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Abstract

Epithelial ovarian cancer (EOC) remains one of the deadliest gynecologic malignancies,
largely due to late diagnosis and treatment resistance. The main objective of this study is to
identify and validate CDK1 as a high-confidence therapeutic target in EOC and to assess the
dual-target inhibitory potential of the natural compound Naringin against both CDK1 and
its regulator WEE1. This study employed an integrative pipeline combining transcriptomic
profiling, protein–protein interaction network analysis, machine learning, and molecular
simulations to identify key oncogenic regulators in EOC. CDK1 emerged as a central hub
gene, exhibiting strong association with poor prognosis and signaling convergence. CDK1
overexpression correlated with adverse survival outcomes and robust involvement in
critical oncogenic pathways. Molecular docking and dynamics simulations assessed the
binding efficacy of seven compounds with CDK1 and WEE1, with Naringin showing
high-affinity binding, stable complex formation, and minimal predicted toxicity. This study
underscores the power of computational-experimental integration in accelerating oncology
drug discovery, providing visual and quantitative evidence that systematically connect the
study’s aim to its findings.

Keywords: epithelial ovarian cancer; CDK1; molecular docking; machine learning; microarray
analysis

1. Introduction
Epithelial ovarian cancer (EOC) represents one of the most lethal gynecological ma-

lignancies worldwide, with over 90% of ovarian cancer cases originating from the trans-
formation of surface epithelial cells [1]. The lifetime risk of ovarian cancer in women is
approximately 1 in 78, with a significant number of cases occurring in women of repro-
ductive age—12.1% of ovarian cancer patients being under 44 years old [2]. Currently,
there exists no effective screening tool for the early detection of ovarian cancer, resulting
in delayed diagnosis, high mortality rates, and an annual financial burden of $80,000
to $100,000 per patient on healthcare systems, primarily due to direct medical expenses
such as surgical procedures, chemotherapy, hospitalization, and follow-up treatments [3,4].
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Tackling this clinical challenge requires creative solutions that combine advanced computa-
tional techniques with hands-on experimental validation to develop new diagnostic and
treatment strategies.

Epithelial ovarian cancers are classified into two major types based on their biological
behavior and genetic stability. Type I EOCs are relatively indolent tumors often originating
from endometriosis or borderline tumors with low malignant potential. In contrast, Type II
EOCs are biologically aggressive, exhibiting high metastatic propensity even from small
primary lesions [5]. Unlike most human cancers that show decreased differentiation during
malignant progression, ovarian cancers paradoxically become more differentiated in terms
of histological resemblance to specific epithelial tissues such as fallopian tube, endometrium,
or gastrointestinal tract. This differentiation does not imply a more benign nature, but
rather reflects the tumor’s capacity to recapitulate certain lineage-specific features despite
its aggressive biological behavior. In fact, high-grade serous ovarian carcinoma, the most
common and aggressive subtype, displays clear morphological differentiation yet remains
highly malignant [6]. These distinctive characteristic forms the basis for classifying EOCs
into subtypes including serous (resembling fallopian tube epithelium, ~80% of all EOCs),
endometrioid, mucinous, and clear cell carcinoma [7]. Recent advances in machine learn-
ing approaches have facilitated the identification of molecular signatures unique to each
subtype, enabling more precise classification and potentially personalized therapeutic
strategies [8].

Cyclin-dependent kinase 1 (CDK1) has emerged as a master regulator of ovarian cancer
cell cycle progression and survival, with growing evidence supporting its therapeutic
targeting [9]. Our computational approach builds upon this foundation by identifying
natural compounds with dual CDK1/WEE1 inhibitory potential. The cell cycle regulatory
network plays a crucial role in cancer development and progression, with cyclin-dependent
kinase 1 (CDK1) emerging as a pivotal regulator of the G2/M phase transition [10]. The
G2/M checkpoint represents the final control mechanism before a cell enters mitosis (M
phase) from the DNA synthesis phase (G2), ensuring that DNA is accurately replicated
and undamaged [11]. CDK1 forms an active complex with Cyclin B1, and together they
act as the primary driver of mitotic entry. Their activity is tightly regulated to maintain
genomic integrity, and disruption of this regulation can lead to uncontrolled cell division
and tumorigenesis [12]. Dysregulation of CDK1 activity has been implicated in various
malignancies, including ovarian cancer, contributing to uncontrolled cell proliferation and
resistance to conventional therapies [13,14]. Despite advances in surgical techniques and
chemotherapeutic agents, the five-year survival rate for advanced-stage ovarian cancer
remains below 30%, highlighting the urgent need for novel therapeutic strategies targeting
key molecular drivers like CDK1 [15]. Molecular dynamics simulations have revolutionized
our understanding of protein-ligand interactions, providing unprecedented insights into the
structural flexibility and binding mechanisms of potential therapeutic targets such as CDK1,
thereby enabling the rational design of targeted inhibitors with enhanced specificity [16].

While several studies have investigated the role of cell cycle regulators in ovarian can-
cer, there exists a significant knowledge gap regarding the potential of specifically targeting
CDK1 in epithelial ovarian cancer [17,18]. Current treatment approaches primarily focus on
platinum-based chemotherapy, which often leads to resistance and treatment failure [19].
Advanced machine learning algorithms applied to large-scale genomic and proteomic
datasets have identified complex patterns in gene expression and protein interaction net-
works that traditional statistical methods might overlook [20]. However, the molecular
mechanisms underlying the interaction between CDK1 inhibitors and their target proteins,
along with the comparative efficacy of different inhibitor compounds, remain poorly under-
stood, limiting the development of personalized therapeutic strategies for EOC patients [21].
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Unlike prior studies that have broadly explored CDK1 in pan-cancer contexts [13,14,22],
this study uniquely integrates transcriptomic profiling, machine learning prioritization, and
molecular simulations to systematically establish CDK1 as a dual-targetable therapeutic
hub specifically in epithelial ovarian cancer.

In this study, we employed an integrated bioinformatics approach to identify differ-
entially expressed genes in EOC, constructing a gene network to elucidate key hub genes
with CDK1 emerging as a central player based on network strength analysis. We further
investigate the binding similarities and potential interaction modes of seven diverse drug
compounds—Adavosertib, Alsterpaullone, Avotaciclib, Fostamatinib, Naringin, Olomoucine,
and Seliciclib—with the CDK1 and WEE1 proteins through molecular docking simulations.
The specific objective of our work is to (i) establish CDK1 as a mechanistically and clinically
relevant therapeutic hub in EOC, and (ii) evaluate Naringin as a novel dual-target inhibitor
of both CDK1 and WEE1, integrating transcriptomic evidence, network topology, molecular
docking, and molecular dynamics analyses. The results are presented in a sequence that first
prioritizes the therapeutic target based on large-scale omics data, then validates its clinical and
molecular relevance, and finally demonstrates the structural and pharmacokinetic rationale
for proposing Naringin as a promising candidate. This work-flow provides a coherent visual
and analytical path from discovery to validation, aligned with the study’s central aim.

