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Abstract

Oral mucositis (stomatitis) is a painful condition that affects the mouth lining. Kampo
medicines (e.g., Hangeshashinto [Chinese name, Ban-Xia-Xie-Xin-Tang], Orento, and
Orengedokuto) have been widely used to treat stomatitis, such as gargling with Hange-
shashinto. However, the mechanisms by which Kampo medicines work are not widely
understood due to their oral administration and the subsequent digestion, absorption,
and metabolization of their components. Stomatitis is associated with advanced glyca-
tion end-products (AGEs) in patients with lifestyle diseases, and can be induced by both
intra- and extracellular AGEs (blood and dietary AGEs). Various natural products inhibit
intracellular AGE generation and suppress cytotoxicity, such as inflammation caused by
extracellular AGEs. This review summarizes 19 natural products identified in the Hange-
shashinto water extract and 16 natural products identified in the crude drug extract. The
data show that several natural products, such as glycyrrhizin, baicalin, 6-shogaol, quercetin,
epigallocatechin-3-galate, and genistein, inhibit intracellular AGEs and suppress extracellu-
lar AGE inflammation. Furthermore, several natural products in the Hangeshashito water
extract can suppress cytotoxicity in stomatitis.
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1. Introduction

Stomatitis is a painful condition that affects the mouth lining, and there are numerous
types and causes, such as traumatic stomatitis [1], aphthous stomatitis [2], and chemotherapy-
/radiotherapy-induced stomatitis [3,4]. Aphthous stomatitis is diagnosed in the clinical stage
when the cause of stomatitis has not been determined. The proliferation of viruses and bacteria,
exposure to cytotoxic materials such as nicotine, and other lifestyle factors can cause stomati-
tis [5], indicating that it is associated with lifestyle-related diseases (LSRDs). Kampo medicines,
which are based on traditional Chinese medicines, such as Hangeshashinto (Chinese name,
Ban-Xia-Xie-Xin-Tang) [5-8], Orento [5,9], Orengedokuto [5,9], Inchinkoto [5,9], Byakkokan-
injinto [5], Juzentaihoto [5], Hochuekkiito [5], and Shosaikoto, have been widely used to
treat and prevent stomatitis [5]. In Japan, Hangeshashinto is widely used to treat stomatitis,
gastrointestinal dysfunction, and nausea [5-9]. Data elucidating the effects and side effects of
Kampo medicines have been accumulating for more than two thousand years. However, the
mechanisms of Kampo medicines have not yet been fully elucidated due to the high number
of natural products contained in each Kampo medicine and the digestion, absorption, and
metabolization of natural products by oral administration [10]. While the oral administration
of Hangeshashinto to patients with stomatitis, gut dysfunction, and nausea is described in
traditional Chinese medicine [11-15], the treatment and prevention strategy for stomatitis
described in Kampo is gargling and coating of the mouth with the Hangeshashinto water
extract [16-19]. When gargled or coated on the mouth, natural products in the Hangeshinto
water extract may directly protect the oral epithelial cells, thus avoiding digestion, absorption,
and metabolism pathways [10]. Oh et al. and Endo et al. analyzed the components in the
Hangeshashinto water extract using three-dimensional high-performance liquid chromatogra-
phy (3D-HPLC) [6,20], and 19 natural products, such as liquiritigenin [21], glycyrrhizin [22],
baicalin [23], and 6-shogaol [24,25], were identified. Because these natural products inhibit the
production of prostaglandin E2 (PGE2), they can be used as a direct protection of oral epithelial
cells [21-25]. In this review, we have focused on advanced glycation end-products (AGEs)
associated with LSRDs, including diabetes mellitus (DM), cardiovascular disease (CVD), hy-
pertension, fatty liver, and stomatitis [26-29]. AGEs originate from saccharides (e.g., glucose
and fructose), their metabolites, and non-enzymatic production (e.g., methylglyoxal, glyoxal,
and glyceraldehyde) [26-29]. These compounds react with proteins to produce AGEs; how-
ever, methylglyoxal, glyoxal, and glyceraldehyde can also be produced from lipids such as
glycerol. Consequently, the definition of AGEs may be modified in the future [26-29]. Three
major free types of AGE, N¢-carboxymethyl-lysine (CML), N¢-carboxyethyl-lysine (CEL),
and N°-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine (methylglyoxal-hydro-imidazolone,
MG-H1), which are modified proteins, have been reported. These AGE-modified proteins
are generated in the human body, and their dysfunction might affect various LSRDs [26-29].
Intracellular AGEs can be generated and accumulate in oral epithelial cells and esophageal
and gastric epithelial cells [30-32]. Consequently, intracellular AGEs may induce diseases
such as stomatitis. In contrast, extracellular AGEs, which are leaked into body fluids such
as blood, urine, and saliva from various cells that produce intracellular and dietary AGEs,
can induce cytotoxicity via receptors for AGEs (RAGE) and toll-like receptor 4 (TLR4) [26-29].
The major dietary AGEs are CML, CEL, and MG-H1 [10,27-29]. RAGE and TLR4 are ex-
pressed on oral epithelial cells and other cells in various organs [33-35]. Extracellular AGEs
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can be transported and expressed on oral epithelial cells, and the AGEs-RAGE/TLR4 axis
induces cytotoxicity such as inflammation [33-35]. Extracellular AGEs can cause stomatitis;
consequently, this review has focused on natural compounds that can suppress stomatitis.
Specifically, the natural products in Hangeshashinto water extract are reviewed, and examples
such as liquiritigenin [36], glycyrrhizin [37], baicalin [38,39], and 6-shogol [40—42], which
inhibit the production of AGEs in vitro and suppress the AGEs-RAGE/TLR4 axis signal-
ing, are discussed. The literature on natural products in seven crude drugs (Hange, Ogon,
Oren, Ninjin, Kankyo, Taiso, and Kanzo), which are contained in Hangeshashinto, has also
been reviewed. We discuss the natural products in each crude drug, such as quercetin [43],
epigallocatechin-3-gallate [44], genistein [45], jasmonic acid [46], and gallic acid [47]. The
relationship between each compound that occurs or promotes LSRDs and Kampo medicines
remains unclear, although the effects of Kampo medicines have been revealed [10].

2. Various Types of Stomatitis

Stomatitis can be caused by various factors (Figure 1). Traumatic stomatitis can be caused
by a traumatic physical stimulation, such as a burn [1,48], which causes oral epithelial cells to
peel off. In contrast, aphthous stomatitis is characterized by ulcers, insomnia, psychological
stress, and other factors, such as the excessive intake of saccharides and lipids, and we predict
that AGEs specifically can induce stomatitis (See Section 6). Although the mechanisms of
aphthous stomatitis remain unclear [2,49], diagnosis has been performed when an obvious
factor in the patient’s mouth or other organs is not observed. Viruses and bacteria can
cause herpetic and candidal stomatitis [50-53]; however, inflammation is usually induced
to inhibit their proliferation. Protection against virus and bacteria proliferation is associated
with lifestyle, and related stomatitis may be due to LSRDs. Nicotine is one of the main
chemicals in all forms of tobacco [54,55]. Nicotine stomatitis, a LSRD, is characterized by an
oral lesion, usually located on the hard palate, which develops due to the heat and chemical
irritation caused by tobacco products. Vitamin B; deficiency inhibits the recovery of oral
epithelial cells against damage and induces stomatitis [56]. Furthermore, vitamins By, Bg,
and By, are required to produce proteins in oral epithelial cells and maintain metabolism,
and thus, deficiencies in these vitamins may also induce stomatitis [56,57]. We believe that
cases of stomatitis induced by By, By, B, and By deficiencies should be classified as LSRDs.
Chemotherapy and radiation treatments for cancer suppress the oral epithelial cell cycle, and
consequently, damaged cells can induce inflammation leading to stomatitis [3,4]. Furthermore,
suppression of the immune system in oral epithelial cells can also promote the proliferation of
viruses and bacteria, which can also lead to stomatitis. Because chemotherapy and radiation
do not occur in daily life, these cases are not classified as LSRDs [3,4,8,15].

