analysis of microbial communities. In contrast, marker gene approaches primarily provide
taxonomic information and can only infer potential functions due to limited genomic data.
Therefore, while marker gene methods offer insights into community composition, shot-
gun metagenomics is more effective for accurately characterizing the functional potential
of microbiomes.

Marker gene approaches primarily offer taxonomic insights but are limited in their
ability to determine functional capabilities due to the scarcity of genomic data. To address
this limitation, various computational tools have been developed to leverage marker gene
information aiming to bridge the gap between taxonomic profiling and functional char-
acterization by predicting metabolic pathways and biological processes based on marker
gene distributions. In this regard, tools like PICRUSt2 [59], Tax4Fun2 [60], BugBase [61]
and PanFP [62] have been developed. When evaluating their accuracy, however, clear
differences emerge. In simulated datasets, PICRUSt2 demonstrated one of the lowest false
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positive rates (FPR), averaging 2.94%, while MicFunPred also performed conservatively
with an average FPR of 6.86%. In contrast, Tax4Fun2 exhibited the highest level of false
predictions, with an average FPR of 35.14%, highlighting its tendency to overestimate
functional content [63]. These results emphasize that while marker gene-based approaches
can provide functional predictions, their reliability varies considerably across tools and
should be interpreted with caution.

It is important to remark that these tools are inherently limited by their reliance
on 16S gene profiles and reference genomes. These methods extrapolate potential gene
content based on phylogenetic similarity, as is the case of PICRUSt2 and Tax4Fun2 or
pangenome reconstructions as PanFP, assuming that closely related taxa necessarily share
similar functional capabilities. However, this approach overlooks intra-species variability,
horizontal gene transfer events and strain specific adaptations. As a result, the inferred
profiles represent approximations rather than measures of genetic content.

In contrast, whole genome sequences are assembled, to be further functionally anno-
tated by comparing coding sequences with databases containing information on genes,
proteins, and metabolic pathways [64]. This approach thus enables a comprehensive evalu-
ation of the functional characteristics of microbial communities as they analyze the actual
content of genes, and pathways present in a sample [65–67].

In this regard, tools like Prokka [68] and InterProScan [69] have been tested to annotate
test genomes, which are capable of annotating between 75 and 90% of the individual
genomes in less than 3 min. However, the reason for this performance is due to the limited
database they use as reference, which can be an inconvenience when the samples analyzed
contain multiple metagenomes. In contrast, tools like MicrobeAnnotator [70], which has
higher computational demands, is able to annotate ~92% of individual genomes and can be
used in complex samples as it combines multiple databases, offering an integral functional
annotation of metagenomes.

Some tools like BlastKOALA and GhostKoala [71] are built as web services which
offer different insights into genomic and metagenomic data. BlastKOALA delivers accurate
annotations at the genome level, but its computational cost is substantial, requiring up to
80 min per genome. In contrast, GhostKOALA offers a much faster alternative, completing
the annotation of full genome in less than 7 min. This gain in speed, however, comes
at the expense of sensitivity, as GhostKOALA may miss novel functions or provide less
comprehensive coverage compared to its counterpart.

Finally, alignment-based engines such as DIAMOND [72] and MMseqs2 [73] serve
as the backbone for many pipelines. While DIAMOND delivers BLAST-like sensitivity at
higher speeds, it loses sensitivity when dealing with highly divergent sequences or poorly
conserved genes. MMseqs2 is even faster in large-scale comparisons, offering scalable
annotation of millions of sequences with reduced memory footprints, yet this gain in
efficiency can come at the cost of sensitivity, requiring careful parameter tuning and greater
technical expertise to achieve optimal results.

Looking ahead, future work should prioritize systematic benchmarking of functional
annotation tools such as InterProScan, Prokka, and Diamond. While taxonomic profiling
has benefited from community-driven efforts like CAMI, functional annotation still lacks
standardized large-scale evaluations with well-defined gold standards. Establishing such
benchmarks would not only clarify the trade-offs in precision, recall, and F1-score across
different approaches, but also provide researchers with evidence-based guidelines for tool
selection depending on study goals. Ultimately, community-wide performance assessments
could drive methodological improvements, foster the development of integrative pipelines,
and enhance the reliability of functional insights derived from metagenomic data.
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Newly developed but not yet widely adopted tools may offer innovative approaches,
improved accuracy, or enhanced computational efficiency, addressing limitations of current
methods and opening opportunities for more comprehensive functional and taxonomic
analyses. For instance, DeepFRI [74] leverages deep learning strategies to perform func-
tional annotations, achieving ~70% concordance with eggNOG, a widely recognized an-
notation framework. Alternatively, tools such as FlaGs [75] and FunGeCo [76] explore
complementary strategies, including gene neighborhood conservation and functional ge-
nomic context, which may provide additional layers of biological insight beyond traditional
annotation pipelines.

Although functional analysis serves as an inference of the possible metabolic capa-
bilities of the studied microbiome, they can help in the hypothesis generation in newly
studied populations. However, when describing/generating this hypothesis a few pointed
assumptions and limitations must be considered.

Firstly, short read metagenomic approaches assume that these short sequences contain
sufficient information to be mapped to its origin gene or an equivalent ortholog and,
therefore, a correctly associated function. Secondly, these approaches assume that sequences
obtained from intergenic regions or from orthology groups with unknown function will not
be erroneously mapped [77]. Given that up to date most metagenomic studies approaches
still rely on these approaches for large scale studies due to their cost-effectiveness and high
accuracy [78,79], these assumptions must be carefully considered, as they propagate to
downstream analysis [77].

That said, modern metagenomic workflows such as DRAM and HUMAnN3 as part
of bioBakery 3 used to process short read sequences, prioritize assembly and the recon-
struction of MAGs before carrying out functional annotation and profiling. This strategy
markedly reduces annotation ambiguity, since contigs and MAGs provide a broader ge-
nomic context than individual reads, thereby improving functional assignment [36]. In
addition, the use of long reads has enabled the capture of full length gene sequences and
even entire operons owing to the generation of longer contigs during assembly. This has sig-
nificantly enhanced the recovery of near complete and high quality MAGs, which are more
informative for downstream functional analysis. Nevertheless, the elevated cost and infras-
tructure demands of LRS can limit its widespread adoption, particularly in large scale or
clinical studies. To address this limitation, hybrid approaches such as hybridSPADES [80],
OPERA-MS [81] and MetaPlatanus [82] have been increasingly recommended, as they
combine the cost effectiveness and depth of short reads with the assembly advantages
of long reads, facilitating the recovery of longer contigs and more complete MAGs but
also improve the overall mapping rates to bacterial genomes, providing a more reliable
foundation for functional characterization [10,79].

It is important to highlight that, even high quality MAGs are subject to errors that can
arise from DNA extraction all the way to the assembly processes, leading to the loss of sets of
genes and the overall representation of them in a particular microbiome [78]. Furthermore,
although functional databases have significantly expanded in recent years, a substantial
proportion of genes in microbiomes remain annotated as “hypothetical” [83]. This implies
that functional inference is still largely dependent on homology to orthologous genes
from reference organisms, many of which are biased towards well-studied eukaryotes or a
limited set of prokaryotic models. Consequently, while functional profiling is a powerful
tool for exploring metabolic potential, it is essential to acknowledge its inferential nature,
the risks of over-interpretation, and the propagation of annotation errors in complex or
under-characterized microbiomes.

Moving forward, the most important direction for refining functional annotation lies in
the integration of high quality MAGs with long read and hybrid assemblies, coupled with
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the continuous expansion and curation of functional databases to reduce the proportion
of genes classified as hypothetical. In parallel, the incorporation of complementary omics
approaches such as metatranscriptomics, metaproteomics, and metabolomics will be critical
to validate gene functions beyond sequence homology, thus bridging the gap between
inferred metabolic potential and experimentally supported functional activity.

Given the diversity of strategies available for microbial community analysis, both
taxonomic profiling and functional annotation tools have been extensively benchmarked to
evaluate their accuracy, scalability, and robustness. To facilitate comparisons among such
methods, Table 4 summarizes representative tools that have been widely tested in previous
studies. While additional promising tools are continuously being developed, only those
with sufficient benchmarking evidence have been included here.

Table 4. Taxonomic profiling and functional annotation tools that have been benchmarked previously.