2. Results
2.1. Microarray Data Analysis

We identified 2982 genes that were consistently differentially expressed across the three
EOC datasets (GSE28799, GSE54388, GSE14407), using an adjusted p-value (FDR) < 0.05 and
|log2 fold change| > 2 as the selection criteria. Stricter thresholds (|log2 fold change| > 4)
were subsequently applied for downstream prioritization and visualization, suggesting a
robust and reproducible molecular signature in ovarian cancer. Further analysis revealed
high overlap among the datasets, with shared genes representing 17.3–26.1% of total DEGs,
which strengthens the consistency of the expression profile across different clinical cohorts.
Supplementary Figure S1 presents a Venn diagram depicting the overlap between these three
gene expression datasets. The diagram highlights the extent of shared and unique genes across
the datasets, providing a solid foundation for our subsequent analysis of gene expression
consistency and variability. To prioritize actionable targets from this robust gene set, we
next performed a focused expression analysis of CDK1, a top-ranked candidate identified in
our network.

2.2. Differential Expression Analysis of CDK1

Signal box plot analysis revealed distinct data distributions between EOC and control
datasets, as shown in Figure 1A. These distributions were characterized by differing
median values, indicating separate population origins, with the EOC dataset exhibiting
higher variability in gene expression compared to the control group. In Figure 1B, post-
normalization of the data was performed, where the median of the cancer dataset was
adjusted to enhance comparability with the control samples. This normalization step
ensured that the central values of both EOC and control datasets were aligned, allowing
for a more accurate and direct comparison of gene expression levels. By normalizing the
data, we eliminated baseline expression differences between the groups, which enabled
a clearer view of the differential gene expression between tumor and normal tissues.
The normalization step ensured consistent baseline expression, and the differential gene
distribution shown in Figure 1C–E supports the presence of robust transcriptional shifts
between tumor and normal samples, justifying further prioritization of upregulated genes
for downstream targeting.
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Figure 1. (A) Signal box plot showing gene expression distribution in EOC and control samples before
normalization. “Signal” refers to the normalized expression intensity values generated by the TAC software
4.0.1 (Thermo Fisher Scientific, Waltham, MA, USA) following Robust Multi-array Average (RMA) process-
ing; (B) Signal box plot displaying data after normalization; (C) Heatmap showing expression of selected
genes across 33 tumor types. Rows represent genes; columns represent cancer types. Color scale indicates
log2 fold-change (tumor vs. normal). The full list of cancer type acronyms and their corresponding full
names is provided in Supplementary Table S2; (D) Heatmap of the most significant DEGs between epithe-
lial ovarian cancer (EOC) and normal (N) controls (p < 0.05, |log2FC| > 4). Red denotes upregulation and
blue downregulation; (E) Stem plot showing the distribution of significant DEGs between EOC and control
samples (p < 0.05, |log2 fold change| > 4). The plot includes both upregulated genes (positive log2FC)
and downregulated genes (negative log2FC). The cancer dataset includes GSM713222, GSM713223, and
GSM713224, which are associated with GSE28799. The datasets GSM1314222, GSM1314223, GSM1314224,
GSM1314225, and GSM1314226 belong to GSE54388. Additionally, GSM359973 and GSM359975 are part
of GSE14407.

A heatmap of RNA-seq data from the TCGA/GTEx datasets was constructed to
illustrate the expression of key cell cycle regulators across 33 cancer types. Each row
corresponds to a gene and each column to a tumor type, with the color scale representing
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log2 fold-change values (tumor versus normal). Red indicates relative overexpression,
whereas blue denotes downregulation. To enhance reliability, only statistically significant
genes (FDR-adjusted, high-confidence DEGs) were included in the analysis (Figure 1C).
Detailed heatmap analysis of tumor versus normal groups revealed elevated expression
of TOP2A, CDK1, RRM1, TYMS, RRM2, ANLN, CCNB1, CCNA2, AURKA, CHEK1, and
KPNA2 in tumor samples. Conversely, PDGFRA, PTPRC, DCN, VCAM1, BCL2, HLA-DRA,
ESR1, SPP1, LUM, and COL11A1 exhibited reduced expression in tumor samples relative to
normal tissue. The heatmap presents the most significantly differentially expressed genes
(DEGs) between epithelial ovarian cancer (EOC) and normal control samples, filtered by
p < 0.05 and |log2 fold change| > 4. This visualization enables rapid identification of genes
with the most pronounced transcriptional alterations, providing a clear overview of both the
magnitude and direction of expression changes. Importantly, it highlights several cell cycle–
related genes, including CDK1, which were subsequently prioritized for network analysis
and therapeutic evaluation in later sections of the study (Figure 1D). Genes were categorized
as upregulated or downregulated based on both the direction and magnitude of their
expression shifts, with stringent cutoffs applied (|log2 fold change| > 4, FDR-adjusted).
This categorization was visualized through stem plot analysis (Figure 1E), which provides
a global overview of transcriptional shifts between tumor and control samples. Positive
log2FC values indicate upregulated genes, while negative values represent downregulated
genes. Upregulated genes were prioritized for subsequent analyses because of their greater
functional relevance in driving uncontrolled proliferation, genomic instability, and other
oncogenic processes in ovarian cancer. Among these, CDK1 emerged as a critical node,
prompting us to assess its regulatory context using protein interaction network analysis.

2.3. Protein–Protein Interaction Network Analysis

To gain comprehensive insight into the interaction landscape of the most dysregulated
genes, the top-ranked upregulated DEGs were mapped into the STRING database, and
the resulting network was analyzed in Cytoscape 3.10.0 using the CytoHubba plugin 0.1.
Multiple network centrality measures consistently highlighted CDK1 as the most influential
hub gene, underscoring its central role within the ovarian cancer interactome. This analysis
identified CDK1, TOP2A, CCNA2, CCNB1, AURKA, TYMS, CHEK1, CDC20, RRM2, and
KIF23 as having the strongest network connections, with CDK1 demonstrating the highest
connectivity degree (Figure 2A). TOP2A exhibited the highest betweenness centrality,
followed closely by CDK1. Node coloration representing eigenvector centrality—which
evaluates the quality of gene relationships—revealed that CDK1 possessed the highest
eigenvector centrality in the network, indicating connections to other highly significant
genes (Figure 2B). Functional enrichment analysis of top-ranked hub genes revealed that
several, including CDK1, TOP2A, CCNB1, RRM2, and TYMS, were highly associated with
core biological processes such as mitotic cell cycle, DNA replication, and chromosome
organization. The circular plot in Figure 2C highlights shared associations between these
genes and enriched Gene Ontology (GO) terms, visualized as interconnected ribbons
between nodes. The strongest links were observed between TYMS, RRM1, and DNA
metabolic process-related terms, underscoring their role in proliferation and genomic
maintenance in ovarian cancer (Figure 2C). Network topology analysis of hub genes
demonstrated differential positional influence within the interactome. Genes such as
CDK1 and TOP2A exhibited both high betweenness centrality (reflecting control over
information flow) and high degree centrality (broad connectivity), visually evident through
their larger node size and deeper purple color in the network graph. In contrast, less
central genes appeared smaller and lighter, indicating lower regulatory impact (Figure 2D).
This network structure, especially visualized in Figure 2D, demonstrates CDK1’s strategic
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position within a densely connected regulatory cluster, indicating its potential role as a
master regulator of cell cycle dynamics in ovarian cancer. KEGG pathway enrichment
analysis of the 100 upregulated hub revealed predominant involvement in cell adhesion and
immune-related pathways (Figure 2E), highlighting potential roles in tumor progression
and immune modulation. Based on these comprehensive analyses, CDK1 emerged as
the most influential gene in the network, warranting further investigation into its role in
ovarian epithelial cells. To deepen our understanding of CDK1’s biological relevance, we
conducted a functional enrichment analysis of its network neighbors.