Traumatic stomatitis Nicotine stomatitis

Aphthous stomatitis \\\

o i Effects of lack of
Herpetic stomatitis Stomatitis eics
erpetic stomatiti vitamin B,, B,, B,
o 7 and B,,
Candidal stomatitis ~ / \
Side effects of Intra-/extracellular
chemotherapy and AGEs stomatitis

radiation for cancer

Figure 1. Types of stomatitis. Traumatic stomatitis [1,48], aphthous stomatitis [2,49], herpetic
stomatitis [50,51], candidal stomatitis [52,53], nicotine stomatitis [54,55], lack of vitamin By, B,, Bg,
and By, [56,57], and intra-/extracellular AGEs stomatitis are described in this review (see Section 6).
The black line indicates that each case of stomatitis is confined to the clinical stage.
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3. Treatment of Stomatitis with Hangeshashinto and Predicted Mechanisms
3.1. Traditional Chinese and Kampo Medicines

To describe the Hangeshashinto treatment for stomatitis, we first introduce the re-
lationship between traditional Chinese medical science and Kampo, which is traditional
Japanese medicine [58-62]. Traditional Chinese medical science, which includes health
preservation (healthy diet and exercise) [63], diagnosis [62,64,65], moxibustion [66], cup-
ping [67,68], acupuncture [69-71], and crude drugs (natural medicines) [6,64,65,72-74],
has been used for approximately 3000 years. The practices migrated to Japan during the
ancient and middle periods, directly from the Chinese mainland via the Korean peninsula.
They were adapted to the Japanese population, land, and medical plants, and renamed
Kampo [59-62]. “Kam” or “Kan” in Japanese means “Han” in Chinese, referring to the
ancient Chinese empire (from the third-century BC to the third-century AD), and “po”
refers to the method of diagnosis and treatment (Figure 2a). Various traditional Chinese
medicines involving plants, animal tissues, and minerals are used in Kampo [59-62,75,76].
Ban-Xia-Xie-Xin-Tang, a set of seven crude drugs, was one of the treatments adopted
by Kampo, and referred to as Hangeshashinto (Table 1) [5-8,11]. In traditional Chinese
medical science, Ban-Xia-Xie-Xin-Tang is orally administered, used as a gargle, and as a
coating on the oral squamous [11]. The gargle and coating onto the oral squamous cells
of Hangeshathinto are described in the Japanese Pharmacopoeia, which includes registered
Kampo medicines (Figure 2b) [5-8]. This review has focused on the use of Hangeshashinto
as a gargle and coating on oral squamous cells (see Section 3.2).

a b

Ban-Xia-Xie-Xin-Tang

Traditional Chinese (Chinese name)

Medical Science

(TCMS) Oral administration
Gargle

Health Preservation )
(Healthy Diet and Excise) Coating on Oral Squamous
Diagnosis Export and l
Moxibustion Instruction
Cupping Treatment Modification l
Acupuncture

Hangeshashinto

Crude Drugs (Natural Medicines) (Japanese name)

Export and l
Instruction Oral administration
Gargle
Modiﬂcationl Coating on Oral Squamous
Modification
Kampo (e.g. Medication Dosage)

Figure 2. Relationship between traditional Chinese medical science (TCMS) and Kampo, and specifically,
the Hangeshashinto (Ban-Xia-Xie-Xin-Tang) treatment [5-8,11,59-62]. (a) TCMS was exported and
instructed into antient Japan from antient China, and was modified to “Kampo” in Japan. (b) Ban-Xia-
Xie-Xin-Tang and the infrmomation of the method of treatment were exported and instructed into antient
Japan from antient China. Ban-Xia-Xie-Xin-Tang (Chinese name) had been called Hangeshashinto in
as Japanese name. Pink and green squares indicate TCMS and Kampo (traditional Japanese medicine),
respectively. Ban-Xia-Xie-Xin-Tang and Hangeshashinto are composed of the same components. Hange-
shashinto is generally administered as an oral treatment; however, gargling and coating of the oral
squamous cells were used in ancient practice. Blue arrow indicate the medical science, medicine, and
information of treatment of antient China were exported and instructed into antient Japan, and they
were modified in Japan. Red term indicate the important and focued treatment compared with other
treatment of the traditional Chinese and Japanese meidicines (See Section 3.2).
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Table 1. Crude drugs obtained from Hangeshashinto, including Hange, Ogon, Oren, Kankyo, Ninjin,
Kanzo, and Taiso. The names of crude drugs are described using Japanese, English, and Latin names.

No. Japanese Name English Description Description of Latin Name

1 Hange Pinellia tuber Tuber of Pinellia ternate Breitenbach, Araceae

2 Ogon Scutellaria root Root of Scutellaria baicalensis Georgi, Labiatae

3 Oren Coptidis rhizome Rhizome of Coptis japonica Makino, Ranueculaceae

4 Kankyo Ginger rhizome Steamed rhizome of Zingiber officinale Roscoe, Zingiberaceae
5 Ninjin Ginseng root Root of Panax ginseng C.A. Meyer, Araliaceae

6 Kanzo Glycyrrhiza root Root or stolon of Glycyrrhiza uralensis Fischer, Laguminosae

7 Taiso Jujube fruit Fruit of Zizpbus jujura Miller var. inermis Pehder, Rhamnaceae

3.2. Hangeshashinto (Ban-Xia-Xie-Xin-Tang) Treatment Effects and Mechanisms

Many Kampo medicines are orally administered water extracts from crude drugs [73,74].
This includes the Hangeshashinto water extract, which is a dry powder (dry powder
quality is regulated in the Japanese Pharmacopoeia) used to treat oral squamous cells, gut
dysfunction, dyspepsia, vomiting, and nausea [5-8,11]. Hangeshashinto water extract has
anti-oxidation, anti-inflammation, anti-bacteria, tissue recovery, pain relief, and intestinal
bacteria induction effects [5-8,11,16,77]. However, the detailed mechanism has not yet been
revealed because its various natural products are digested, absorbed, and metabolized in
the body’s organs [10]. We predicted that the extract components would directly induce
anti-oxidation, anti-inflammation, anti-bacterial, and pain relief when used as a gargle and
coating for oral epithelial cells; however, this will require further investigation to elucidate
fully [6,7,10,16,77]. Oh et al. reported that Hangeshashinto suppressed the expression of
interleukin (IL)-6 and 8 in CAL27 (a human oral epithelial cell line) treated with Porphy-
romonas gingivalis pathogen-associated molecular pattern (PAMP) [6]. Hato et al. revealed
that Hangeshashinto suppressed the expression of IL-1cc and human {3-defensin 1 in normal
human oral keratinocytes, which were stimulated with lipopolysaccharide [7]. Hangeshas-
nito inhibited cyclooxygenase (COX)-2 and suppressed the production of prostaglandin
E; (PGEy) [16]. A scratch and cell migration test using normal human oral keratinocytes
by Uezono et al. revealed that Hangeshashinto induced the secretion of the C-X-C motif
chemokine ligand (CXCL) 12 from cells, and secreted CXCL 12 combined with C-X-C
chemokine receptor 4 (CXCR4) to promote migration [77]. This effect was mediated by the
phosphorylation of extracellular signal-regulated kinase (ERK), and the activity of ERK
was associated with increased CXCL12 expression.