Process Tool Dataset Memory Use Running Time Source

Taxonomic
profiling

UPARSE

4.7 Million sequences Not specified

1 h
Marizzoni et al.,

2020 [84]
Bioconductor ~8 h

QIIME2 3 h
Mothur 9 h

mOTUs 3
50 randomly selected

human gut
metagenomes

~15 GB ~4 min Shaw & Yu,
2025 [85]

MetaPhIAn 4 ~18 GB ~6 min

Centrifuge

5.7 million sequences

20 Gb 7 min

Ye et al., 2019a [86]
Kraken2 36 GB 1 min
Bracken <1 GB <1 min
CLARK 80 GB 2 min

Functional
Profiles

PICRUSt2 Human HMP dataset
(Not specified)

~15 GB ~45 min
Mongad et al., 2021

[63]
MicFunPred ~6 GB ~30 min

Tax4Fun2 ~4 GB ~15 min

eggNOG-mapper
v2

4296 coding sequences
for Escherichia coli K-12 6 GB ~26 min

Alonso-Reyes &
Albarracin,
2024 [87]

GhostKOALA 3.8 Million sequences Web service ~6 min Kanehisa et al.,
2016 [71]BlastKOALA 2.6 Million sequences Web service ~41 min

DIAMOND
~1.7 million sequences

~14 GB 8 min
Buchfink et al.,

2021 [72]
MMSeqs2 11 GB 53 min
BLASTP Web service 46 days

MicrobeAnnotator
100 E. coli genomes

~19.4 GB/genome 3.7 h/genome
Ruiz-Perez et al.,

2021 [70]
InterProScan ~4 GB/genome ~2.7 min/genome

Prokka 204 MB/genome ~2.5 min/genome

2.2.9. Metagenomic Pipelines

The standardization of bioinformatic workflows constitutes a fundamental strategy
to maximize the use of existing tools, minimize human error, and ensure reproducible
and scalable analyses. Initiatives such as MetaWRAP [88], MOCAT2 [89] or IMP [90]
have integrated modules for read processing, bin generation and refinement, and data
visualization, thereby expanding the scope of functional and multimodal analyses, although
their adoption may be limited by complex configurations or technical constraints.

In response, the incorporation of workflow management systems such as Snake-
make [91] and Nextflow [92]) has enabled the chaining of taxonomic profiling and func-
tional annotation tools, thereby enhancing reproducibility, portability, and scalability, as
well as increasing the overall data processing capacity.
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A recent example is MaLiAmPi [93], a pipeline developed in Nextflow that harmonizes
heterogeneous 16S amplicon sequences from different studies through the generation of
phylotypes, offering species and even subspecies level resolution. This approach has
demonstrated superior predictive power compared to traditional methods such as QIIME2,
albeit at a higher computational cost in both time and memory.

For whole-genome metagenomics, pipelines such as ATLAS [94] provide an accessible
workflow managed through Snakemake, capable of generating MAGs with consistent
levels of completeness (>60%) and low contamination (<10%). Its standardized design
offers clear outputs that integrate species-level resolution together with abundance tables
and functional profiles in a user-friendly format. However, this simplicity and robustness
may limit its flexibility when addressing more exhaustive or customized analytical needs.

In contrast, SnakeMAGs [95] also implemented in Snakemake, produces MAGs of com-
parable quality but differs by prioritizing the quantity of MAGs recovered over workflow
standardization. In a dataset of 10 metagenomes, SnakeMAGs recovered approximately
76% more MAGs than ATLAS, underscoring its capacity to maximize genomic diversity;
nevertheless, this increase comes at the cost of longer execution times, highlighting a
trade-off between comprehensiveness and computational efficiency.

On the other hand, tools such as SnakeWRAP [96], likewise implemented in Snake-
make, focus on scalability and the management of large volumes of data, adopting rigorous
quality practices that ensure reproducibility and portability. Although it does not integrate
functional annotation within its workflow, its strength lies in the ability to reliably auto-
mate the processing of multiple datasets in parallel, positioning it as a preferred option
in high-throughput scenarios, albeit with the limitation of providing less comprehensive
results compared to more integrative pipelines.

The complexity inherent to the wide variety of taxonomic and functional profiling
tools inevitably adds an additional layer of consideration during the design of an investiga-
tion, since the selection of one approach over another directly impacts the computational
infrastructure needed and inevitably influences the resolution and accuracy of the resulting
data. Equally important, however, is the choice of the reference database, which represents
a critical determinant of the quality, scope, and interpretability of the taxonomic and func-
tional information extracted from sequencing data. In the following section, we examine the
main databases commonly employed for this purpose, highlighting their specific features
and advantages.

2.3. Choosing an Adequate Database

Databases represent the cornerstone upon which profiling tools operate, as they
provide the curated taxonomic and functional references required for reliable analy-
ses. Their selection is therefore decisive, since well-suited databases minimize false
positives and enhance the accuracy of both taxonomic classification and functional
annotation [86,97–102].

As Martins [103] has stated, metagenomic databases can be organized and classified
following different criteria, to this end, and only contemplating the human biomedicine
field, we present a group of common databases used to answer biological questions of
interest as follows:

2.3.1. Sequence Repositories

Public repositories play a crucial role in metagenomic research by providing access
to extensive datasets including raw reads, complete genomes, and metagenomes. These
repositories are enriched with associated metadata from diverse case studies and cohorts,
representing specific health conditions. By offering standardized and openly accessible data,
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public repositories enhance the reproducibility of analysis and facilitate the integration of
additional datasets, ultimately enabling more robust and comprehensive investigations
in metagenomics.

In addition to their significance in metagenomic studies, publicly accessible nucleotide
sequence repositories are essential for data preservation and global information sharing.
Among the most widely used repositories are the European Nucleotide Archive (ENA) [104],
the repositories of the National Center for Biotechnology Information (NCBI), namely Gen-
bank [105] and the Sequence Read Archive (SRA) [106] as well as the DNA Data Bank of
Japan (DDBJ) [107] as part of the Institute of Genetics in Mishima, Japan. These repos-
itories collectively form the International Nucleotide Sequence Database Collaboration
(INSDC) [108] which ensures that all participating databases remain synchronized contain-
ing identical and up to date set of sequence records while adhering to shared standards for
data format and annotation.

The ENA, maintained by the European Molecular Biology Laboratory’s European
Bioinformatics Institute (EMBL-EBI) provides an open platform for managing and dis-
seminating nucleotide sequencing data, offering a globally comprehensive collection of
sequences with robust tools for data submission and retrieval. At NCBI, Genbank serves as
the central repository of annotated DNA sequences while the SRA is the world’s largest
archive of raw high-throughput sequencing data. Similarly, the DDBJ acts as a primary
sequence repository while also managing specialized services within the INSDC including
the Bioproject platform which provides sequencing project metadata and Biosample, which
ensures comprehensive sample information [109].

2.3.2. General Databases for Taxonomic Analysis

General databases for taxonomic analysis utilize genetic information to classify or-
ganisms based on their taxonomic identity. They provide genomic data across various
domains to address a wide range of questions related to the abundance and diversity of
microorganisms. Databases such as SILVA, GreenGenes, NCBI Taxonomy, and UNITE
contain sequence data from marker genes like 16S, 18S and ITS.

SILVA [110] is a comprehensive online resource that provides the user high-quality
and updated datasets of aligned small (16S/18S) and large subunit (23S/28S) ribosomal
RNA sequences integrated from several external resources and it includes sequences from
the domains Bacteria, Archaea and Eukarya. On the other hand, Greengenes [111] is a
comprehensive, high-quality database which contains 16S rRNA reference sequences with
taxonomy based on a de novo phylogeny.

UNITE [112] is a specialized database focused on the internal transcribed spacer (ITS)
region of rRNA sequences, primarily targeting fungi. It provides reference sequences for
the identification and classification of fungi and is an essential tool for studies on fungal
diversity and ecology.

2.3.3. General Databases for Functional Analysis

Functional analysis involves assigning putative functions to previously predicted
genes using various strategies to elucidate metabolic capabilities of microbial communities.
This process relies on various databases that group gene orthologs and provide detailed
representations of metabolic pathways. The most prominent databases utilized in this
process are mainly composed by eggNOG [113], which offers hierarchical, non-supervised
orthologous groups constructed from numerous genomes across different domains of life.
The Cluster of Orthologous Genes databases (COG) [114] classifies proteins from complete
genomes into orthologous groups to reflect evolutionary relationships. Each COG includes
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proteins that are thought to be derived from a common ancestor, allowing for the prediction
of gene functions based on orthology.

KEGG [115] is a comprehensive resource that integrates genomic, chemical and sys-
temic functional information, providing detailed representation of metabolic pathways,
molecular interactions and cellular processes, enabling the mapping of genes and proteins
to specific pathways. UniProt [116] serves as a central hub for protein data, supporting
functional annotation and the study of protein roles in various biological processes. Meta-
Cyc [117] is a curated database of experimentally elucidated metabolic pathways from all
domains of life, useful for metabolic reconstruction and analysis. Gene Ontology provides
a framework for the representation of gene function, detailing biological processes, cellular
components, and molecular functions.

2.3.4. Particular Human Microbiome

The environment significantly influences the composition and function of microbial
communities, a principle evident in various human microhabitats. Utilizing ecosystem-
specific datasets as references has advanced our understanding of the unique microbiome
structures within these niches. The mainly used databases used to this end are the gut-
MEGA [118] database is a comprehensive resource that compiles metagenomic data specific
to the human gastrointestinal tract. It provides a collection of assembled genomes and gene
catalogs derived from gut microbiome samples, facilitating studies on microbial diversity,
function, and their associations with human health. The Unified Human Gastrointestinal
Genome (UHGG) collection [119] is an extensive collection of reference genomes from the
human gut microbiome. The initial release comprised 204,938 non-redundant genomes
representing 4644 gut prokaryotic species. These genomes encode over 170 million protein
sequences, organized into the Unified Human Gastrointestinal Protein (UHGP) catalog.