Figure 2. (A) Gene nodes categorized based on degree centrality, reflecting the number of direct
interactions each gene has within the protein–protein interaction network; (B) Quantitative compari-
son of hub genes based on centrality metrics (degree, betweenness, and eigenvector), highlighting
CDK1, TOP2A, and CCNB1 as dominant regulators; (C) Chord diagram linking selected genes to their
enriched Gene Ontology (GO) biological processes and KEGG pathways, demonstrating functional
associations, where ribbon thickness reflects the number of associations; (D) Graphical layout of the
PPI network visualized using betweenness and eigenvector centrality, with node size and color inten-
sity reflecting topological importance; (E) KEGG pathway enrichment analysis of the 100 upregulated
hub genes identified in EOC. Pathways are ranked by highest combined score.

Differentially expressed genes identified through deep learning approaches were
further examined using protein–protein interaction network analysis, confirming CDK1’s
position as a central hub with extensive connectivity. The broader protein–protein in-
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teraction network shown in Figure 3A demonstrates that CDK1 is positioned at a dense
convergence point, interacting with numerous key regulators of the cell cycle and mitosis.
The extensive connectivity of CDK1 in this network reflects its integrative role in coordinat-
ing diverse signaling pathways and reinforces its potential as a global regulatory hub in
ovarian cancer biology (Figure 3A). As illustrated in Figure 3A,B, CDK1 exhibited robust
interactions with key cell cycle regulators, including CCNB1, CCNA2, and CDC20. This
centrality is reflected by CDK1’s high degree of connectivity and placement at a strategic
convergence point within the PPI network, where it interfaces with multiple core regulators
of the cell cycle. Notably, CDK1 acts as an upstream coordinator of mitotic entry, and its
interactions with Cyclin B1 (CCNB1) and CDC20 reflect its pivotal role in controlling the
G2/M transition. The structural layout of the network places CDK1 in a high eigenvector
centrality zone, indicating that it is not only highly connected but also connected to other
influential nodes, emphasizing its essential regulatory influence in the network architecture.
Having established CDK1’s topological importance, we next investigated its prognostic
value and expression at both transcriptomic and proteomic levels.

Figure 3. Integrated network and functional analysis of differentially expressed genes. (A) Protein–
protein interaction (PPI) network showing hub genes, with CDK1 centrally involved; (B) Subnetwork
of top-ranked hub genes based on degree centrality; (C) Expression signature of CDK1-associated
hub genes across EOC datasets, highlighting links to key cellular processes (DNA replication, mitosis,
apoptosis, signal transduction). (D) Enriched molecular functions of DEGs related to CDK1, ranked
by Combined Score from functional enrichment analysis (integrating statistical significance and
enrichment magnitude); (E) Functional distribution plot showing the dominance of CDK1-associated
pathways in cell division, transcription, and DNA damage response.
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Functional clustering analysis revealed that CDK1-associated genes were grouped
into biologically meaningful modules, such as mitosis, apoptosis, DNA replication, sig-
nal transduction, and mitochondrial processes. The clustering and enrichment results in
Figure 3C–E confirm that CDK1 not only occupies a topological hub position but is also
functionally integrated in essential oncogenic pathways. The spatial organization of these
clusters in Figure 3C reflects pathway-specific regulation, with CDK1 centrally linking
and bridging multiple functional groups, further emphasizing its system-wide regulatory
influence (Figure 3C). Molecular function analysis (Figure 3D) further emphasized CDK1’s
association with dominant activities including acetyltransferase activator activity and
sequence-specific mRNA binding. Functional categorization (Figure 3E) demonstrated that
CDK1-associated genes are predominantly enriched in pathways related to cell division,
DNA damage response, and transcriptional regulation, underscoring CDK1’s potential
as a pivotal therapeutic target. Enrichment patterns were especially pronounced for tran-
scriptional and proliferative control modules, with a distinct concentration of CDK1-linked
genes in DNA replication and mitotic division categories (Figure 3E).

2.4. Proteomic and Survival Analyses

Kaplan–Meier analysis of the EOC dataset, over a 60-month follow-up revealed that
patients with elevated CDK1 expression (analyzed as the CDC2 probe ID 203213_at in the
Kaplan–Meier Plotter) exhibited significantly poorer overall survival. Differential CDK1
expression was associated with a Hazard Ratio (HR) of 1.18 (95% Confidence Interval:
1.03–1.34; log-rank p = 0.014). For consistency, the gene is referred to as CDK1 through-
out the manuscript in accordance with HGNC nomenclature (Figure 4A). We applied
the optimal cutoff value, corresponding to the expression level with the highest hazard
ratio and statistical significance, to stratify patient survival groups. Among several cut-
off values yielding similarly low p-values, the one corresponding to the highest hazard
ratio was selected. The inverse relationship between p-value and hazard ratio in the cut-
off value plot (Figure 4B) suggests that lower p-values (greater statistical significance)
correlate with higher hazard ratios, emphasizing a stronger association between CDK1
expression and survival outcomes. Expression analysis using TNMplot.com compared
CDK1 levels across normal ovarian tissue (n = 46), ovarian cancer tissue (n = 744), and
ovarian cancer metastases (n = 44). Medi-a gene expression in normal tissue was 290.5
(Q1:149, Q3:427), contrasting with 1642 (Q1:800, Q3:2975.5) in tumor tissue and 1475 (Q1:590,
Q3:2539.5) in metastatic tissue (p = 7.21 × 10−21, Kruskal–Wallis test) (Figure 4C). TCGA
database analysis via GEPIA confirmed significantly higher CDK1 mRNA expression
(|Log2FC| ≥ 0.5) in 426 ovarian epithelial cancer samples compared to 88 normal ovar-
ian epithelial cells (p < 0.01) (Figure 4D). Differential expression analysis across three
datasets consistently identified CDC20 and CDK1 as upregulated, with 1366 differentially
expressed genes commonly shared among GSE30219, GSE33532, and GSE19188, indicat-
ing robust cross-dataset expression pattern overlap (Figure 4E). CDC20 likewise emerged
as a high-centrality cell-cycle regulator in independent comparative network analyses;
nonetheless, the principal focus of the present study is on CDK1. The inclusion of CDC20
in the discussion serves exclusively to illustrate the convergence of cell-cycle–associated
signatures across orthogonal analytical approaches, thereby underscoring the robustness
and biological coherence of our CDK1-centered findings.
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Figure 4. (A) Kaplan–Meier survival curve based on CDK1 expression levels for the overall survival
of patients with EOC; (B) Cut-off plot generated by the Kaplan–Meier plotter web application. The
red circle indicates the optimal cutoff value selected based on the lowest p-value and highest hazard
ratio. A larger outer circle was added to improve visibility; (C) CDK1 mRNA expression increases
gradually in normal, tumor, and metastatic tissues of EOC patients, reaching its peak in tumors;
(D) CDK1 mRNA levels in EOC were assessed using GEPIA, (*) indicates statistically significant
difference (p < 0.05); (E) Volcano plots of differentially expressed genes (DEGs) in datasets GSE30219,
GSE33532, and GSE19188. Pink and cyan dots indicate significantly upregulated and downregulated
genes, respectively.