3.3. Natural Products in Hangeshashinto and Their Anti-Inflammation Effects

Ohetal. and Endo et al. analyzed the components in Hangeshashinto water extract us-
ing 3D-HPLC and identified approximately twenty natural products [6,20]. They classified
flavonoid, chalcone, alkaloid, and gingerol groups. The flavonoids included liquiritin [6],
liquiritin apioside [6], wogonin [6,20], wogonin-7-O-glucuronide [6], baicalin [20], orxylin
A [6], and orxylin-7-O-glucuronide [6]. The chalcones included isoquritin [6], isoliquiritin
apioside [6], and isoquitigenin [6]. The alkaloids included palmatine [6], berberine [6],
epiberberine [6], jateprrhizine [6], coptisine [6], and magnoflorine [6]. The triterpene group
included glycyrrhizin (glycyrric acid) [6,22]. The gingerol group (one of the monophe-
nolic acid groups) included 6-gingerol [20] and 6-shougaol [6]. The structures of these
natural products are presented in Figures 3-6. Because the Hangeshashinto water ex-
tract inhibited COX-2 and suppressed the production of PGE, [16], we surveyed reports
on natural products that show inhibition of COX-2 and suppression of PGE, produc-
tion. Liquirtin [78], liquiritin apioside [79], liquiritigenin [21], worgonin [16,80], baicalin
(baicalein-7-O-glucuronide) [16,23,80], orxylin A [81], isoquritin [82], isoquitigenin [82],
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palmatine [83], berberine [84], epiberberine [85], coptisine [86], glycyrrhizin [22], mag-
noflorine [87], 6-gingerol [16,24,88], and 6-shougaol [16,24,25] can inhibit COX-2 and/or
suppress the production of PGE,. Because the Hangeshashinto water extract contains a
high concentration of natural compounds, it cannot be suggested with certainty that these
identified compounds are the sole cause of the inflammatory effects [6,20]. However, these
results may help elucidate the mechanisms of Hangeshashinto.

oroxylin oroxylin-7-O-glucoside

Figure 3. Flavonoid compounds obtained from the Hangeshathito water extract [6,20]. Liquir-
itin [6], liquiritin apioside [6], wogonin [6,20], worgonin-7-O-glucuronide [6], baicalin (baicalein-7-O-
glucuronide) [6], oroxylin [6], and oroxylin-7-O-glucoside [6].

OH O OH O OH
OH
HO OH HO (@) (0]

isoliquiritigenin isoliquiritin
OH O :/OH
~_LOH
O,
HO 0" ™Y "oH
(0]
o}

isoliquiritin apioside
Figure 4. Chalcon compounds identified in the Hangeshashinto water extract [6]. Isoquritin [6],
isoliquiritin apioside [6], and isoquitigenin [6].
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(0]
e
H3CO HsCO N
OCHj,4 OCHj,4
palmatine berberine
OCHj,
H,CO OH
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°> H3CO =
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epiberberine jatrorrhizine
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X O,

O>
o

coptisine magnoflorine

Figure 5. Alkaloid compounds obtained from the Hangeshathito water extract [6]. Berberine [6],
epiberberine [6], jateprrhizine [6], coptisine [6], and magnoflorine [6].

a

2
o ©
HO" ‘OH o
OH glycyrrhizin
O OH o)
HacoD/\)‘\/k/\/\ H3COI>/\/U\/\/\/\
HO HO
6-gingerol 6-shogaol

Figure 6. Triterpene and gingerol groups (one of the monophenolic acid groups) obtained from the
Hangeshashinto water extract. [6,20,22]. (a) Glycyrrhizin [6,22], (b) 6-gingerol [20], and 6-shogaol [6].
4. AGEs

4.1. AGE Origins

Saccharides, saccharide metabolites, and their non-enzymatic reaction products react
with proteins to generate AGEs via the Maillard reaction [26-29,89-92]. We introduce
glucose [26-29,93,94], fructose [26-29,93,94], melibiose [95], and ribose [96,97] as major
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saccharides (Figure 7), and glyceraldehyde, glycolaldehyde, methylglyoxal, glyoxal, and
3-deoxyglucosone as metabolites and non-enzymatic reaction products of saccharides
(Figure 8) [26-29]. Because fructose can be generated from glucose via the polyol pathway
and methylglyoxal can be produced from glyoxal, the production routes of AGEs are
intertwined [26-29]. However, we should consider the definition of AGEs because some
AGEs may be advanced lipoxidation end-products (ALEs) [29]. AGEs can also be produced
from lipids, such as methylglyoxal, which can be made from glycerin [98,99].

OH OH OH O
HO™ ™ 2 HO™ ™ CH
OH OH OH OH
glucose fructose
HO
B (0] OH OH OH OH
HO” Y 07 7° HO\/'\_/'\¢O
OH OH OH OH
melibiose ribose

Figure 7. Major saccharides involved in the generation of AGEs. Glucose [26-29,93,94], fructose [26—
29,93,94], melibiose [95], and ribose [96,97].

HO
\
HO 0]
glyceraldehyde
5 5 oH #°
HO CHj
\ \
\_\\ \_< \_\\ HO o)
O 0] 0 OH
glycolaldehyde methylglyoxal glyoxal 3-deoxyglucosone

Figure 8. The metabolites and non-enzymatic reaction products of glucose, fructose, and ri-
bose. AGEs are generated from glyceraldehyde, glycolaldehyde, methylglyoxal, glyoxal, and 3-
deoxyglucosone [26-29]. The open red square identifies a triose.