The Human Oral Microbiome Database [120] provides comprehensive information
on the bacterial species present in the human oral cavity. It includes genomic sequences,
taxonomic classifications, and metadata related to oral bacteria. This database supports
research into oral microbiome composition, its role in oral health and disease, and its
interactions with other human microbiomes. The skin microbiome database (SKIOME) [121]
focuses on the diverse microbial communities inhabiting human skin. It offers genomic
data, taxonomic information, and functional annotations of skin-associated microorganisms.
SKIOME aids in understanding the skin microbiome’s role in health, disease, and its
response to various environmental factors. The Vaginal Microbiome Consortium [122]
is an initiative that compiles data on the microbial communities of the human vaginal
environment. It provides genomic sequences, taxonomic classifications, and functional
annotations pertinent to vaginal microbiota.

2.3.5. Specialized Questions

When researchers address specialized questions in metagenomics, the utilization of
meticulously curated and specific databases becomes essential. These specialized resources
enable precise identification and functional characterization of genes related to particu-
lar biochemical processes or resistance mechanisms, some of the most commonly used
databases employed for such specialized analyses are the Novel Metagenome Protein
Families Database (NMPFamsDB) [123] which focuses on the discovery of novel protein
families identified from de novo assembled microbial genomes with no similarity to known
protein motifs or domains which are later clustered in families that have environmental
and taxonomic metadata. The Carbohydrate-Active enZYmes (CAZy) database [124] is
a specialized resource which classifies enzymes involved in the synthesis, metabolism
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and recognition of complex carbohydrates, classifying them into families and provides
information about their function and associated biological processes.

Some researchers focus on the identification and understanding of antibiotic resistance
genes to address the worldwide antimicrobial resistance problem. To address these ques-
tions, several specialized databases have been developed like the Comprehensive Antibiotic
Resistance Database (CARD) [125] which provides highly and continuously updated hand
curated reference DNA and protein sequences related to resistance variants. The MEGARes
database [126] is a compendium of several reference sequences for genetic determinants
of resistance to drugs, metals and biocides which contains approximately 8000 manually
curated resistance genes that are adapted to high-throughput classification due to its acyclic
hierarchical annotation structure. Resfams [127] is a curated database of protein families
with confirmed antimicrobial resistance functions that, due to their organization based on
ontology, aids in the accurate annotation of antimicrobial resistance genes.

3. Downstream Analyses in Metagenomics
As a final output, metagenomic tools and pipelines generate count tables contain-

ing taxonomic and functional information, which serve as the essential input for down-
stream analyses aimed at interpreting their biological and ecological significance (Figure 3),
particularly in highlighting subtle differences between health and disease states [128].
This section outlines the key approaches to downstream analysis, encompassing descrip-
tive and inferential statistical analysis, multi-omics data integration, and network-based
interaction analyses.

Figure 3. Visualization methods for downstream analysis output representing (A) relative abundance
graphics, (B) alpha diversity boxplots, (C) Ordination plots for beta diversity, (D) heatmap for
differential abundance, (E) network analysis and (F) receiver operating characteristic (ROC) curve
(Created in BioRender. Hernandez-Lemus, E. (2025) https://BioRender.com/ltrclbu).

https://BioRender.com/ltrclbu
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3.1. Descriptive Analysis

The exploratory phase involves analyzing diversity metrics and visualizing them using
ordination plots—a term in ecology that encompasses various multivariate techniques for
representing species abundance in a low-dimensional space.

Diversity is described in terms of within-sample diversity (alpha diversity) and
between-sample diversity (beta diversity); The alpha diversity is mainly explained us-
ing estimators like the Shannon index [129] which explains diversity in terms of the number
of species and their proportion in a sample, the Chao1 index [130] which describes the
number of unobserved/low abundance species in the samples or the Faith’s phylogenetic
diversity index [131]. Unlike alpha diversity, beta diversity measures the compositional
differences between samples. The most commonly used metrics for this purpose are based
on distance matrices, such as the Bray–Curtis dissimilarity index [132] and the UniFrac
distances [133].

Effective visualization of alpha and beta diversity is essential for interpreting microbial
community structure and composition. Bar plots provide an intuitive representation of
relative taxa abundances (Figure 3A) and the distribution of diversity indexes (Figure 3B),
while heatmaps reveal complex patterns of co-occurrence across samples [134–136]. A
common approach for the visualization of beta diversity is the use of ordination methods,
multivariate techniques that allow species abundance to be visualized in a low-dimensional
space, such as principal component analysis (PCA) and multidimensional scaling (MDS)
(Figure 3C) [137] are available through R packages such as vegan [138], ade4 [139] and
phyloseq [140].

3.2. Statistical Analysis

Metagenomic data exhibits several particularities that complicate statistical modeling.
First, these datasets are inherently high dimensional, as they encompass a large set of mi-
crobial taxons or functional features across relatively few samples. This is compounded by
their sparse structure, with abundance matrices inflated by zeros, due to the heterogeneous
distribution of these features across hosts and the limited sequencing depth. Moreover,
when features are detected, their counts usually exhibit a large fluctuation across samples,
leading to over-dispersion, in which the variance greatly exceeds the mean. In addition,
as sequencing yields relative rather than absolute abundances, microbiome data are fun-
damentally compositional, constraining the data to a constant sum space and inducing
spurious correlations.

3.2.1. Differential Abundance

The simultaneous presence of high dimensionality, sparsity, over dispersion and
compositionality poses significant challenges for downstream statistical analysis, requiring
specialized frameworks to ensure robust and biologically meaningful description and
inference. Therefore, appropriate data normalization constitutes a crucial step to account
for the characteristics of microbiome data and improve the comparability of samples
across data.

There are several strategies employed in normalization methods, some are based on
data scaling such as Total Sum Scaling (TSS), Cumulative Sum Scaling (CSS), Trimmed
Mean of M-Values (TMM) and Relative Log Expression (RLE) which adjust samples count
data by a normalization factor to correct the different sequencing depth or global composi-
tion, and others like Centered-Log Ratio (CLR) and Variation Stabilizing Transformation
(VST) transform relative abundances to a logarithmic space, eliminating the constant
sum restriction.
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After normalization, differential abundance analysis aims to test whether microbial fea-
tures differ significantly and the magnitude of change between clinical in their abundance
across phenotypes or experimental groups (Figure 3D). To this end, several R packages
like DESeq2 [141], LEfSe [142], edgeR [143], ALDEx2 [144] and ANCOM-BC2 [145], are
commonly used.

For instance, DESeq2 and edgeR, originally developed for differential gene expression
in RNA-Seq, are now frequently applied in microbiome studies. These tools leverage
RLE and TMM normalization, respectively, and model counts using the Negative Bino-
mial distribution to accommodate compositional biases. They offer high sensitivity in
detecting differential taxa but struggle to control False Discovery Rate (FDR) in sparse
microbiome datasets.

LefSe, on the other hand, normalizes count data using TSS or Counts Per Million
(CPM), applies nonparametric testing and finally uses Linear Discriminant Analysis to
estimate effect size; however, this method is prone to false positives in high dimensional or
sparse datasets.

In contrast, methods explicitly designed for compositional data, such as ALDEx2,
which employs a Dirichlet multinomial model coupled with Monte Carlo sampling and
performs a CLR transformation data and ANCOM-BC2, which uses a log-transformed
regression-based approach and adds a regularization step to stabilize variance estimates,
enhance the robustness of differential abundance analysis as they reduce false posi-
tives while maintain FDR control by accounting for technical and biological variation in
compositional data.

Nearing et al. [146] systematically evaluated 14 differential abundance methods across
several 16S rRNA gene datasets, revealing that count-based approaches such as edgeR
and limma-voom tend to identify a much larger number of significant taxa compared to
more conservative methods. In contrast, ALDEx2 and ANCOM produced fewer significant
results, but the taxa they detected were far more reproducible across datasets, suggesting a
lower FPR. Furthermore, this author evaluated the discriminatory potential of individual
ASVs identified by each tool through ROC curves and the Area Under the Curve (AUC).
They observed that ASVs identified by ALDEx2 and ANCOM-II exhibited the highest mean
AUROC across datasets, both when using relative abundances and CLR-transformed data,
although these methods occasionally failed to detect any significant ASVs even in cases
where other tools achieved high AUROCs (e.g., 0.8–0.9). To further evaluate performance,
the authors compared precision, recall, and F1-scores of different methods using AUROC
thresholds. At a threshold of 0.7, ALDEx2 and ANCOM-II achieved the highest precision
values (often approaching 1.0), but this came at the cost of very low recall, especially when
contrasted with tools such as LEfSe and edgeR, which displayed much higher recall but
lower precision. When CLR data were used, limma-voom and the Wilcoxon test applied to
CLR abundances showed among the highest F1-scores, reflecting a better balance between
sensitivity and specificity. At a more stringent AUROC threshold of 0.9, most tools showed
relatively high recall, but precision declined sharply across all frameworks, consistent with
the expectation that few taxa exceed such strong discriminatory performance.