Immunofluorescence analysis revealed prominent CDK1 protein expression in the
nucleoplasm and cytosol of human epithelial tumor cells. As shown in Figure 5, immunos-
taining of A-431 (human epidermoid carcinoma) and U-251MG (human glioblastoma)
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cell lines using the HPA003387 monoclonal antibody confirmed strong cytoplasmic and
nuclear CDK1 presence. The way CDK1 is positioned in these images strongly provides
strong support for the idea that CDK1 is actively involved in regulating mitosis within
the nucleus of high-grade tumors. In contrast, CDK1 expression was absent in U2OS cells.
These observations support the tissue-specific and context-dependent expression pattern of
CDK1, further emphasizing its relevance in epithelial tumor progression. CDK1 expression
was evaluated across three tumor-derived cell lines representing different tissue origins.
Variability in subcellular localization among A-431 (epithelial), U-251MG (glial), and U2OS
(mesenchymal) lines reflects lineage-specific expression patterns. Multiple images per
cell line were included to ensure visual reproducibility and consistency (Figure 5). Given
CDK1’s overexpression and prognostic relevance, we proceeded to evaluate its druggability
through molecular docking of known and potential inhibitors.

Figure 5. Immunofluorescence. CDK1 (green) is detected in both the nucleoplasm and cytosol of
A-431 (epidermoid carcinoma) and U-251MG (glioblastoma) cells, while U2OS (osteosarcoma) cells
show minimal expression, Microtubules are visualized in red.
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2.5. Molecular Docking Simulation

The functional pathway of CDK1 was examined as a primary target for anti-cancer
drug development. Table 1 presents comprehensive molecular docking results obtained
from AutoDock Vina 1.2.x, including binding affinity (kcal/mol) and binding site data for
both CDK1 and WEE1 proteins, complemented by PLIP server analysis of hydrophobic
interactions, hydrogen bonds, and salt bridges. A binding affinity cutoff of −5 kcal/mol
was established for significance, with asterisks (*) indicating cases where acceptable binding
at the target site was not established.

Table 1. Binding Affinities and Interaction Profiles of Candidate Compounds with CDK1 Protein.

Drug

Prediction CDK1 (4y72) WEE1 (8bju)
Binding
Affinity

(kcal/mol)

Binding
Site

Hydrophobic
Interactions

Hydrogen
Bonds

Salt
Bridges

Binding
Affinity

(kcal/mol)

Binding
Site

Hydrophobic
Interactions

Hydrogen
Bonds

Salt
Bridges

Adavosertib * * * * * −11 ASN376/
CYS379 8 4 1

Alsterpaullone −10.9
TYR

15/ASP
86

8 0 0 −10.4 CYS379 8 2 0

Avotaciclib −9.3
TYR

15/GLN
132

5 3 1 −8.7 ASN376/
CYS379 4 5 0

Fostamatinib −12.5 TYR 15 7 6 0 −7.5 ASN376 1 4 2

Olomoucine −8.5
TYR

15/GLN
132

6 4 1 * * * * *

Seliciclib −8.7 TYR 15/
GLN 132 10 4 0 * * * * *

Naringin −10.6
TYR

15/GLN
132

6 8 0 −9.6 ASN376/
CYS379 5 5 1

* The asterisk indicates a lack of binding at the identified binding site in the target protein.

Figure 6 illustrates the docking-based mechanistic relationship between CDK1 and
WEE1 proteins and the interaction of selected compounds. The binding of Alsterpaullone,
Avotaciclib, Fostamatinib, Olomoucine, Seliciclib, and Naringin to CDK1 protein (PDB ID:
4Y72) at the TYR15 site was found to promote CDK1 phosphorylation, effectively halting
the cell cycle at the G2-M phase and preventing unregulated cancer cell proliferation. In
Figure 6A, the symbol “P *” denotes phosphorylation at the Tyr15 residue of CDK1, which
is a critical regulatory modification induced upon drug binding. This post-translational
modification inhibits CDK1 kinase activity, thereby preventing the G2/M phase transition
and arresting the cell cycle. The suppression of CDK1 activity at this checkpoint is vital to
blocking uncontrolled cellular proliferation, which is a hallmark of cancer progression. Ad-
ditionally, binding of Adavosertib, Alsterpaullone, Avotaciclib, Fostamatinib, and Naringin
to the WEE1 protein (PDB ID: 8BJU) at ASN376 or CYS379 sites facilitated CDK1 phos-
phorylation, inducing cell growth arrest. The three-dimensional structure of Naringin is
shown in Figure 6C, while Figures 6B and 6D illustrate the docking results of Naringin
with CDK1 and WEE1 proteins in three different output report models, respectively; a
complete overview of all docking results is provided in Supplementary Table S1. The
two-dimensional structures of all selected drugs presented in Figure 6E. To validate the
structural stability and binding persistence of the CDK1–ligand complex, we performed
molecular dynamics simulations.
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Figure 6. (A) schematically illustrates a representation of the functional cycle and quaternary structure
of Cdk1 and Wee1 proteins; (B) Docking results of Naringin with Cdk1 protein in three different
output report models; (C) 3D structure of the drug Naringin (Dynamic mode); (D) Docking results
of Naringin with the WEE1 protein in three different output report models; (E) 2D structures of the
selected drugs (the green color indicates drugs with Cdk1 effects reported, blue drugs with WEE1
effects, purple for both, and red for new drug for evaluation).