4.2. Free AGEs

While AGEs can react with proteins to generate AGEs via the Maillard reaction, they can
also react with amino acids to produce free-type AGEs (Figures 9 and 10) [26-29]. We intro-
duced AGEs that were detected and identified in human and/or animal tissues/cultured cells,
and body fluids, such as blood, saliva, and urine (Figure 9) [26-29,100-103], and AGEs syn-
thesized in a tube [104], whose structure had been hypothesized [105] (Figure 10). Although
the AGEs in Figure 9 are the major free types, CML, CEL, MG-H1, methylglyoxal-derived imi-
dazolium cross-link (methylglyoxal-lysine dimer, MOLD), and pentosidine in the blood and
urine have been selected as biomarkers for LSRDs or a dairy diet (see Section 4.5.5). Shigeta
et al. reported that pyrrolopyridinium-lysine dimer-derived glyceraldehyde 1 and 2 (PPG1
and PPG2) were synthesized from glyceraldehyde and N*-acetyl-lysine in the tube [104].
However, there are no reports that PPG1 and PPG2 were detected in vivo. Takeuchi et al.
hypothesized the structure of two glyceraldehyde-derived AGEs, which they named “Toxic
AGEs (TAGE)” in 2004; however, the structure has not been proved [105].
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Figure 9. Free-type AGEs [26-29]. (a) Free-type AGEs with one amino acid residue. CML, N¢-
carboxymethyl-lysine; CEL, N¢-carboxyethyl-lysine; GLAP, glyceraldehyde-related pyridinium;
GA-pyridine; argpyrimidine; GH-1, N°-(5-hydro-4-imidazolone-2-yl)-ornithine (glyoxal-hydro-
imidazolone); MG-H1, N°-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine (methylglyoxal-hydro-
imidazolone). (b) Free-type AGEs with two amino acid residues. MOLD, methylglyoxal-derived
imidazolium cross-link (methylglyoxal-lysine dimer); pentosidine; glucospane; GODIC, glyoxal-
derived imidazolium cross-link; MODIC, methylglyoxal-derived imidazolium cross-link; and DODIC,
3-doxyglucosone-derived imidazolium cross-link.
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Figure 10. Free-type AGEs were synthesized in a tube, and their structure was predicted [104,105].
(a) PPG1, pyrrolopyridinium-lysine dimer-derived glyceraldehyde 1; PPG2, pyrrolopyridinium-—
lysine dimer-derived glyceraldehyde 2. They were synthesized from glyceraldehyde and N*-acetyl-
lysine in the tube in 2020, but were not detected in vivo in 2025 [104]. (b) 1,4-dihydropyrazine
compounds 1 and 2 were named as “Toxic AGEs (TAGE)” by Takeuchi et al. They hypothesized the
structure of TAGE; however, it has not been proved [105].
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4.3. Previous AGE Categories and Potential Improvements

In the middle of the 20th century, a classical category for AGEs was established [26-29].
Glucose-, glyceraldehyde-, glycolaldehyde-, methylglyoxal-, glyoxal-, and 3-deoxyglusone-
derived AGEs were named based on their original compounds as follows: AGE-1, -2, -3,
-4, -5, and -6 [26-29]. However, Litwinowicz et al. detected and quantified melibiose-
derived AGEs (MAGE) and determined that MAGE should be categorized as AGE-10 [95].
In contrast, one AGE can be generated from various origin compounds, such as CML,
which is generated and produced from glucose, ribose, glycolaldehyde, and glyoxal
(Figure 11) [28,96,97]. In the future, AGE categories based on the original compounds
may be improved. Some researchers have suggested a unique category based on cytotoxic-
ity and/or LSRDs [105-108]. Takeuchi et al. named a GA-AGE which was recognized by
a polyclonal antibody they prepared, as “TAGE” in 2004; however, the structure emains
unclear [105]. Shmkova et al. focused on the pridinium moiety of both glyceraldehyde-
and glycolaldehyde-derived AGEs and named them as TAGE [106]. Shen et al. suggested
that glyceraldehyde-, glycolaldehyde-, methylglyoxal-, and 3-deoxyglucosone-derived
AGESs should be categorized as TAGE because they could directly induce cell damage [107].
Furthermore, Lee et al. used a cytotoxicity analysis to determine that MOLD is a typical
TAGE [108].
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Figure 11. Various routes in the production of CML from glucose and ribose [28,96,97]. Gly-
oxal and glycolaldehyde are produced through enzymatic reaction and autooxidation. CML, N¢-
carboxymethyl-lysine.

4.4. Structure of AGE-Modified Proteins

AGEs can exist as AGE-modified proteins or animals in the organs [109-112] and body
fluids of humans and animals [113-115]. Various methods have been used to identify the
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structures of AGE-modified proteins, including electrospray ionization-mass spectrometry
(ESI-MS) and matrix-assisted laser desorption/ionization MS (MALDI-MS) analysis (see
Section 4.6) [109-112,116,117]. Some AGEs, including free types, can be modified into
one molecular protein, as shown in Figure 12a [27-29]. Because free-type AGEs generally
have modified lysine or arginine residues in amino acid sequences, the location is limited
compared with the number of whole amino acids. Although ESI-/MALDI-MS can be used
to elucidate this structure, the operation is complex because the peptide that contains more
than two free-type AGEs must be detected and identified [27-29]. In contrast, free-type
AGEs, which include more than two lysine and/or arginine residues, show the potential of
the free-type AGE structure in terms of intra-/intermolecular covalent bonding for proteins
(Figure 12b) [27-29]. In this structure, we believe ESI-/MALDI-MS analysis should be used
for identification; however, we understand the limitations of MS technology. The protein
database of the ESI-/MALDI-MS equipment cannot be used to detect the structures of
peptides that originate from complex proteins combined with free-type AGEs [27-29]. In
contrast, researchers cannot prove this structure with only anti-AGE antibody analysis. If
an anti-AGE antibody recognizes a protein epitope, it does not confirm the difficulty of the
inter- or intramolecular covalent bonding capacity [27-29,118] (Figure 12b).

protein Y protein Z

protein X

Figure 12. AGE-modified proteins [27-29]. Blue circles indicate the amino acids in proteins X, Y, and
Z. Black and red indicate the number of amino acids. (a) AGEs, including free types, can be modified
into one molecular protein, X. CEL, Ne-cassrboxyethyl-lysine; Arg-P, argpyrimidine; CML, Ne-
carboxymethyl-lysine; MG-H1, N®-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine (methylglyoxal-
hydro-imidazolone). (b) D1 and 2; model of free-type AGEs that contains two amino acid residues.
Proteins Y and Z are linked with D1 via an intermolecular covalent bond. D1 connected both 5th in
protein Y and 6th in protein Z. In contrast, the 7th and 15th amino acids in protein Y are associated
with D2 via an intramolecular covalent bond.

4.5. Intra-/Extracellular AGEs and LSRDs
4.5.1. Intracellular AGEs and LSRDs

AGEs are generated from saccharides, their metabolites, and non-enzymatic pro-
duction in the cultured cells [116,119]. Sanavirathna et al. analyzed intracellular AGEs
in a pancreatic ductal cell line (PANC-1) treated with glyceraldehyde, and identified
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argpirimidine-, MG-H1-, and GLAP-modified proteins [116]. The functions of these pro-
teins may be affected by AGE modification. Takahashi et al. reported that intracellular
CML-modified proteins increased in a human proximal tubular cell line (HK-2), which
was incubated in a high glucose medium, had an Atg5 knockdown, and lysosome function
was suppressed by intracellular glucose-derived AGEs [119]. Although their results were
in vitro, they indicate a relationship between intracellular AGEs and LSRDs. In contrast,
various AGEs (e.g., MG-H1, G-H1-modified proteins) were detected in cardiac tissues of
patients (age >75 years) or patients with diabetes mellitus [109-111]. These AGEs may
suppress cardiomyocyte function to induce CVD. The skeletal muscle in the obese mouse
that ingests high-fat and high-saccharide foods accumulated CML- and CEL-modified
proteins, and they were associated with adipose degeneration of skeletal muscle [120].
Furthermore, the accumulation of CML and CEL may induce sarcopenia.

4.5.2. AGEs in the Extracellular Matrix and LSRDs

Pentosidine-modified collagens are AGE-modified extracellular matrix proteins [29,121,122].
Intracellular collagens may be modified with free-type AGEs, such as pentosidine, and
then secreted and released. Extracellular AGE modification may also occur. Pentosidine-
modified collagen showed the dysfunction and may induce [29,121,122].