The trade-offs between precision, recall, and F1-score, as highlighted by Nearing
et al. [146], emphasize the need for careful tool selection, prevalence filtering, and consider-
ation of both statistical robustness and biological interpretability when drawing conclusions
from microbiome differential abundance analyses. More generally, it is advisable to employ
multiple methods in parallel and to focus on features consistently identified across tools,
while keeping in mind the specific assumptions and limitations inherent to each framework.
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3.2.2. Multivariate Analysis

In regression-based analysis, the main aim centers on elucidating relationships be-
tween microbial abundances and functional capabilities with specific predictors or out-
comes. To this end, researchers typically employ Generalized Linear Models (GLM),
primarily those based on Poisson and Negative Binomial distributions to relate features
to predictors. However, due to the characteristics of microbiome data such as sparsity
and zero inflation, the GLMs assumptions are not met, resulting in biased estimates or
unreliable inference [147,148].

To address this situation, a new set regression-based framework has been developed
to capture the distributional complexity of microbiome data. MiRKAT-MC [149] is a Kernel
and distance-based model that extends association testing to multicategorical outcomes,
especially useful for nominal or ordinal phenotypes as they are able to detect global com-
munity shifts across disease stages or treatment groups. Some parametric models such
as the Zero Inflated Generalized Dirichlet Multinomial (ZIGDM) [150] provide flexible
covariance structures and explicit modeling of structural and biological zeros, improving
inference on mean shifts and dispersion patterns, aiding in distinguishing heterogeneity
in taxa variability that is overlooked by simpler models. Similarly, negative binomial
factor regression methods, including reduced-rank (NB-RRR) and co-sparse formulations
(NB-FAR) [151], have been developed to uncover latent factors that link host covariates to
microbial consortia. Complementing these, adaptive strategies such as the Adaptive Micro-
biome Association Test (AMAT) combine distance-based feature selection with powerful
omnibus testing, making them highly suitable in high-dimensional contexts where signal
detection among many irrelevant taxa is a major obstacle [152]. Finally, Bayesian nonpara-
metric formulations, such as zero-inflated multivariate negative binomial regression under
dependent Dirichlet process priors, provide highly flexible inference at both the taxon
and community levels, disentangling presence/absence from abundance effects; these are
especially advantageous for characterizing diversity changes and rare taxa contributions in
complex microbiomes [153]. Collectively, these developments mark a clear transition from
classical GLMs toward more flexible, high-dimensional regression frameworks specifically
adapted to the inherent characteristics of microbiome data, which not only facilitate the
identification of disease-associated factors but also enable a rigorous evaluation of their
predictive capacity, as exemplified by ROC curves (Figure 3F).

3.3. Integration with Multi-Omics Data

Integrating metagenomic data with metatranscriptomic, metaproteomic, and metabolo-
mic analyses provides a comprehensive understanding of microbial communities and their
functions. Metagenomics elucidates the genetic potential of these communities, while
metatranscriptomics identifies actively expressed genes. Metaproteomics determines the
proteins being synthesized, and metabolomics profiles the metabolites present within the
system. This integration goes beyond individual layers of analysis, offering insights into
the dynamic flow of molecular information from genes to metabolites. By combining these
data types, researchers can uncover functional interactions, such as how gene expression
drives protein production and metabolite synthesis, linking microbial structure to function.
It also facilitates the study of microbial responses to environmental changes, identification
of biomarkers, and understanding of host-microbiota interactions [154–156].

Careful experimental considerations are crucial for the successful integration of multi-
omics analyses. While a detailed exploration of these considerations is beyond the scope
of this work, it is important to highlight the need for well-designed study plans, clear
definitions of scope and limitations, and a thoughtful selection of omics types that balance
information gain, feasibility, and costs. Proper planning ensures statistical power through
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appropriate sample sizes, controls, replication, and sufficient biomass for multiple assays.
Furthermore, attention to the stability of omic analytes and specific collection and preser-
vation conditions is essential to maintain sample integrity. For a deeper understanding,
specialized articles on these topics are recommended [156–159].

Beyond experimental design, multi-omics integration faces important practical chal-
lenges. A pervasive issue is missing data, which can arise from multiple sources such as
limited sensitivity of analytical platforms, differences in sequencing depth, incomplete
overlap of omics assays, poor tissue quality, or stochastic variability in peptide/protein
detection. In proteomics, for instance, 20–50% of peptide intensities may be missing across
runs, while metabolomics can be affected by instrument-specific biases in ionization and
detection. Traditional strategies like complete-case or available-case analyses reduce sam-
ple size and often introduce bias, while naïve imputation methods (e.g., mean or zero
replacement) distort variance and correlations. To address this, more advanced approaches
have been proposed. ML and AI methods such as k-nearest neighbors (KNN) imputation,
random forest imputation, and expectation-maximization algorithms better capture rela-
tionships among features [160]. Recent transfer-learning approaches, such as TDImpute,
use external large-scale datasets (e.g., TCGA) to impute missing values across omics layers
by exploiting correlated modalities. Bayesian multi-omics frameworks and tensor decompo-
sition methods further extend these strategies by leveraging shared latent structures across
different omics types, improving robustness in the presence of partially observed datasets.
These developments highlight that handling missing data is not merely a preprocessing
step but a central methodological challenge that directly impacts the validity of integrative
analyses [160].

A second major challenge is the correction of batch effects and technical variability,
which are ubiquitous in multi-omics studies due to variations in protocols, platforms, and
sequencing runs. Batch effects can obscure biological signals and inflate false positives
if left uncorrected [159,161,162]. Classical approaches such as ComBat (empirical Bayes
framework) and Remove Unwanted Variation (RUV) methods adjust for systematic shifts
across batches while preserving biological variance. However, these approaches assume
linear batch effects and may underperform in highly heterogeneous multi-omics datasets.
To overcome this, newer algorithms integrate batch correction into the latent space mod-
eling of the data, as in MOFA+, which accommodates batch covariates while performing
dimensionality reduction [163]. More recently, deep learning–based strategies, including
adversarial networks and variational autoencoders, have shown promise in harmonizing
multi-omics data by disentangling technical artifacts from biological signals [160]. Ulti-
mately, careful selection and benchmarking of batch correction methods are essential to
prevent overcorrection and to ensure that true biological variability is retained.

Different methodological approaches are employed by specialized tools to perform
multi-omics integration analysis, each designed to address the specific characteristics of
the data and the objectives of the study.

Multi-omics factor analysis (MOFA) [163] uses latent factor analysis to identify patterns
of co-variation between features from different omics datasets. This unsupervised approach
employs linear models to explain the greatest variability in the data and handles missing
values, enabling the integration of partially overlapping datasets. mixOmics [164] includes
supervised and unsupervised multivariate analyses. Its DIABLO [165] approach facili-
tates supervised integration by identifying discriminative features between phenotypes. It
assumes linear relationships and requires fully overlapping datasets. MiBiOmics [166] com-
bines multiple methods such as Weighted Gene Correlation Network Analysis (WGCNA),
dimensionality reduction (mCIA and Procrustes), and network-based phenotype analyses.
This approach allows studying significant interactions across omics layers. COMBI [167]
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uses latent variable models with log-ratio link functions to handle compositional data,
accounting for mean-variance modeling and the relative nature of omics data. It provides
joint visualizations to explore associations between features.

Altogether, while tools like MOFA, mixOmics, MiBiOmics, and COMBI have broad-
ened the landscape of integrative analyses, their practical application demands rigorous
handling of missing data and robust batch effect correction. Failure to address these issues
risks producing spurious associations or losing meaningful biological insights. By integrat-
ing advanced imputation methods and harmonization strategies, researchers can improve
the reliability and interpretability of multi-omics integration [160,162,168].

3.4. Network and Interaction Analysis

Network analysis in metagenomics research has emerged as a key tool to untangle
microbial interactions in human microbiomes and their impact on host health conditions,
as they allow us to perceive interaction patterns associated with certain diseases and, more
recently, metabolic and functional interactions. To this end, computational approaches
have been developed to infer and validate relationships between species, offering a wide
perspective of the structure and function of complex microbial communities. These ap-
proaches rely on statistical methodologies designed to cope with the compositional and
sparse nature of the datasets [134,169].

The most widely used strategies can be divided into correlation-based methods and
probabilistic graphical models. Correlation-based approaches, such as Sparse Correlation
of Compositional Data (SparCC) [170] and CCLasso [171], transform compositional data
through log-ratios to estimate pairwise associations. Their main strength lies in compu-
tational simplicity and interpretability, but as pointed out in comparative studies, these
methods are limited by the assumption of linear correlations and their inability to disentan-
gle direct from indirect associations, which often leads to inflated network connectivity.

In contrast, graphical models such as SParse InversE Covariance Estimation for Eco-
logical Association Inference (SPIEC-EASI) [172] and gCODA [173] have been introduced
to estimate conditional dependencies. These models exploit penalized likelihoods and
sparse inverse covariance estimation, allowing a more reliable inference of direct interac-
tions. Notably, benchmarking studies highlight that graphical models tend to generate
sparser and more biologically plausible networks compared to correlation-based methods,
particularly in high-dimensional dataset [174].