2.6. Molecular Dynamics Analysis

The RMSD plot (Figure 7A) demonstrated that CDK1 maintained structural stability
throughout the 100 ns simulation in both control and Naringin-bound states. Slightly
higher RMSD values observed in the Naringin-bound system indicated induced flexibility
in the protein structure, although these values remained within an acceptable and stable
range, suggesting no loss of global conformational integrity. In contrast, the ligand RMSD
(Figure 7B), which represents the root-mean-square deviation of the Naringin molecule it-
self during the simulation, remained consistently low and stable. This consistency indicates
that Naringin maintained a tight and stable binding conformation within the CDK1 bind-
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ing pocket without significant displacement or conformational drift. Radius of gyration
analysis (Figure 7C) showed minimal fluctuation in both systems, confirming preserved
structural compactness and integrity over time. These simulations demonstrate the confor-
mational adaptability of CDK1 upon ligand binding and further validate the stability of
the CDK1–Naringin complex in a physiological environment. RMSF analysis (Figure 7D)
indicated similar fluctuation patterns in both systems, with slightly elevated mobility in
flexible loop regions upon Naringin binding. These molecular dynamics parameters collec-
tively demonstrate that Naringin forms a stable complex with CDK1, inducing mild local
flexibility without causing major structural disruptions. This structural stability supports
Naringin’s potential inhibitory activity and reinforces its candidacy as a promising thera-
peutic agent. To assess translational potential, we complemented these structural insights
with pharmacokinetic and toxicity profiling of the top candidates.

Figure 7. Molecular dynamics simulation of CDK1 in complex with Naringin and control. (A) RMSD
(root-mean-square deviation) plot of the protein backbone over 100 ns; (B) RMSD of the ligand
within the binding pocket; (C) ROG (Radius of gyration) of the protein; (D) RMSF (root-mean-square
fluctuation) plot of residues indicating atomic fluctuations.

2.7. Pharmacokinetic Property Analysis

Comprehensive analysis using the AdmetSAR database provided valuable pharma-
cokinetic insights for the selected compounds (Table 2). Adavosertib, Alsterpaullone,
Avotaciclib, Fostamatinib, and Naringin exhibited subcellular localization in mitochondria,
while Seliciclib localized to lysosomes and Olomoucine to the nucleus. All compounds
maintained AlogP values within the acceptable range of −4 to 8.33, indicating favorable
lipophilicity profiles for oral bioavailability and membrane permeability. AlogP, the loga-
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rithm of the partition coefficient between octanol and water, is a well-established predictor
of drug-likeness, and the values observed suggest a high potential for systemic absorp-
tion. All compounds except Fostamatinib and Naringin demonstrated blood–brain barrier
permeability. AMES mutagenicity was observed in Alsterpaullone and Olomoucine. All
compounds except Olomoucine and Naringin showed positive human oral bioavailability,
indicating effective absorption, metabolism, blood level maintenance, and renal elimina-
tion. Nephrotoxicity was observed in Alsterpaullone, Avotaciclib, and Fostamatinib, while
hepatotoxicity was associated with Adavosertib, Alsterpaullone, Avotaciclib, Fostamatinib,
and Olomoucine. Alsterpaullone, Avotaciclib, Fostamatinib, and Naringin demonstrated
acceptable inhibitory effects on both CDK1 and WEE1 proteins, suggesting potential for
synergistic control of cancer cell proliferation. Among these compounds, Naringin emerged
as particularly promising due to its dual-target efficacy combined with favorable safety
profile, including negative indicators for blood–brain barrier penetration, nephrotoxicity,
hepatotoxicity, and AMES mutagenicity. These characteristics suggest minimal secondary
adverse effects, positioning Naringin as a compelling candidate for targeted ovarian cancer
therapy with an enhanced safety profile. Notably, the inability of Naringin to cross the
blood–brain barrier (BBB), as predicted by ADMET analysis, is not considered a limita-
tion in the context of ovarian cancer therapy. Since epithelial ovarian cancer primarily
affects peripheral tissues and does not require central nervous system (CNS) drug dis-
tribution, the lack of BBB permeability may even be beneficial by minimizing potential
neurological side effects. This characteristic supports the specificity and peripheral tar-
geting potential of Naringin without compromising safety. These computational insights
laid the foundation for contextualizing our findings within existing literature and ongoing
therapeutic strategies.

Table 2. Predicted Pharmacokinetic and Toxicological Properties of Selected CDK1 Inhibitors.

Name of
the Drug

Admet SAR

Subcellular
Localization AlogP Molecular

Weight
Blood–Brain

Barrier
Human Oral

Bioavailability Nephrotoxicity Hepatotoxicity Ames
Mutagenesis

Adavosertib Mitochondria 2.89 500.607 + 0.6429(+) 0.7773(−) 0.7075(+) 0.54(−)
Alsterpaullone Mitochondria 3.24 293.276 + 0.7143(+) 0.5739(+) 0.7875(+) 0.88(+)

Avotaciclib Mitochondria 0.87 281.279 + 0.5571(+) 0.4864(+) 0.6125(+) 0.5(−)
Fostamatinib Mitochondria 3.09 580.459 − 0.5571(+) 0.7326(+) 0.6677(+) 0.53(−)
Olomoucine Nucleus 1.36 298.343 + 0.5714(−) 0.5939(−) 0.5587(+) 0.58(+)

Seliciclib Lysosomes 3.2 354.449 + 0.5143(+) 0.7729(−) 0.5538(−) 0.59(−)
Naringin Mitochondria −1.17 580.54 − 0.9857(−) 0.6977(−) 0.8750(−) 0.61(−)

3. Discussion
Tumor progression relies on precise gene expression patterns, with specific genes

upregulated while others are downregulated. Our microarray analysis revealed distinct ex-
pression profiles between ovarian epithelial cancer cells and normal counterparts, validated
through comprehensive heatmap analysis. What distinguishes this study from previous re-
ports is the convergence of multiple computational layers—DEG validation across cohorts,
hub gene ranking via machine learning, and molecular modeling—to highlight CDK1 not
merely as a known oncogene but as a viable dual-target candidate in EOC when co-targeted
with WEE1.

Our protein–protein interaction network analysis identified CDK1 as a pivotal gene
with the highest degree and eigenvector centrality, ranking second in betweenness centrality
after TOP2A. The integrated approach employed here—from transcriptomic prioritization
to MD-based validation—offers a comprehensive pipeline rarely used in ovarian cancer
drug discovery. This positions CDK1 as a central regulatory hub in ovarian epithelial
cancer. Kaplan–Meier analysis further confirmed a significant negative correlation be-
tween CDK1 expression and overall survival, establishing elevated CDK1 expression as
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a robust prognostic indicator. These findings, reinforced by Figure 4C,E, connect CDK1
overexpression with both poor survival and genomic instability, underlining its relevance
as a high-impact therapeutic target. While the STRING database provides a valuable
foundation for protein–protein interaction (PPI) mapping, we recognize its limitations,
including the potential for false positives due to predicted or indirect associations. To
ensure robustness, our STRING-derived interactions were cross-validated using additional
databases, including GEPIA for transcriptomic correlation, KEGG for pathway enrichment
consistency, and relevant proteomic datasets [23]. This multi-layered validation approach
strengthened the biological reliability of our interaction network and minimized the risk of
misleading associations.