4.5.3. AGEs in the Blood, Urine, Saliva, and LSRDs

AGEs, including free types, and AGE-modified proteins have been detected in
blood [29,123-125], urine [29,126], and saliva [29,101]. Many researchers believe that
AGEs in the body fluid leak into the blood and lymph vessels, and renal tubules from
cells where intracellular AGEs were generated [29]. However, we suggest that AGEs
may be generated in the blood/lymph vessel and renal tubule due to the detection of
glyceraldehyde [127,128], glycolaldehyde [129], methylglyoxal [130], and glyoxal [130] in
the blood. Because these compounds rapidly react with amino acids or proteins, some
AGEs may be generated in the blood /lymph vessels and renal tubules. Furthermore, AGEs
in foods and beverages have been reported as dietary AGEs (see Section 4.5.4). Various
organs, such as the liver, heart, lung, gut, and oral squamous cells, express RAGE and TLR4;
AGEs-RAGE/TLR4 signaling can induce dysfunction and cytotoxicity, such as excess in-
flammation [33-35,131-134]. In contrast, Wang et al. reported that glyceraldehyde-derived
AGEs-modified bovine serum albumin, which was the model of AGEs and might contain
various AGEs in the blood, induced dysfunction of cardiomyocytes via the suppression of
ryanodine receptor 2 activity [135]. Lee et al. revealed that glyoxal-derived imidazolium
cross-link (glyoxal-lysine dimer, GOLD) and MOLD induced oxidative damage and in-
flammation by interacting with RAGE [108,136].

4.5.4. Dietary AGEs and LSRDs

Various types of saccharides are contained in foods and beverages, and they are
processed using heat treatments in factories and homes [28,89,133,137,138]. While mul-
tiple types of AGEs (free-type AGEs and AGE-modified proteins) can be produced, we
acknowledge that CML, CEL, and MG-H1 are widely produced in many foods and bev-
erages [89,133]. Many researchers believe that the AGEs detected in the body fluid will
include dietary AGEs, and the AGEs-RAGE/TLR4 axis induces inflammation in various
organs, promoting LSRDs such as cancer and gut ulcer [133,137].

4.5.5. AGEs in the Body Fluid as a Biomarker for LSRDs and Dietary Lifestyle

To diagnose LSRDS, such as non-alcoholic heptosteatosis (NASH), hyperuricemia,
high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
uric acid, creatinine, IL-1f3, IL-6, IL-10, and urinary pH, have been measured in the blood
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and urine [139,140]. Because AGEs in the blood, urine, and saliva can be detected in humans
and animals, various researchers have suggested their use as LSRD [29,95,114,115,140,141]
and dietary lifestyle biomarkers [137,138]. Litwinowicz et al. suggested that MAGE in
the blood could be a beneficial biomarker for alcoholic hepatitis [95] and insisted that it
should be categorized as AGE-10 [95]. CML and MG-H1 are reduced in the blood after
kidney transplantation and can thus be used as biomarkers for kidney function [114]. Kato
et al. reported that MG-H1, but not CML, CEL, and N¢®-carboxymethyl-lysine (CMA),
was elevated in the blood of patients with nephropathy [141]. CML and CEL in the blood
increased in obesity model mice fed high-fat and high-sugar diets [114], and various types
of AGEs (each structure was not identified) in the blood of NASH model mice were also
increased [142]. In contrast, CML, CEL, and MG-H1 in the blood reflect the intake of dietary
AGEs and can be used as biomarkers for dietary lifestyle [137,138].

4.6. Identification and Quantification of AGEs

We introduce fluorescence, immunostaining, slot blotting, Western blotting, ELISA,
GC-MS, ESI-/MALDI-MS, and nuclear magnetic resonance (NMR) as methods to identify
and quantify AGEs [26-29]. AGEs are generally excited at a wavelength of approximately
370 nm, and fluorescence is emitted at approximately 440 nm [143,144]. Although flu-
orescence cannot be used to differentiate between different AGE structures, it can be
used to quantify AGEs in the human skin and blood under non-invasive conditions,
and is a beneficial analysis for clinical operations [144]. To analyze basic AGE research,
HPLC and fluorescence can be combined, as well as hydrophilic interaction liquid chro-
matography (HILIC) [145]. Immunostaining, slot blotting, Western blotting, and ELISA
analysis generally require anti-AGE antibodies [26-29]. Although immunostaining, slot
blotting, and ELISA can be used to quantify AGEs, they cannot be used to analyze their
molecular structures [26-29]. In the quantification with slot blot analysis, we believed
that Takata’s method is beneficial because their lysis buffer (or modified Takata’s lysis
buffer) promotes suitable probing of AGE-modified proteins onto polyvinylidene diflu-
oride (PVDF) membranes [26,146-149]. This method was selected in thirteen studies
from 2017 to 2025. Some researchers analyzed fluorescence to quantify AGEs using
immunostaining and the ELISA method without using anti-AGE antibodies [117,150].
Western blotting analysis of AGEs can detect various AGE proteins in cell lysates, tissue
lysates, and body fluids on the PVDF membrane [120,149]. To quantify AGEs with slot
blotting and ELISA, AGE-modified proteins are required, not general recombinant pro-
teins [26,146-148,151]. GC-MS [26,152-155], ESI-MS [26,89,111,123,124,141,156,157], and
MALDI-MS [26,89,111,123,124,141,156,157] were used to analyze the mass of free-type
AGEs and AGE-modified peptides (Figures 10 and 12). Because free-type AGEs (e.g., CML
and CEL) are non-volatile compounds, they should be esterified [26,152-155]. We be-
lieve that ESI- and MALDI-MS analyses are the most suitable for proving that free-type
AGEs are modified on one molecular protein and that AGEs with two amino acid residue
(e.g., pentosidine, MOLD, GOLD) link proteins with intra- and/or intermolecular covalent
bonds, because methods that use fluorescence and anti-AGE antibodies are ineffective
(Figures 10 and 12) [26,109-111,118]. NMR is used for AGE identification, not quantifica-
tion [26,28].

5. Mechanisms of Inhibition of Intra-/Extracellular AGE-Induced
Cytotoxicity by Anti-AGE Compounds

Numerous strategies have been reported for the inhibition of intra-/extracellular AGE-
induced cytotoxicity. The carbonyl trap system and activation of glyoxalase-1 can inhibit the
generation of intracellular AGEs (Figure 13) [27-29]. The former can directly trap the origins
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of AGEs, which include ketone and aldehyde groups (e.g., glucose, fructose, glyceralde-
hyde, glycolaldehyde, methylglyoxal, and glyoxal), and reduce the effects of methylglyoxal
and glyoxal because they are metabolized by glyoxalase-1 (Figures 7, 8 and 13). Researchers
have reported that various compounds show a carbonyl trap system and activation of
glyoxalase-1 [27-29]. Another method that has been investigated involves inhibiting glu-
cose transport into cells. However, glucose and its metabolites /non-enzymatic products
can be generated in cells via the glycolysis and peroxidation of lipids if glucose is not
transported. Although AGEs can be degraded by autophagy and the ubiquitin—proteasome
system [27-29], our understanding of the natural compounds that promote these mecha-
nisms remains unclear. In contrast, anti-AGE compounds may block AGEs-RAGE/TLR4
because they combine with RAGE/TLR4 as antagonists and inhibit the cell signaling
pathway (Figure 13) [27-29].
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Figure 13. Mechanisms of inhibition of intra-/extracellular AGE-induced cytotoxicity [27-29]. The
pink square represents a cell. Blue circles indicate anti-AGE compounds. Brown circles and squares

protem

\glyceraldehyde glycolaldehyde

indicate full-length RAGE or TLR4. Orange squares indicate protein. The yellow hexagrams indicate
AGEs. The yellow circles indicate degraded AGEs. Black arrows indicate the Maillard reaction
and other non-enzymatic reactions involving proteins and AGE precursors (e.g., methylglyoxal,
glyoxal, glyceraldehyde, glycolaldehyde). The red arrow indicates activation of GLO-1. The green
arrow indicates the carbonyl trap system. The gray arrow indicates AGE degradation via autophagy
or the ubiquitin-proteasome system. The blue arrow indicates a cell signaling pathway to induce
inflammation. The black line indicates inhibition effects. AGE, advanced glycation end-products;
RAGE, receptor for advanced glycation end-products; TLR4, toll-like receptor 4. GLO-1, glyoxalase-1.