Beyond co-occurrence, functional and metabolic network approaches in human
metagenomics employ constraint-based models to predict cross-feeding, metabolite fluxes,
and the impact of diet or drugs on the gut ecosystem, linking specific taxa to disease-
associated shifts in metabolites such as SCFAs, bile acids, or tryptophan derivatives—
capabilities that co-occurrence analyses alone cannot provide [175]. By integrating biochem-
ical constraints and flux predictions, these frameworks capture host–microbe exchanges
central to human physiology, with perturbations repeatedly linked to obesity, type 2 di-
abetes, atherosclerosis, and their modulation by interventions like bariatric surgery or
exercise [176]. Disease-specific rewiring is evident in inflammatory bowel disease, where
depletion of butyrate-producing clostridia and expansion of Enterobacteriaceae feed back
on inflammation, while pathobionts such as adherent-invasive E. coli exploit L-serine and
Veillonella spp. switch to nitrate respiration to thrive in the inflamed gut. These mechanistic
insights underscore how metabolic networks extend the interpretability of microbiome
data, offering avenues for interventions ranging from prebiotics and dietary fibers to ratio-
nal fecal microbiota transplantation and engineered probiotics, aiming to restore function
rather than only composition [177].
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Importantly, downstream analyses of these inferred networks provide an additional
layer of insight. Network theory offers a suite of topological metrics such as degree, be-
tweenness, modularity, assortativity or nestedness, that help identify keystone taxa that
interact with several other taxons or functions as well as the modular organization of com-
munities [174,178]. These properties are linked to ecological and functional implications:
for example, higher modularity often confers resilience to the microbial community by
containing disturbances within only few taxa, while betweenness highlights taxa that medi-
ate information or metabolite flow across modules, thereby influencing nutrient exchange
and cross-feeding relationships. Similarly, assortativity captures whether highly connected
taxa preferentially interact with other highly connected taxa, a pattern that can influence
robustness by reinforcing clusters or by increasing vulnerability to targeted perturbations
in its absence [179]. Beyond structural attributes, these metrics also illuminate functional
consequences: for instance, modules can correspond to metabolic guilds involved in short-
chain fatty acid production, nitrogen cycling or bile acid metabolism, which may explain
shifts in host physiology or disease progression. Recent reviews emphasize that these
stability-oriented metrics provide a mechanistic bridge between network architecture and
emergent properties such as resilience, productivity, and metabolic complementarity, and
are increasingly used to evaluate how microbial communities respond to environmental
stress or host-associated disturbances [179,180].

Taken together, correlation-based methods are useful for exploratory analyses, graph-
ical models provide robustness for inferring direct ecological interactions, and func-
tional/metabolic network frameworks extend these analyses to capture the ecological
roles and metabolic complementarity within microbiomes. These approaches gain greater
power and reliability when applied to larger datasets with an increased number of samples
and features, as well as when supported by more robust computational methods. This
growing need for richer datasets and sophisticated analyses directly connects with recent
advances in sequencing technologies and the expanding availability of metagenomic data,
which frame the challenges and opportunities discussed in the following section.

4. AI and Machine Learning in Metagenomics
The increasing affordability of sequencing technologies and the maturing understand-

ing of the importance of microbiome roles have led to an increase in data generation within
the field of metagenomics [3]. However, as mentioned before, analyzing metagenomic
data presents significant challenges due to its complexity. These datasets are often vast
and highly multidimensional, with characteristics such as sparsity, compositionality, and
a reliance on incomplete or biased reference catalogs [3]. Addressing these challenges
requires sophisticated computational tools capable of extracting meaningful insights from
the data, which is where AI and ML come into play.

4.1. AI/ML Techniques in Microbiome Data Analysis

AI, particularly ML, offers powerful tools to overcome the analytical challenges of
metagenomics. By leveraging algorithms capable of recognizing patterns within vast
datasets, ML not only facilitates the extraction of meaningful information but also enables
predictions and decisions based on these patterns (Mohseni and Ghorbani, 2024) [181].

The field of ML encompasses a wide range of techniques. It can be broadly divided
into two categories:

Supervised learning, where a predictive model is trained using labeled datasets. In this
approach, both the input features (e.g., microbial abundances) and the desired outcomes
(e.g., disease presence) are provided, allowing the model to learn specific relationships and
make accurate predictions [182].
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Unsupervised learning, which focuses on uncovering patterns and structures in
unlabeled datasets. This makes it particularly useful for exploratory analyses, such as
grouping similar microbial communities or identifying new microbial traits without prior
assumptions [182].

The combination of these techniques allows researchers to tackle insurmountable
challenges in microbiome analysis. AI’s ability to uncover hidden patterns in data enables
the discovery of relationships and trends that traditional methods might overlook. These
models are also adaptive, capable of being refined as new data becomes available, which
enhances their utility over time.

In addition to human health applications, these techniques are crucial for under-
standing environmental microbiomes. For instance, AI-driven models can analyze soil
metagenomes to predict nutrient cycling capabilities or detect shifts in microbial communi-
ties indicative of environmental stressors, such as pollution or climate change [5].

4.2. Current Applications of ML in Metagenomics

ML has transformed the field of metagenomics by enabling researchers to derive
actionable insights from vast, complex datasets. While its applications are diverse, they can
be broadly categorized into three main areas:

4.2.1. Disease Prediction

ML algorithms have proven invaluable in predicting diseases by analyzing microbial
compositions and functional traits. These models help identify associations between
microbial communities and conditions such as cancer, metabolic disorders, inflammatory
diseases, etc. [183]. For example, models trained on microbiome data have demonstrated
success in predicting diseases like colorectal cancer or type 2 diabetes [184]. However,
these are just a few examples within a growing body of work leveraging ML to advance
diagnostic and prognostic capabilities in clinical settings.

4.2.2. Identification of Microbial Signatures

ML tools are widely used to identify microbial biomarkers linked to specific health con-
ditions or environmental traits. By analyzing patterns in microbiome data, ML algorithms
can differentiate microbial communities, providing insights into host-microbe interactions
or ecological dynamics. These signatures are instrumental in developing targeted therapies,
monitoring environmental changes, or understanding disease mechanisms [182,185].

4.2.3. Functional Trait Prediction

Another critical application is the prediction of functional traits within microbial
communities. ML models can infer the roles of microbes based on genetic or metagenomic
data, such as predicting antibiotic resistance genes, metabolic pathways, or symbiotic
behaviors. These insights are essential for both medical research and ecological studies,
supporting advancements in personalized medicine, biotechnology, and environmental
monitoring [183].

While the examples above illustrate the potential of ML in metagenomics, they repre-
sent only a fraction of the applications currently in use, underscoring the versatility and
growing impact of ML in this field.

4.3. AI Tools for Metagenomics

Numerous AI-powered tools have been developed to address specific challenges in
metagenomics, ranging from disease prediction to functional annotation. Some notable
tools are mentioned in Table 5.
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Table 5. Overview of AI/ML tools for metagenomics analysis.

AI/ML Tool Application

Meta-Signer (Reiman et al., 2021 [186]) Feature ranking through ensemble learning and metagenome
signature identification

DeepMicro (Oh & Zhang, 2020 [187]) Deep representation learning for infection/disease prediction
using microbiome data

mAML (F. Yang & Zou, 2020 [188]) Automated human disease classification through
reproducible models

DeepARG (Arango-Argoty et al., 2018 [189]) Utilizes deep learning to predict novel antibiotic resistance genes
PaPrBaG (Deneke et al., 2017 [190]) Pathogenicity prediction, reliable even at low genomic coverage

Selected tools and their applications, highlighting key advancements in disease pre-
diction, functional annotation, and microbial feature identification.

4.4. Comparison with Traditional Tools

Traditional metagenomics analysis relies heavily on sequence alignment and database
searches, which, although effective, have notable limitations [3,191,192]:

• Computational resources: Traditional methods often require significant computational
resources, particularly for large datasets.

• Limited Novelty Detection: Identifying previously uncharacterized microorganisms
or genes is challenging using traditional approaches that depend on existing databases.
AI-based tools address these challenges by offering enhanced capabilities [191,192].

• Efficiency in Application: The computational profile of AI-based tools presents a
critical trade-off between training and application. While the process of training
deep learning models is often famously resource-intensive, requiring large datasets
and significant computational power, the resulting models can be highly efficient
for inference. Once trained, applying a model to classify new sequences or predict
a phenotype is often computationally much faster than performing traditional, per-
sample alignment-based searches against large reference databases [3].

• Pattern Recognition: Advanced algorithms identify subtle patterns and relationships
that traditional tools may overlook, such as novel microbial signatures or complex
microbial interactions.

• Scalability: AI tools are well-suited for managing the ever-expanding scale of metage-
nomic data, enabling large-scale analyses that were previously impractical.

By combining AI’s predictive power with traditional methods’ robustness, researchers
can achieve a more comprehensive understanding of microbial communities, unlocking
new opportunities in metagenomics research.

4.5. Future Directions: Advancing AI in Metagenomics

As AI continues to evolve, its integration with microbiome analysis is expected to
unlock new avenues for individualized healthcare and address longstanding challenges in
data processing and interpretation.