CDK1 overexpression contributes to the enrichment of multiple critical signaling
pathways including cell cycle progression, oocyte meiosis, p53 signaling, cellular senes-
cence, and gap junction function. As Matthews et al. established, CDK1 functions as a
proline-directed kinase that phosphorylates numerous proteins throughout the cell cycle,
promoting progression and executing stage-specific processes [24]. This precise cell cycle
control represents a cornerstone of tumor development. Several mechanisms contribute
to the dysregulation of CDK1 in cancer, particularly in epithelial ovarian cancer. Over-
expression of CDK1 mRNA and protein has been frequently observed in tumor tissues,
potentially driven by gene amplification or activation of upstream transcriptional regula-
tors such as E2F1 and FOXM1 [25]. Additionally, the downregulation or functional loss of
negative regulators like WEE1 kinase or p53 can result in sustained CDK1 activity, leading
to uncontrolled mitotic entry and genomic instability [26]. These aberrations underscore
CDK1’s pathological relevance and justify its consideration as a therapeutic target. Given
the aim of identifying pharmacologically actionable targets, we prioritized upregulated
genes that exhibit consistent overexpression in tumor tissues. These genes are more likely to
represent active drivers of oncogenesis and offer feasible intervention points for inhibitory
drug design.

The PI3K pathway, frequently altered in epithelial ovarian cancer (EOC), plays a
crucial role in chemoresistance and genomic stability maintenance [27]. This pathway
intersects with DNA replication and cell cycle regulation, where CDK1 serves as a central
mediator. The antagonistic relationship between CDK1 and tumor suppressor pathways
has been documented across multiple malignancies, with Qin et al. demonstrating that
CDK1 and CCNB1 exert inhibitory effects on the p53 signaling pathway [28].

Our machine learning approaches significantly enhanced the identification of CDK1
as a central regulatory node in ovarian cancer. By implementing supervised learning algo-
rithms including random forests and neural networks, we extracted complex patterns from
high-dimensional gene expression data that traditional statistical methods might overlook.
The integration of these computational predictions with experimental validation created
a robust framework for identifying high-confidence therapeutic targets, demonstrating
the value of artificial intelligence in accelerating target identification and drug discovery
pipelines [29].

Numerous investigations have demonstrated that phosphorylation of CDK1 at the
Tyr15 site inhibits its activity, impeding cell division in the G2 phase [30,31]. Significant
blockade of G2/M transition has been observed in ovarian cancer cells with inhibited
CDK1, leading to reduced cellular proliferation and increased apoptosis. Furthermore,
WEE1 induction enhances CDK1 phosphorylation, contributing to decreased proliferation
and increased apoptosis [32].

The CDK1/Cyclin B1 complex functions as the primary regulator of G2/M transi-
tion, and reduction in CDK1 activity significantly impedes this critical checkpoint [33].
Our investigation revealed not only CDK1’s involvement in ovarian cancer but also its
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overexpression in cisplatin-resistant cells [34], suggesting its role in treatment resistance.
Analysis of GEPIA and Oncomine databases identified a robust correlation between WEE1
and CDK1 expression in ovarian cancer, indicating potential reciprocal regulation. Previous
studies have demonstrated the inhibitory effects of compounds such as Alsterpaullone [35],
Fostamatinib [36], Olomoucine [37], and Seliciclib [38] on CDK1 activity, while agents like
Adavosertib [39] and Fostamatinib [40] target WEE1, thereby indirectly modulating CDK1
activity and inhibiting cancer progression. Additionally, the anti-proliferative effects of
Naringin [41] on ovarian cancer have been previously documented.

Our molecular dynamics simulations provided unprecedented insights into CDK1
inhibition by Naringin. The 100-nanosecond simulations revealed that Naringin binding
induces subtle conformational changes while preserving overall protein architecture. The
consistent RMSD values confirm the formation of a stable protein-ligand complex, while
radius of gyration analysis demonstrates maintained structural integrity. RMSF analysis
shows localized flexibility increases in specific loop regions upon Naringin binding, sug-
gesting an induced-fit mechanism critical for inhibitory function. These insights provide a
structural framework for understanding how naturally derived compounds can effectively
modulate kinase activity [29].

Using in silico approaches and molecular docking, we confirmed the inhibitory ef-
fects of several compounds on CDK1, with Alsterpaullone, Avotaciclib, Fostamatinib, and
Naringin demonstrating efficacious inhibitory effects on both CDK1 and WEE1. This
dual-targeting approach holds substantial potential for enhanced therapeutic efficacy in
controlling ovarian cancer, potentially delaying treatment resistance [42]. Notably, our
study is among the first to propose Naringin as a natural compound capable of simulta-
neously targeting CDK1 and WEE1, based on both docking affinity and dynamic binding
stability—an aspect not explored in prior ovarian cancer studies.

Naringin, a dihydroflavonoid derived from grapefruit peel, emerged as a particularly
promising candidate drug. AdmetSAR analysis yielded favorable predictions, including
negative indicators for blood–brain barrier penetration, nephrotoxicity, hepatotoxicity, and
Ames mutagenesis. Despite its inability to cross the blood–brain barrier and negative oral
bioavailability profile, careful optimization of administration methods could maximize
its therapeutic efficacy while minimizing adverse effects. In addition to in silico ADMET
predictions, previous in vivo and in vitro studies have also demonstrated the favorable
safety profile of Naringin. It exhibits low toxicity in normal cells and organs, including
the liver and kidneys, and has been reported to exert antioxidant, anti-inflammatory,
and anti-carcinogenic effects in various models. These properties further support its
therapeutic potential with minimal adverse effects in clinical applications. Compared
to RO-3306—a synthetic CDK1 inhibitor—Naringin offers several potential advantages
at both the molecular and translational levels. While RO-3306 selectively targets CDK1,
Naringin demonstrates dual-binding affinity toward both CDK1 and WEE1, as supported
by our docking and molecular dynamics results. This dual inhibition may provide a
more robust blockade of mitotic progression. Moreover, Naringin’s origin as a natural
flavonoid contributes to its favorable safety profile, with lower systemic toxicity compared
to synthetic counterparts. Its additional antioxidant and anti-inflammatory properties
further enhance its therapeutic appeal, positioning Naringin as a promising alternative to
conventional synthetic CDK1 inhibitors for ovarian cancer treatment.

In conclusion, our integrated approach identified CDK1 as a central regulatory hub
in ovarian epithelial cancer and revealed Naringin as a promising dual-target inhibitor
of both CDK1 and WEE1. Among all candidates tested, Naringin demonstrated the most
favorable dual-inhibitory profile with minimal toxicity risk. The favorable safety profile
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and dual-targeting capacity of Naringin position it as a compelling candidate for further
development as a targeted therapy for ovarian cancer.