6. Potential of AGE-Induced Cytotoxicity and Dysfunction for Oral
Squamous Cells

6.1. Potential of Intracellular AGE-Induced Cytotoxicity and Dysfunction for Oral Epithelial Cells

Oral epithelial cells are located on the oral squamous and typically undergo rapid
turnover within 7-14 days [158]. Although intracellular AGEs have not been identified
or quantified in oral epithelial cells, existing information about esophageal and gastric
epithelial cells indicates that they can be generated and accumulate in oral epithelial
cells [10,30-32,159]. Esophageal cells are remarkably similar to oral epithelial cells, and
Yokoyama et al. reported that the condition of oral epithelial cells may reflect the risk of
esophageal epithelial cells [159]. In contrast, intracellular AGEs such as CML and CEL
in the esophageal epithelial cells increased in Goto—Kakizaki rats (DM model rats) [31].
The turnover period for gastric epithelial cells is similar to that of oral epithelial cells
(7-14 days) [10]. Wang et al. revealed that intracellular AGEs were generated and accumu-
lated to induce damage in gastric epithelial cancer cells and promote tumor formation [32].
Oya-Ito et al. reported that MGO-AGE-modified HSP27 was increased in RGK-1 cells (hu-
man gastric epithelial cell line) incubated with high glucose medium, and this MGO-AGE
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modification may be associated with the phosphorylation of HSP27 [30]. Because phospho-
rylation regulates the activity of HSP27, which suppresses apoptotic proteins and works
as a chaperone system, MGO-AGE modifications may affect these functions [30]. Because
glucose and fructose can be transported into oral epithelial cells as well as esophageal and
gastric epithelial cells, we believe that intracellular AGEs can be generated and accumulate
in oral epithelial cells. The phenomenon of intracellular AGEs in the oral epithelial cells
should be further investigated to identify novel oral squamous cell types.

6.2. Potential of Extracellular AGE-Induced Cytotoxicity and Dysfunction for Oral Epithelial Cells

RAGE and TLR4 are expressed on oral epithelial cells as well as other organs [10,33—
35,132]. Because AGEs in the body fluid (e.g., blood and saliva) can directly combine
with RAGE and TLR4, AGEs-RAGE/TLR4 signaling can be induced. To date, there are
no reports analyzing extracellular AGE-RAGE/TLR4 signaling in vitro or in vivo in oral
epithelial cells. Many researchers have tried to elucidate how inflammatory proteins
such as high-mobility group box 1 (HMGB-1) and lipopolysaccharides (LPS) induce in-
flammation and cell dysfunction via the RAGE/TLR4 to investigate inflammation in oral
squamous [10,33-35,132]. However, inflammation stimulated by the AGEs-RAGE/TLL4
axis can be induced on oral epithelial cells as well as other cells in the liver, lung, gut, and
small/large intestine. Oral epithelial cells are more directly exposed to AGEs in saliva and
dietary AGEs than the cells in other organs. Oral squamous cells that induce extracellular
AGEs-RAGE/TLR4 should be further researched, as well as the involved inflammatory
proteins and lipopolysaccharides.

7. Natural Products in Hangeshashinto Water Extract Inhibit the
Generation of Intracellular AGEs in Stomatitis

Some researchers have suggested inhibiting the generation of intracellular
AGEs [28,121,149,160-162] and their degradation via the autophagy and ubiquitin—
proteasome system [163,164]. To inhibit the generation of intracellular AGEs, the
carbonyl trap system can be used against x-carbonyl compounds, the precursors
of AGEs, such as glucose, fructose, glyceraldehyde, methylglyoxal, glyoxal, and 3-
deoxyglucosone (Figures 7, 8 and 13). Furthermore, glyoxalase-1, which can metabolize
methylglyoxal and glyoxal (Figures 8 and 13), can suppress the transportation of glu-
cose into cells [28,121,160-162,165,166]. Although the structures of the natural prod-
ucts that show carbonyl trap systems remain unclear, flavonoid skeletal compounds
(Figure 3) [28,160,161], chalcone skeletal compounds (Figure 4) [28,160,161], alkaloid
(Figure 5) [28,160], resveratrol compounds [28,167], and p-coumaric acid, which is similar
to 6-gengerol and 6-shogaol in Figure 6, exhibit carbonyl trap effects [28,168]. Froldi et al.
found that each glucose, glyoxal, and ribose was incubated with bovine serum albumin
(BSA) in the tube. They also investigated the inhibition effects of baicalin for each glucose-,
glyoxal-, and ribose-derived BSA [169]. Baicalin can inhibit the production of each AGE-
modified BSA. Although Froldi et al. did not suggest whether these effects were induced
by carbonyl trapping, we consider it because baicalin is a flavonoid skeletal compound.
Furthermore, baicalin shows anti-o-glucosidase activity, which inhibits the production of
glucose from polysaccharides and glycoproteins, and reduces the potential that glucose
and its intermediates react with amino acid (e.g., lysine, arginine) residues in proteins [169].
Wang et al. incubated glucose and beef enzymatic treatment solution in a tube and quanti-
fied CML and CEL [36]. In this study, liquiritigenin, liquiritin, and glycyrrhizin inhibited
the generation of both CML and CEL. We predicted that they would show the carbonyl
trapping. In contrast, they were able to reduce the production of both methylglyoxal and
glyoxal, and these results suggest that they activated glyoxalase-1 [36]. Carnovali et al.
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reported that the blood glucose level was reduced with the liquiritigenin treatment [170].
Liquiritigenin can inhibit the generation of intracellular AGEs in three ways [36,170]. Alvi
et al. reported that glycyrrhizin blocked ribose-derived BSA generation in the tube where
ribose and BSA were incubated [37]. Glycyrrhizin belongs to the triterpene structure com-
pound, which contains one carboxylic acid and is glycosylated. The structure may directly
inhibit the production of AGEs, though the mechanism remains unclear. Ahmad et al.
reported that berberine inhibited the methylglyoxal reaction with human serum albumin
(HAS) in a tube [171]. However, glycyrrhizin suppressed glyoxalase-1 in Plasmodium falci-
parum, but its activation up-regulated expression in rats [172-174]. Because glycyrrihizin
was orally administered and may have been digested, absorbed, and metabolized in previ-
ous investigations [173,174], the effects of glycyrrihizin on the oral epithelial cells remain
unclear. Oral epithelial cells treated with glycyrrihizin in vitro or in vivo must be inves-
tigated further to elucidate this issue. Both 6-gingerol and 6-shogaol were introduced as
natural products as the methylglyoxal-trapping materials, and they inhibited the generation
of methylglyoxal-modified proteins and free AGEs, which were derived from methylgly-
oxal [40,41,175]. To inhibit the generation of intracellular AGEs in the oral epithelial cells,
natural products need to directly show their function because target cells are exposed [10].
If natural products inhibit or suppress the generation or accumulation of intracellular
AGEs in vivo, then their metabolism in the small/large intestine may have the same effect.
However, we believe that natural products which inhibit the function or generation of
intracellular AGEs in vitro, such as baicalin [169], liquiritigenin [36,170], liquiritin [36],
glycyrrhizin [36,37], berberine [171], 6-gengerol [40,41], and 6-shogol [40,41,175], should be
investigated further as treatment and prevention strategies for stomatitis because they can
directly affect for the oral epithelial cells.