4.5.1. Enhancing Personalized Medicine

AI has the potential to revolutionize personalized medicine by leveraging insights
derived from an individual’s microbiome composition [5].

Disease Susceptibility and Treatment Response: AI models can analyze an individual’s
microbiome to predict their susceptibility to specific diseases, as well as their likely response
to treatments. By identifying microbial patterns associated with these conditions, AI-driven
predictions could facilitate earlier diagnoses and improve therapeutic outcomes [3,183].
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Personalized Interventions: These predictions can inform interventions, including cus-
tomized dietary recommendations, probiotics, or microbiome-targeted therapies, tailored
to an individual’s unique microbial composition. For example, ML models could optimize
dietary plans by identifying foods that enhance beneficial microbial functions or mitigate
dysbiosis [181].

4.5.2. Overcoming Challenges: Benchmarking, Robustness, and Interpretability

Despite the promising potential of AI in metagenomics, several critical challenges
must be addressed to fully realize its benefits [3]. In this section we emphasize three
practical and interrelated requirements to translate methodological promise into reliable,
translational results.

Benchmarking and External Validation

Many published tools—including DeepARG, Meta-Signer, and mAML—show strong
performance on internal training cohorts but have limited assessment on independent
datasets [186,188]. Meta-analyses and cross-cohort studies have repeatedly shown that
microbiome classifiers often suffer performance drops when moved across populations and
technical settings, highlighting the need for cross-region/cross-cohort validation [193,194].
We therefore recommend that studies report external validation on hold-out cohorts (ideally
collected at different sites), and adopt community benchmarks or meta-analysis toolboxes
(e.g., SIAMCAT) to quantify generalizability across datasets [195]. Where external cohorts
are unavailable, nested cross-validation with fully separated tuning and testing folds
should be used to avoid optimistic bias [196].

Overfitting Mitigation and Uncertainty Estimation

High dimensionality, compositional constraints, and small sample sizes commonly
exacerbate overfitting in microbiome ML. Best practices include careful feature selection,
regularization, ensemble approaches, transfer learning where appropriate, and realistic
data augmentation [196]. In addition, model uncertainty should be reported (e.g., via MC-
dropout or other approximate Bayesian approaches) to distinguish confident from uncertain
predictions and to improve risk assessment for translational use [197]. We also encourage
reporting calibration metrics and class-imbalanced performance measures (precision–recall
curves, calibration plots) in addition to AUROC.

Interpretability, Feature Stability and Biological Validation

Many advanced AI models—particularly deep learning architectures—still behave as
“black boxes,” which limits transparency and reduces clinical trust and uptake. To address
this, researchers should prioritize explainability both procedurally and architecturally:
apply model-agnostic explanation tools while also evaluating inherently interpretable or
“interpretable-by-design” architectures where feasible [198–200]. Importantly, explanations
must be tested for stability (do the same features recur under resampling, different pre-
processing choices, or across cohorts?) because feature importance is highly sensitive to
data transformation and model selection in microbiome datasets [201,202]. We therefore
recommend a reproducibility-oriented workflow for interpretation: use multiple expla-
nation methods (global + local), quantify feature stability with resampling/bootstrap or
stability-focused feature-selection methods, perform leave-one-study-out or cross-cohort
checks to assess concordance of important features, and whenever possible, seek orthog-
onal biological validation (e.g., independent cohorts or functional assays) to move from
correlation toward mechanistic plausibility [193,203].
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Together, these practices reduce false leads from spurious, dataset-specific signals
and increase confidence that identified microbial drivers are robust, interpretable, and
translationally relevant.

Bridging the Gap: Multidisciplinary Collaboration and Innovation

The future of AI in metagenomics depends on fostering collaborations between com-
puter scientists, biologists, and clinicians. Such interdisciplinary efforts are crucial for
designing AI models that address real-world challenges in microbiome research. Moreover,
integrating AI with emerging technologies, such as single-cell metagenomics and metatran-
scriptomics, will enable deeper insights into microbial ecosystems and their interactions
with hosts [181].

By addressing these challenges and continuing to innovate, AI-driven metagenomics
has the potential to revolutionize our understanding of microbial communities, offering
breakthroughs in healthcare, environmental science, and biotechnology. The journey ahead
promises to not only enhance our ability to combat diseases but also to harness microbial
diversity for sustainable solutions to global challenges.

To provide an integrative perspective within this review, the following section aims to
share an applied overview on how computational metagenomics tools have been leveraged
in order to respond to different biological questions. By outlining this continuum, we intend
to illustrate not only the versatility of metagenomic approaches but also their capacity to
bridge fundamental ecological systems.

5. Applications in Human and Environmental Health
The human microbiome is composed of diverse microbial communities, including

bacteria, archaea, viruses, phages, and fungi, which resides in different body sites such as
the oral cavity, skin surface, intestinal tract, esophagus, lungs, and more [204]. Microbial
colonization is not uniform across the body; each body compartment contains its own
microbiota, and even within the same site, microbial composition can vary depending on
the specific area of sampling [205].

Microbes interact with one another both within the same species and across different
species, genera, families, and even domains of life. These symbiotic relationships influence
microbial fitness, population dynamics, and functional capacities. Interactions can be
beneficial (mutualism, synergism, or commensalism), detrimental (amensalism, including
predation, parasitism, antagonism, or competition), or neutral, where no significant effect
on microbial function is observed [205].

Microbial colonization begins at birth and is influenced by factors such as the mode
of delivery [206,207] and feeding practices [208]. The microbiome is dynamic and shaped
by various elements, including aging [209], diet [210], antibiotic exposure [211,212], dis-
ease [213,214], and other environmental influences.

Beyond microbial interactions, the microbiome plays a crucial role in maintaining host
health by regulating metabolism, immunity, and homeostasis. Several key functions have
been attributed to the core microbiome, including polysaccharide digestion, immune system
development, protection against infections, vitamin synthesis, fat storage, angiogenesis
regulation, and even behavioral development [215].

However, when dysbiosis occurs—characterized by shifts in microbial composition,
reduced diversity, and functional imbalances—these once-beneficial interactions can con-
tribute to the onset of various diseases. Metagenomic approaches have been indispensable
in moving beyond simple associations to dissecting these complex interactions.
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5.1. Microbiome and Disease

Computational metagenomics and microbiome analysis have been applied in a va-
riety of studies to explore the relationship between microbial communities and disease
development. Early studies, primarily employing targeted 16S rRNA gene sequencing,
were instrumental in characterizing broad shifts in the taxonomic composition of microbial
communities in various tissues and fluids. While foundational, this approach is limited to
taxonomic profiling and often cannot resolve below the genus level. The advent of shot-
gun metagenomics provided a much deeper view by enabling not only higher-resolution
taxonomic classification but also functional profiling of the entire gene content of a com-
munity and the reconstruction of MAGs. More recently, the emergence of LRS is further
revolutionizing the field by allowing for the assembly of complete, closed genomes directly
from complex samples, which is critical for strain-level resolution and understanding the
genomic context of functional genes [36,216].

5.1.1. Metabolic Diseases

The gut microbiota has been suggested to play an important role in obesity, potentially
influencing energy absorption, central appetite regulation, fat storage, chronic inflam-
mation, and circadian rhythms [217]. Although the Firmicutes/Bacteroidetes ratio was
initially proposed as a hallmark of obesity [218,219], subsequent meta-analyses and large-
scale studies failed to replicate this association consistently. The inconsistency of this
finding across populations highlighted the limitations of low-resolution taxonomic mark-
ers. The transition to shotgun metagenomics shifted the focus from broad phylum-level
changes to the functional capacity of the microbiome. These studies revealed that obesity is
more consistently associated with a reduction in overall microbial gene richness and func-
tional diversity, particularly in pathways related to butyrate production and carbohydrate
metabolism. By reconstructing MAGs from obese and lean individuals, researchers have
been able to link specific microbial lineages, such as members of the Christensenellaceae
family, to lean phenotypes [220–223].

While these short-read shotgun studies provide powerful functional insights, they
often yield fragmented MAGs. The use of LRS is now helping to overcome this, making it
possible to assemble more complete genomes of key metabolic players like Akkermansia
muciniphila, which allows for strain-level analysis of its role in metabolic health [36]. This
progression demonstrates how advancements in metagenomic methods have enabled a
more nuanced understanding of the microbiome’s role in metabolic disease, moving from
simple taxonomic ratios to detailed functional and strain-level insights.

5.1.2. Liver Diseases

Some evidence suggests a strong association between gut dysbiosis and the onset
and progression of metabolic dysfunction-associated steatotic liver disease (MASLD) [224].
Shotgun metagenomic studies have been crucial in identifying these links. For instance,
by comparing the functional gene content of patients with MASLD to healthy controls,
researchers have identified an overabundance of pathways related to inflammation and li-
pogenesis, often linked to genera like Escherichia and Streptococcus. The ability to perform
whole-genome assembly from metagenomic data has also allowed for the reconstruction
of MAGs of these pathogenic bacteria, revealing virulence factors that may contribute to
liver inflammation. Research by Solé et al. [225] used quantitative shotgun metagenomics
to demonstrate a clear reduction in gene richness as cirrhosis progresses, directly linking
the functional capacity of the microbiome to the severity of liver dysfunction. The next
frontier in this area is using LRS to assemble complete viral genomes (the virome), as bacte-
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riophages can modulate bacterial populations and may play a key role in the progression
of liver disease [216].