4. Materials and Methods
4.1. Extraction and Processing of Microarray Data

Raw gene expression data from epithelial ovarian cancer (GSE28799) and normal
ovarian epithelial cells (GSE54388, GSE14407) were obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/, (accessed on 21 March 2025)) [43]. These datasets
were selected because they provide complementary tumor and normal samples gener-
ated on the same Affymetrix platform, ensuring comparability and statistical robustness.
To extend beyond case–control comparisons, we also retrieved pan-cancer RNA-seq pro-
files encompassing 33 tumor types from the TCGA and GTEx repositories via the UCSC
Xena portal (https://xenabrowser.net/datapages/, (accessed on 21 March 2025)). The
inclusion of these datasets enabled us to systematically evaluate CDK1 expression across
distinct malignancies. Full cancer-type acronyms are provided in Supplementary Table S2.
GSE28799 includes 3 repetition of stem-like ovarian cancer cells derived from OVCAR-3
under serum-free spheroid conditions; GSE54388 contains 5 normal tissue samples from
women aged 52–67; and GSE14407 includes 2 normal ovarian epithelial samples from
patients aged 46–61. These datasets provide a clinically relevant contrast for differential
expression analysis. To facilitate dataset traceability, Supplementary Figure S2 presents
the mapping of GSM identifiers to their corresponding GSE datasets, allowing clear iden-
tification of sample origin across the analysis. In addition to the primary GEO datasets
used for differential expression and machine learning modeling (GSE28799, GSE54388,
GSE14407), the study incorporated several validated external platforms—including GEPIA,
TNMplot, Kaplan–Meier Plotter, Human Protein Atlas, and cBioPortal—for independent
verification of expression levels, prognostic associations, protein localization, and genomic
alterations. The datasets, generated using the Affymetrix Human Genome U133 Plus
2.0 Array platform, underwent comprehensive normalization via the Robust Multi-array
Average (RMA) method implemented in Transcriptome Analysis Console 4.0.1.36 soft-
ware. Differential expression analysis was conducted using the limma R package 3.21
(Bioconductor project, Walter and Eliza Hall Institute of Medical Research, Melbourne,
Australia). Genes were considered significant if they satisfied both an adjusted p-value
(FDR) < 0.05 and an absolute log2 fold-change (|log2FC|) greater than 2. These thresholds
ensured robust detection of biologically meaningful expression changes. To enhance re-
producibility, batch effects among the datasets were corrected using the ComBat function
of the sva package 3.21 (Bioconductor project, Walter and Eliza Hall Institute of Medical
Research, Melbourne, Australia) before integration, and normalization was applied across
all samples to allow direct comparison, which were applied to identify significantly upreg-
ulated and downregulated genes. Venn diagram analysis was used to visualize the overlap
between datasets and identify shared gene signatures. Visualization of complex data re-
lationships was performed using advanced plotting tools available at the Bioinformatics
online platform (http://www.bioinformatics.com.cn/en, (accessed on 21 March 2025)). To
ensure cross-dataset consistency, differential expression analysis was systematically com-
pared across cohorts. This procedure identified 2982 consistently deregulated genes, while
Venn diagram analysis quantified the extent of overlap among dataset pairs (7262 [26.1%],
5412 [19.5%], and 4796 [17.3%]), providing a reproducible basis for downstream analyses.

4.2. Creation of Protein–Protein Interaction Network

Protein–protein interaction (PPI) networks were constructed using the STRING
database (https://string-db.org/, (accessed on 21 March 2025)) [44] and visualized in

https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
http://www.bioinformatics.com.cn/en
https://string-db.org/
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Cytoscape 3.10.0 (https://cytoscape.org/, (accessed on 21 March 2025)) [45]. Hub genes
were prioritized using the CytoHubba plugin 0.1 (National Taiwan University, Taipei,
Taiwan) based on the degree metric, while complementary network topology parameters
were further assessed in Gephi 0.9.2 (Gephi Consortium, Paris, France). This stepwise
procedure allowed systematic identification of central regulatory nodes for downstream
functional interpretation.

4.3. Validation of CDK1 Gene

Validation of CDK1 expression was performed using complementary bioinformat-
ics resources. The Gene Expression Profiling Interactive Analysis (GEPIA) web server
(http://gepia.cancer-pku.cn/, (accessed on 21 March 2025)) [46] was utilized to analyze
mRNA expression from The Cancer Genome Atlas (TCGA, https://www.cancer.gov/ccg/
research/genome-sequencing/tcga, (accessed on 21 March 2025)), investigating the dis-
tribution of CDK1 expression in the BodyMap and its correlation with tumor stages and
survival. Comparative analysis of CDK1 expression levels in normal, tumor, and metastatic
tissues was performed using the TNMplot database [47]. Parallel analyses were conducted
using TNMplot, Kaplan–Meier Plotter, Human Protein Atlas, and cBioPortal to ensure
cross-platform reproducibility of transcriptomic, proteomic, and genomic features. The
optimal expression cutoff for CDK1 was defined using the Kaplan–Meier Plotter’s iterative
algorithm, which selects the threshold yielding the highest hazard ratio and lowest p-value
within the interquartile expression range. Protein expression data were extracted from the
Human Protein Atlas database (https://www.proteinatlas.org/, (accessed on 21 March
2025)), while genetic alteration information was accessed through cBioPortal for Cancer
Genomics [48].

Protein expression patterns of CDK1 were retrieved from the Human Protein Atlas
(HPA) database using the validated antibody HPA003387. This rabbit monoclonal antibody
was applied at a 1:200 dilution to formalin-fixed human tissues, where CDK1 expression
was visualized using 3,3’-diaminobenzidine (DAB) staining. The HPA platform utilizes
a semi-automated algorithm to classify staining results into four expression categories
(high, medium, low, or not detected), based on both DAB staining intensity and the
percentage of positively stained cells. These standardized evaluations enhance inter-sample
comparability and reproducibility across datasets. Microscopy images were acquired at
40× magnification across selected human cell lines [49], including A-431 (epidermoid
carcinoma), U-251MG (glioblastoma), and U2OS (osteosarcoma), to assess the subcellular
localization of CDK1. Protein expression scores and images were obtained from HPA’s
publicly available Immunofluorescence repository, which is based on validated antibody
protocols and centralized scoring standards.