8. Natural Products Obtained from Hangeshashinto Water Extract
Suppress Extracellular AGEs-RAGE/TLR4 Signaling in Stomatitis

Baicalin may suppress the AGE-RAGE signaling pathway in vitro and in vivo
(Figure 3) [38,39]. Qui et al. reported that baicalin suppressed AGE-RAGE signaling in
a DM animal model treated with streptozotocin [38]. In contrast, Fu et al. isolated and
cultured porcine aortic vascular endothelial (PAVE) cells from ten 30-day-old naturally
farrowed, caryly weaned piglets [39]. Baicalin suppresses RAGE signaling to modulate
apoptosis, and blocking RAGE signaling may be effective when extracellular AGEs are
agonists. Liquiritin attenuates AGEs-RAGE/NF-«kf in human umbilical vein endothelial
cells in vitro (Figure 3) [176]. In contrast, liquiritin apioside and wogonin regulate the AGE-
RAGE signaling pathway in diabetic mice (Figure 3) [177,178]. They were metabolized in
various organs and bacteria following oral administration. However, the results indicate
that liquiritin, apioside, and worgonin obtained from Hangeshashinto water extract may
suppress AGE-RAGE signaling in oral epithelial cells. Isoliquiritigenin suppresses the AGE-
RAGE signaling pathway in vitro and in vivo (Figure 4) [179,180]. Isoliquiritigenin was
previously shown to ameliorate the toxicity of extracellular AGEs on cultured human renal
proximal tubular epithelial cells [179]. This function of isoliquiritigenin may translate to
oral epithelial cells, providing a preventive strategy for stomatitis. Because isoliquiririgenin
was administered orally for db/db mice in the latter investigation, the resulting metabolites
may inhibit the AGE-RAGE axis [180]. Shi et al. did not indicate if isoliquiritigenin or its
metabolites exhibit this function; however, their investigation introduced the potential that
isoliquiritigenin may suppress the AGE-RAGE axis in stomatitis. Goto et al. reported that
berberine improves the high-mobility group box-1 (HMGB1)-RAGE or -TLR4 axis in a rat
cardiomyocyte cell line (H9C2) in vitro (Figure 5) [181]. HMGB1 and other proteins can
activate RAGE and TLR4 to induce inflammation and cell dysfunction, and AGE-modified
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proteins are contained within their agonists. In contrast, Jiang et al. reported that berberine
modulated AGE-induced ferroptosis in both human keratinocyte cell lines (HaCaT cells)
and the skin of db/db mice [182]. We predict that berberine will modulate AGE-induced
ferroptosis in oral epithelial cells and their metabolites, which may exhibit similar effects.
Fan et al. reported that glycyrrhizin inhibits the HMGB1-RAGE axis in various tumor cells
(Figure 6) [183]. While Fan et al. did not suggest that glycyrrihizin blocked the AGEs-RAGE
axis, it may show this function because RAGE can combine various types of AGE-modified
proteins. Furthermore, 6-shogaol inhibited AGE-induced IL-6 and intracellular adhesion
molecule 1 (ICAM1) expression on human gingival fibroblasts in vitro. The 6-shogaol
suppressed AGE-induced RAGE expression and activation of MAPKs/NF-kf3 signaling
(Figure 6) [42]. We believe that 6-shogaol inhibits AGE-RAGE signaling, but the effect may
not be direct, because the ratio of the AGE-RAGE combination may be reduced.

9. Beneficial Natural Products in Seven Crude Drugs Obtained
from Hangeshashinto

Plant leaves, blanch, roots, seeds, and seed vessels contain high levels of natural
products [184,185]. The various solvents (e.g., water, water/methanol, ethanol, acetone)
that can be extracted from plants also contain natural products; however, they have not yet
been fully elucidated. Oh et al. and Endo et al. identified approximately 20 components in
Hangeshashinto water extract using 3D-HPLC [6,20]. The identified compounds are not
necessarily present in high concentrations in the extract. Because researchers generally
divide individual natural products using the retention times and absorption/excitation
wavelengths with 3D-HPLC, the compounds whose retention times and wavelengths
are different from those of other compounds are more likely to be isolated. The natural
products in each crude drug (tuber of Pinellia ternate Breitenbach, Araceae; root of Scutellaria
baicalensis Georgi, Labiatae; rhizome of Coptis japonica Makino, Ranueculaceae; steamed
rhizome of Zingiber officinale Roscoe, Zingiberaceae; root of Panax ginseng C.A. Meyer,
Araliaceae; the root or stolon of Glycyrrhiza uralensis Fischer, Laguminosae; and fruit of
Zizpbus jujura Miller var. inermis Pehder, Rhamnaceae) obtained from the Hangeshashinto
water extract must be further investigated (Table 1) [186]. We introduce natural products
obtained from each extract of crude drug in Hangeshashinto, which were extracted with
various solvent such as water, ethanol, and methanol, and review their functions, including
the inhibition of the generation of intracellular AGEs, and suppression of extracellular
AGEs-RAGE/TLR4 signaling (see Sections 10 and 11), using the “Standards of Reporting
Kampo Products (STORK)” database which was established by Japanese researchers [186].

10. Natural Products in the Crude Drugs Obtained from Hangeshashinto
That Inhibit the Generation of Intracellular AGEs

Natural products in plants can suppress the generation of intracellular AGEs. We
introduced quercetin, chrysin, genistein, (+)-catechin, (—)-epicatechin, epigarocatechin-3-
gallate, hesperidin, imperialine, curcumin, piperine, diphylorethohydroxyarmalol, and
resveratrol in Figure 14 [28,121,160,161,187]. These natural products are involved in the
carbonyl trap system, where they remove AGE-origin compounds [28,121,160,161,187].
In contrast, curcumin and resveratrol inhibit glyoxalase-1 to promote the generation of
glyoxal- and methylglyoxal-derived AGEs. However, the carbonyl trap system can trap
them to suppress the generation of AGEs [162]. Although the main effects of curcumin and
resveratrol for oral epithelial cells remain unclear, we believe that they should be considered
as candidates for natural products for the suppression of AGE-induced cytotoxicity. We
reviewed whether these natural products were detected and isolated in each crude drug
obtained from Hangeshathinto (Table 2) [188-206].
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Figure 14. Natural products obtained from various plants that inhibit the generation of intracellular
AGEs [28,121,160,161,187]: (a) quercetin, (b) chrisin, (c) genistein, (d) (+)-catechin, (e) (—)-epicatechin,
(f) epigallocatechin-3-gallate, (g) p-hydroxy cinnamic acid (p-coumaric acid), (h) aspalatin, (i) resvera-

trol, (j) hesperidin, (k) imperialine, (1) curcumin, (m) piperine, and (n) diphlorethohydroxycarnalol.