5.1.3. Pregnancy and Reproductive Disorders

Recent research describes the role of the gut microbiome in pregnancy, particularly
its influence on maternal and fetal health outcomes. Early investigations using 16S rRNA
sequencing established correlations between broad shifts in the vaginal microbiota, such as a
decrease in Lactobacillus dominance, and adverse pregnancy outcomes. However, shotgun
metagenomics has been critical in moving beyond taxonomic associations to understanding
functional potential [226]. By analyzing the collective gene content, researchers have
been able to link changes in metabolic pathways—such as amino acid and carbohydrate
metabolism—to conditions like preeclampsia and gestational diabetes mellitus [216].

Furthermore, studies [227,228] have shown that dysbiosis of gut microbiota in women
could be associated with Polycystic Ovary Syndrome (PCOS). Shotgun metagenomics has
revealed not just a change in species, but a shift in functional capacity toward inflammatory
pathways. A key challenge in this area is the high degree of strain-level diversity among
critical commensals like Lactobacillus. Different strains of the same species can have vastly
different probiotic or pathogenic potentials. Therefore, modern approaches using LRS
to assemble complete genomes and achieve true strain-level resolution are becoming
essential for determining which specific lineages are protective versus detrimental during
pregnancy [8]. This highlights a critical application where moving from species-level
profiling to high-resolution strain identification is necessary to translate research findings
into clinical diagnostics or therapies.

5.1.4. Neurological Disorders

The microbiome also plays a significant role in neurodevelopmental disorders and
behavior. The gut–brain axis is one of the most exciting frontiers in microbiome research,
and metagenomics provides the primary toolkit for its exploration. Alterations in the
gut microbiota have been observed in individuals with autism spectrum disorder (ASD)
and other neurodevelopmental disorders. Again, initial findings from 16S rRNA profiling
identified taxonomic markers, such as an increased abundance of Clostridium species in
some ASD cohorts. However, the mechanism remained elusive [229–231].

The adoption of shotgun metagenomics provided the crucial next step by linking these
taxonomic shifts to functional changes. By analyzing the microbial gene content, studies
have identified depletions in pathways for synthesizing key neurotransmitters (for example,
GABA and serotonin precursors) and short-chain fatty acids (SCFAs) like butyrate, which
are known to have neuroprotective effects. To understand if these functional deficits are
due to the absence of genes or simply a lack of their expression, researchers are increasingly
turning to metatranscriptomics. This approach directly measures microbial gene expression
(RNA), revealing which metabolic pathways are actively transcribed by the gut community.
This allows a distinction between the genetic potential (DNA) and the real-time functional
activity (RNA), which is critical for understanding dynamic conditions like ASD [232]. A
comprehensive review by Liu et al. [233] summarizes how these multi-omic metagenomic
approaches are building a body of evidence linking the gut microbiome to a wide range of
neurodegenerative diseases.

5.1.5. Inflammatory Skin Disorders

In dermatology, recent studies have linked dysbiosis of the cutaneous and intestinal
microbiomes with skin-associated diseases, such as psoriasis [234], atopic dermatitis [235],
acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa [236]. Specifically,
a systematic review by Widhiati et al. [237] explored the associations between the gut
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microbiome with inflammatory skin disorders, suggesting that Bifidobacterium plays an
essential role as anti-inflammation bacteria, and Proteobacteria and Enterobacteria impact
inflammation in inflammatory skin disorders.

The reconstruction of these MAGs has been vital for identifying strain-specific viru-
lence factors and metabolic functions that correlate with disease states like acne or atopic
dermatitis. Moreover, metatranscriptomics is being used to determine which microbial
pathways are active on the skin during inflammatory flares versus periods of health. By
sequencing the expressed RNA, it is possible to identify if, for example, certain strains
of Staphylococcus aureus are actively transcribing toxins or if commensal microbes are ex-
pressing anti-inflammatory molecules [232]. This functional insight provides a much more
dynamic picture of the skin microbiome’s role in disease than what can be gleaned from
DNA-level surveys alone.

5.1.6. Autoimmune Diseases

Inflammatory bowel disease (IBD), a chronic relapsing-remitting disorder of the gas-
trointestinal tract, is closely linked to intestinal microbiota. IBD represents a paradigm
for the power of advanced metagenomic analysis. The field has progressed significantly
from early 16S rRNA studies, which first described a general state of dysbiosis in IBD,
characterized by a loss of butyrate-producing bacteria like Faecalibacterium prausnitzii.
While important, these studies could not explain the functional consequences of this
dysbiosis [238].

The breakthrough came with the application of integrated, multi-omic approaches, ex-
emplified by large-scale longitudinal studies like the Integrative HMP [239]. By combining
shotgun metagenomics (MGX), metatranscriptomics (MTX), metaproteomics (MPX), and
metabolomics, this study provided a holistic view of the IBD gut ecosystem.

• Metagenomics confirmed the depletion of key commensals and provided the genomic
blueprints (via MAGs) of the community members.

• Metatranscriptomics revealed that during disease flares, the remaining microbes,
including pathobionts like Ruminococcus gnavus, were transcriptionally hyperactive,
indicating a highly stressed and inflammatory environment [232,239].

• Metaproteomics complemented this by providing direct evidence of which proteins—
the functional workhorses of the cell—were being produced, confirming that inflam-
matory and stress-response pathways were highly active [240].

• Metabolomics measured the downstream biochemical output, identifying clear shifts
in bile acid metabolism and SCFA production that correlated with the functional
changes observed at the gene and protein level.

This integrated metagenomic approach revealed that IBD is not just a change in who
is there, but a fundamental rewiring of the entire molecular activity of the microbiome. It
is the ability to combine these different layers of metagenomic data that is leading to new
diagnostic biomarkers and therapeutic targets for IBD.

5.2. Therapeutic Applications

The clinical application of microbiome-targeted therapies relies heavily on metage-
nomic tools for both development and monitoring.

5.2.1. Probiotics

Probiotics are live microorganisms that, when administered in adequate amounts,
confer a health benefit on the host [241]. The effectiveness of probiotics is highly strain-
specific. Therefore, simply using 16S rRNA sequencing to confirm the presence of a
Lactobacillus species is insufficient. Shotgun metagenomics, and particularly LRS is required
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for the high-resolution tracking of specific probiotic strains to confirm their engraftment
and functional activity in the gut [8].

Some of the species from which strains with probiotic characteristics have been iso-
lated are Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, Lac-
tiplantibacillus plantarum, Lactobacillus acidophilus, Levilactobacillus brevis, Ligilactobacillus
salivarius [242].

These are commonly found in probiotic formulations, such as dietary supplements or
medicine, and in foods like fermented dairy products or other fermented foods [242].

According to Wang et al. [243], probiotics play a significant role in maintaining and
modulating gut microbiota composition. They can adjust the structure of human intestinal
microorganisms and inhibit the colonization of pathogenic bacteria in the intestine. This
inhibition occurs through various mechanisms, including stimulation of epithelial barrier
function, production of antimicrobial substances, restriction of pathogenic access to nutrient
resources, and competition for binding sites. Additionally, probiotics secrete organic acids,
such as butyric acid, acetic acid, and propionic acid, during carbohydrate fermentation.
These acids lower the intestinal pH, thereby creating an environment that inhibits the
growth of harmful bacteria.

Probiotics also contribute to intestinal health by enhancing the protective layer of
intestinal mucosa, thereby strengthening the intestinal barrier and improving immune
function. Notably, butyric acid, a key metabolite produced by probiotics, promotes oxygen
consumption in the intestinal epithelium. This process increases the expression of barrier-
protective hypoxia-inducible factor (HIF) target genes and helps maintain HIF stability,
which is essential for intestinal homeostasis [243].

Furthermore, probiotics enhance immune responses by increasing the number and
functionality of macrophages and dendritic cells (DCs) in the lamina propria. They also pro-
mote the maturation of humoral immunity by stimulating the production of immunoglobu-
lin A (IgA) antibodies, which play a critical role in mucosal defense [243].

Given their ability to modulate gut microbiota, probiotics have emerged as a promising
therapeutic approach for managing various microbiota-related diseases. Evidence suggests
that certain probiotic strains are effective in preventing antibiotic-associated diarrhea in
both adult and pediatric populations. Acute gastroenteritis remains the original and
probably the most well-established clinical indication for probiotic use [244]. However,
there are still issues with dose and timing that require further research.