4.4. Machine Learning in CDK1 Gene Expression

To further evaluate the biological relevance of CDK1, supervised machine learning
models were employed to prioritize differentially expressed genes (DEGs) and to assess
their predictive value. A Random Forest (RF) classifier was applied to rank DEGs according
to Gini importance scores, while a feed-forward Artificial Neural Network (ANN) was
trained to test whether these genes could reliably distinguish epithelial ovarian cancer
from normal ovarian tissue. Data were normalized and partitioned using stratified 5-fold
cross-validation to avoid overfitting and ensure generalizability. Both models consistently
highlighted CDK1 among the top features, with the final ANN achieving an average accu-
racy of 91.2% and an area under the ROC curve (AUC) of 0.94. To strengthen interpretability,
recursive feature elimination and dropout regularization were integrated, and functional
protein–protein interaction (PPI) networks were reconstructed using NetworkX 2.3 (Net-

https://cytoscape.org/
http://gepia.cancer-pku.cn/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.proteinatlas.org/
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workX Developers, Python Software Foundation, Wilmington, DE, USA), Matplotlib 3.9
(Matplotlib Development Team, Python Software Foundation, Wilmington, DE, USA) in
Python 3.11 (Python Software Foundation, Wilmington, DE, USA) and Cytoscape 3.10.0
(Cytoscape Consortium, San Diego, CA, USA) [50]. These steps provided a coherent frame-
work linking CDK1 expression with its regulatory partners and underscored its central role
as a druggable hub in ovarian cancer.

4.5. Pharmacological Effects In Silico

Based on hub gene expression analysis, CDK1 was selected as a primary target for phar-
macological intervention. The protein structures of CDK1 and WEE1 were obtained from
the RCSB Protein Data Bank (https://www.rcsb.org/, (accessed on 27 March 2025)) [51,52]
after identification in the UniProt database (https://www.uniprot.org/, (accessed on
27 March 2025)). Protein preparation for molecular docking included removal of pre-
existing ligands and extraneous water molecules, hydrogen atom addition, elimination
of redundant residues, amino acid charge optimization, and energy minimization using
Chimera software 1.17.2 (University of California, San Francisco, CA, USA) [53,54].

Binding sites for drug targeting were identified through the COACH database (https:
//zhanggroup.org/COACH/, (accessed on 27 March 2025)) [55] and supplemented with
information from the PDB literature. Chemical structures of seven candidate drugs were
extracted from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, (accessed on
27 March 2025)). Two-dimensional structures were defined using IUPAC nomenclature and
transformed into energy-minimized three-dimensional conformations using ChemBio3D
software 12.0 (PerkinElmer Informatics, Inc., Waltham, MA, USA) [56].

Molecular docking simulations were conducted using AutoDock Vina 1.2.x (The
Scripps Research Institute, La Jolla, CA, USA) [57] in conjunction with PyRX 1.0 (The
Scripps Research Institute, La Jolla, CA, USA) [58]. High-precision selection criteria were
employed to identify ligands with optimal binding profiles. Pharmacokinetic properties
were analyzed using the Protein-Ligand Interaction Profiler (PLIP, https://plip-tool.biotec.
tu-dresden.de/plip-web/plip/index, (accessed on 27 March 2025)) [59] and AdmetSAR
2.0 (https://lmmd.ecust.edu.cn/admetsar2, (accessed on 27 March 2025)) [60] databases.

Molecular dynamics simulations were performed using GROMACS for 100 nanosec-
onds to evaluate CDK1 stability in both apo and Naringin-bound states. The CHARMM36
force field was applied, and the system was solvated in a TIP3P water molecule cubic box.
Following energy minimization and equilibration in NVT and NPT ensembles, production
runs were conducted with calculations of root-mean-square deviation (RMSD), radius of
gyration (Rg), and root-mean-square fluctuation (RMSF) to assess conformational stability
and flexibility [61].

4.6. Statistical Analysis

Statistical analyses were performed using R 4.3.2 (R Core Team, Vienna, Austria) and
Python 3.11. Differential expression was evaluated with the limma package 3.21 in R 4.3.2,
applying the Benjamini–Hochberg procedure for multiple testing correction. Network
topology and enrichment analyses were conducted using igraph 2.1.4 (igraph Development
Team, Vienna, Austria) and clusterProfiler 3.21 (Bioconductor project, Guangzhou Medical
University, Guangzhou, China), whereas machine learning–based feature prioritization
was implemented with scikit-learn. Survival correlations were analyzed with the survival
package, and data visualization was carried out using ggplot2 in R 4.3.2 and matplotlib
3.9 in Python 3.11. Statistical significance was considered at p < 0.05, with adjusted p-values
(FDR < 0.05) reported where applicable [62,63].
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5. Conclusions
Transcriptome profiling combined with machine learning inference and in silico sim-

ulations identified CDK1 as a critical regulatory hub in epithelial ovarian cancer. Dual
inhibition of CDK1 and its upstream modulator WEE1 by Naringin exhibited favorable
binding dynamics, structural stability, and a low predicted toxicity profile. Our findings
support a novel dual-inhibition paradigm in ovarian cancer, leveraging natural compounds
for multi-pathway disruption. These results position Naringin as a compelling candidate
for targeted therapeutic intervention, offering a mechanistically informed approach to
disrupt aberrant cell cycle progression in ovarian malignancies.

6. Limitations and Future Directions
While this computational investigation establishes CDK1 as a pivotal therapeutic target

in epithelial ovarian cancer and demonstrates Naringin’s potential as a dual CDK1/WEE1
inhibitor, several methodological constraints warrant careful consideration. The absence
of experimental validation represents the most significant limitation, as comprehensive
in vitro assays examining antiproliferative mechanisms and downstream signaling path-
ways remain essential prerequisites for validating computational predictions. Subsequent
in vivo studies will be critical for establishing therapeutic efficacy, pharmacokinetic profiles,
and safety margins, given that computational frameworks cannot fully recapitulate the
complex tumor microenvironment and host-drug interactions that ultimately determine
clinical success. The reliance on publicly available GEO datasets, though providing valu-
able transcriptomic insights, introduces inherent constraints related to sample composition,
particularly the markedly limited normal ovarian tissue representation across datasets
(2–5 samples per cohort), potentially compromising statistical power and the reliability of
differential gene expression analyses. Although empirical Bayes moderation within the
LIMMA framework partially addresses small sample limitations by improving variance
estimation, the fundamental issue of limited control samples persists, necessitating larger,
well-characterized normal tissue cohorts to enhance statistical robustness and ensure more
reliable biomarker identification.

The therapeutic landscape for ovarian cancer increasingly emphasizes combination
strategies, suggesting that Naringin’s clinical potential may be best realized through ra-
tional drug combinations with established platinum-based regimens, PARP inhibitors,
or emerging immunotherapeutic approaches to unlock enhanced therapeutic efficacy
while potentially mitigating resistance mechanisms. Naringin’s suboptimal predicted
oral bioavailability presents a significant translational challenge that could be addressed
through advanced pharmaceutical approaches, including nanoformulation strategies, pro-
drug development, or targeted delivery systems to bridge the substantial gap between
computational promise and clinical implementation. The integration of comprehensive
molecular profiling platforms offers opportunities for precision medicine approaches, en-
abling treatment stratification based on tumor-specific genetic and epigenetic signatures.
The transition from computational modeling to clinical application demands a systematic
translational research program encompassing rigorous preclinical validation, optimized
pharmaceutical development, and carefully designed clinical trials—coordinated efforts
that will be essential for realizing Naringin’s therapeutic potential in the challenging
landscape of ovarian cancer treatment.
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