5.2.2. Prebiotics

A prebiotic is a substrate that is selectively utilized by host microorganisms, conferring
a health benefit [245]. Among the most studied prebiotics are oligosaccharide carbo-
hydrates, of which mainly include xylooligosaccharides (XOS), galacto-oligosaccharides
(GOS), lactulose and inulin and its derived fructose-oligosaccharides [246]. These com-
pounds are selectively fermented in the colon, leading to the production of short chain
fatty acids (SCFAs) and biomass, decreasing the pH value of the intestinal environment.
Therefore, they create favorable conditions for the growth and activity of beneficial bacteria,
such as bifidobacteria and lactobacilli (e.g., L. plantarum, L. paracasei, Bifidobacterium bifidum),
while simultaneously inhibiting the proliferation of pathogens (Clostridium perfringens,
Escherichia coli, Campylobacter jejuni, Enterobacterium spec., Salmonella enteritidis or Salmonella
typhimurium), thereby contributing to improved human health [247].

Prebiotics occur naturally in a variety of foods, including wheat, onions, bananas,
honey, garlic, and leeks [242]. Their health benefits include improving the regulation of
immunity, resisting pathogens, influencing metabolism, increasing mineral absorption, and
enhancing health [246].
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5.2.3. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) is a treatment that involves the administration
of a minimally manipulated microbial community from the stool of a healthy donor into a
patient’s intestinal tract to restore normal gut microbiota function [248].

FMT is an important therapeutic option for Clostridioides difficile infection (CDI). Its use
in treating recurrent CDI has been shown to be well tolerated and effective when primary
treatment has failed [249].

Metagenomics is the primary tool for assessing the success of FMT. Shotgun sequenc-
ing is used to perform deep taxonomic and functional profiling of both the donor’s and
recipient’s microbiota. Post-transplantation, this analysis is repeated to track the engraft-
ment of donor strains and the restoration of key metabolic pathways that were deficient in
the recipient. This provides a quantitative, data-driven measure of therapeutic success [250].

5.2.4. Precision Medicine

As mentioned previously, the function, composition, and growth dynamics of the
gut microbiome are associated with many host physiological and pathological states.
This evidence highlights the potential of the gut microbiome in precision medicine and
individualized treatment.

Non-invasive sampling methods and decreasing profiling costs make it a feasible
tool for early diagnosis and disease risk assessment. Integrating features related to the
composition of the gut microbiome with other known clinical risk factors may potentially
enhance early disease detection [251].

This will be driven by the integration of multi-omics data, similar to what has been
done for IBD [239]. By generating a comprehensive metagenomic, metatranscriptomic, and
metabolomic profile of a patient, it may become possible to computationally predict their
response to a specific diet, probiotic, or therapeutic drug. The development of robust, high-
throughput computational pipelines for integrating these complex datasets is therefore a
critical area of ongoing research that will be essential for bringing precision microbiome
medicine into the clinic [216].

However, many challenges and limitations still need to be addressed for microbiome
profiling to be fully integrated into common medical practice. Zmora et al. [251] state that
the microbiome shows a remarkable degree of inter-personal variability, with even intra-
personal fluctuations that tend to oscillate diurnally. Additionally, differences in sample
collection and analysis techniques, reagents, and parameters may introduce variations
into microbiome results, potentially adding biases to the interpretation of microbiome-
based data.

The field must develop robust and standardized protocols for sample collection,
sequencing, and analysis to improve the reproducibility of results and reduce biases.

6. Data Sharing and Open Science
In the last decade enormous quantities of metagenomic data have been generated due

to the reduction in costs and the accessibility of high-throughput sequencing techniques.
Although most of this data has been deposited in different repositories such as the NCBI
SRA [106], the ENA [252], or the EMBL-EBI [253], a concerning number of studies that lack
proper data annotation and metadata related to the sample, restricting the re-analysis of
the data for further and larger studies and leading the set of microbiome data to being
“single-use” without any further repurpose [254,255]. The FAIR principles are the gold
standard for the administration and management of data

To address these challenges, the FAIR (Findability, Accessibility, Interoperability and
Reusability) principles [256] have emerged as a gold standard framework to enhance
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the usability and longevity of diverse scientific data as they advocate for the assignment
of unique identifiers for each dataset, provision of rich metadata for the reproducibility
of the analysis and the use of standardized vocabulary to standardize the bulk of data
in public for effective retrospective studies. Along with this principles, the Genomic
Standards Consortium implemented the Minimal information for Marker Genes Sequences
(MIMARKS) and the Minimal Information about any Sequence (MIxS) [257] in 2011 and
in 2012 the MINSEQE [258] guidelines to keep track of key information regarding the
description of the biological system and condition studied, as well as the sequence read
data, the final processed data from the assays in the study and essential metadata with
processing protocols.

While the FAIR principles provide a valuable framework for data stewardship, their
real-world application in human microbiome research encounters several hurdles:

Metadata Heterogeneity: Studies vary widely in how they record sample source,
collection protocols, sequencing methods, and participant demographics. This lack of
consistency complicates meta-analyses and cross-study comparisons [254,255]. To mitigate
this, we recommend adopting universal minimal metadata checklists—such as the MIxS
standards—but extending them with controlled vocabularies for host characteristics and
clinical covariates.

Repository Limitations: Public archives like NCBI SRA, ENA, and EMBL-EBI dif-
fer in submission interfaces, metadata validators, and update policies, leading to in-
complete or outdated records [106,252]. We suggest that consortia develop centralized
dashboards to monitor submission completeness and automatically flag missing fields or
format mismatches.

Legal and Ethical Frameworks: Human microbiome datasets inevitably co-sequence
trace amounts of host DNA, raising re-identification risks when coupled with detailed
metadata [259]. Currently, few jurisdictions provide clear regulations on sharing de-
identified human microbiome data. We call for international guidelines that balance
open science with privacy—potentially modeled on GDPR for genomic data—and for the
use of cryptographic or synthetic-data approaches to allow sharing of derived features
without exposing raw sequences.

Anonymization and Controlled Access: Beyond technical anonymization (e.g., remov-
ing direct identifiers), controlled-access repositories (e.g., dbGaP, EGA) can provide tiered
data-sharing mechanisms. We recommend implementing data-use agreements that specify
acceptable secondary analyses and require proof of IRB approval.

By addressing these challenges through community-driven standards, improved
repository infrastructure, and robust legal safeguards, the field can move toward truly
FAIR and ethically responsible microbiome research.

7. Next Steps in Metagenomics
Recent methodological advances are reshaping the scope of metagenomic research

by addressing longstanding limitations in assembly, taxonomic resolution, and the repre-
sentation of microbial variability. Single-cell metagenomics has emerged as a powerful
complement to metagenome MAGs, enabling the recovery of Single Amplified Genomes
(SAGs) from low abundance and rare taxa. By bypassing the reliance on binning and
assembly, this strategy reduces chimerism and enhances resolution at strain level, allowing
the accurate reconstruction of microbial populations and gene content [260,261]. Similarly,
pangenome graphs are redefining reference frameworks by moving beyond linear genome
representations. Instead of relying on a single reference, graph-based models incorporate
genetic variability such as single-nucleotide variants, indels and structural rearrangements,
providing a more nuanced view of intra-species diversity and enabling high resolution
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classification of metagenomic reads at the strain level [262]. These developments expand
the analytical toolbox available for metagenomics and facilitate the exploration of microbial
diversity with unprecedented precision.

The translation of these advances into clinical and epidemiological practice has be-
come evident. Real-time nanopore sequencing has demonstrated its utility in the rapid
diagnosis of infections directly from patient samples. In cerebrospinal fluid, metagenomic
nanopore sequencing outperformed conventional culture-based approaches, enabling
pathogen identification within minutes and proving particularly useful in cases where
standard diagnostic assays fail [263]. Beyond diagnosis, the capacity of LRS platforms to
perform on-site analysis has been highlighted as a key factor in outbreak management
and epidemiological surveillance. Their ability to detect structural variants, plasmids and
mobile genetic elements in near real time enhances our capacity to track antimicrobial
resistance and pathogen evolution during public emergencies [264]. In parallel, single-cell
metagenomics offers a route to link specific antibiotic resistance genes or metabolic func-
tions directly to their microbial hosts, a level of resolution with clear clinical relevance for
antimicrobial stewardship and personalized microbiome targeted interventions [260].

Despite these promising advances, significant challenges remain before these ap-
proaches can be broadly implemented. Single-cell metagenomics is limited by technical
hurdles such as contamination, amplification bias, and uneven genome coverage, which
can compromise the quality of SAGs [261]. Moreover, while single-cell workflows are
becoming more scalable, they remain resource-intensive compared to bulk metagenomic
sequencing. Nanopore sequencing, although invaluable for rapid diagnostics, still suffers
from relatively high error rates compared to short-read technologies, which can compli-
cate the detection of low-frequency variants or subtle strain differences [263]. Similarly,
while pangenome graphs provide a conceptually robust framework, they require extensive
computational resources and high-quality reference collections to build and curate graph
structures. Their adoption also depends on the development of standardized methods and
visualization tools that make graph-based analyses accessible to non-specialist users [262].
Taken together, these limitations emphasize that while single-cell approaches, real-time
sequencing, and pangenome frameworks represent the next frontier in metagenomics,
further refinement and validation are essential for their integration into routine research
and clinical pipelines.
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Microbiome and Pathologies in Pregnancy. Int. J. Environ. Res. Public Health 2022, 19, 9961. [CrossRef] [PubMed]
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