Table 2. Crude drugs obtained from Hangeshashinto and their natural products can inhibit the

generation of the intracellular AGEs to attenuate cytotoxicity. The crude drug names are described

using Japanese and Latin names.

No. Japanese Name Description of Latin Name Natural Product Reference
Tuber of Pinellia ternate . . . .
1 Hange Breitenbach, Araceae No information No information
quercetin [188,189]
genistein [190,191]
Root of Scutellaria baicalensis (+).-catech1n . [192,193]
2 Ogon Georei. Labiatae epigallocatechin-3-gallate ~ [194]
8l hesperidin [195]
p-coumaric acid [196]
curcumin [195,197]
Rhizome of Coptis japonica .
3 Oren Makino, Ranueculaceae quercetin [198]
4 Kankyo Stgam ed rhizome (.)f Z.mg iber No information No information
officinale Roscoe, Zingiberaceae
quercetin [199,200]
5 Niniin Root of Panax ginseng C.A. (+)-catechin [201,202]
) Meyer, Araliaceae epigallocatechin-3-gallate ~ [203,204]
p-coumaric acid [205,206]
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Table 2. Cont.

No. Japanese Name Description of Latin Name Natural Product Reference
quercetin [43,207]
) genistein [45]

o K Rootor sl of G 5 i o
»-a8 epigallocatechin-3-gallate  [44,209]

p-coumaric acid [210]

quercetin [211]

7 Tai Fruit of Zizpbus jujura Miller var.  (+)-catechin [212]

atso inermis Pehder, Rhamnaceae (—)-epicatechin [212]

p-coumaric acid [213]

11. Natural Products in Crude Drugs from Hangeshashinto Suppress
Extracellular AGEs-RAGE/TLR4 Signaling

We introduce ferulic acid [214], caffeic acid [215], gallica acid [216,217], lute-
olin [218], apigenin [219,220], fisetin [221], naringenin [222], and naringin (naringenin-
7-O-thamunoglucoside) [223], which are natural products that have been obtained from
various plants and can suppress/attenuate extracellular AGEs-RAGE/TLR4 signaling and
cytotoxicity (Figure 15). Although quercetin and p-coumaric acid were introduced as natu-
ral products that inhibited the generation of intracellular AGEs in Section 10 (Figure 14a,g),
both quercetin [224-230] and p-coumaric acid [231-234] were able to suppress extracel-
lular AGE-induced cytotoxicity via RAGE/TLR4. We investigated the natural products
in each crude drug obtained from Hangeshashinto and introduced this information in
Table 3 [235-246]. Naringenin is an aglycone type, and naringin is a glycosylation type
of naringenin [223]. Although naringenin and naringin have been isolated from vari-
ous citruses [247,248], we cannot observe a reference that naringin was isolated in seven
crude drugs in Hangeshashinto. However, naringin-4’-O-glucoside was isolated from
Glycyriza glabra, and it is expected that naringin also will be isolated due to their structural
similarities [249].

Cc
OH
HO Cy
o
HO

OH

Figure 15. Natural products in various plants that inhibit extracellular AGEs-RAGE/TLR4 signaling
to attenuate cytotoxicity [28,121,160,161,187]; (a) ferulic acid, (b) caffeic acid, (c) gallic acid, (d) luteolin,
(e) apigenin, (f) fisetin, (g) naringenin, and (h) naringin.
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Table 3. Crude drugs in Hangeshashinto and their natural products that can inhibit extracellular
AGEs-RAGE/TLR4 signaling to attenuate cytotoxicity. The names of crude drugs are described using
Japanese and Latin names.

No. Japanese Name Description of Latin Name Natural Product Reference
1 Hange g?;f;r?lfiﬁefilfafgggte No information No information
fisetin [235]
5 Ogon Root of Scutellaria baicalensis luteolin [236]
Georgi, Labiatae quercetin [188,189]
p-coumaric acid [196]
Rhizome of Coptis japonica luteolin [237]
3 Oren Makino, Ranueculaceae quercetin [198]
4 Kankyo Stgamed rhizome (.)f Z.mg iber No information No information
officinale Roscoe, Zingiberaceae
ferulic acid [238]
caffeic acid [205,239]
5 Ninjin Root of Panax ginseng C.A. gallic acid [47,240]
Meyer, Araliaceae naringenin [241]
quercetin [199,200]
p-coumaric acid [205,208]
caffeic acid [242,243]
gallic acid [244]
Root or stolon of Glycyrrhiza apigenin [245]
6 Kanzo uralensis Fischer, Laguminosae naringenin [246]
quercetin [43,207]
p-coumaric acid [210]
v Taiso Fruit of Zizpbus jujura Miller var. quercetin [211]
inermis Pehder, Rhamnaceae p-coumaric acid [212]

12. Limitations

While it is likely that AGE-induced oral squamous cell syndromes occur as a result of
modern lifestyles, we targeted the intracellular AGEs in the oral epithelial cells and extra-
cellular AGEs that directly combine with the surface. AGEs in other organs can promote
cytotoxicity for oral epithelial cells via inflammation and saliva dysfunction; however, we
were unable to review this phenomenon. Various natural products are generally contained
in the roots, leaves, radix, and seeds of the plants [10,184,185]. Although the analysis of
the Hangeshashinto water extract shows that it contains high amounts of natural products,
we have only discussed nineteen compounds, and we did not present the ratio of these
compounds in the water extract weight (e.g., ug/g dry weight). Therefore, we cannot
accurately assess their bioactivity for anti-intra-/extracellular cytotoxicity in oral epithelial
cells. Moreover, we did not review whether whole natural products show anti-intracellular
and extracellular AGE-induced cytotoxicity in oral epithelial cells because these issues
will be addressed as detection and isolation technologies develop for natural products in
the Hangeshashinto extract. In contrast, we reviewed some natural products that show
anti-AGE-induced cytotoxicity in seven crude drugs in Hangeshashinto. These natural
products are typical compounds for anti-AGE materials in various plants. If we intro-
duce the major compounds in each crude drug, then Sections 9 and 10 would contain
details for over 200 compounds [186], which is beyond the scope of this review. Therefore,
we introduced some natural products that show anti-AGE-induced cytotoxicity and are
contained in various plants, and reviewed whether they are included in each crude drug
in Sections 9 and 10. This information should suggest the possibility that more natural
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products, which suppress the AGE-induced cytotoxicity in oral epithelial cells, will be
isolated in the Hangeshashinto water extract.

13. Conclusions

While intra-/extracellular AGEs may induce oral squamous cell syndromes, these
syndromes have not been recognized in clinical or basic medical science. Hangeshashinto
treatments are generally administered orally, and the mechanisms by which they attenuate
the mouth, esophagus, and gut have been widely investigated. This review focused
on treatments of oral epithelial cells that involve gargling and coating the mouth with
Hangeshashinto water extract. Nineteen natural products that can suppress the generation
of intracellular AGEs and extracellular AGEs-RAGE/TLR4 signaling have been isolated
from the Hangeshashinto water extract. In addition, sixteen natural compounds in seven
crude drugs obtained from Hangeshashinto may show anti-intra-/extracellular AGE effects.
To inhibit the generation of various types of AGE-modified proteins, the carbonyl trap
system and activation of glyoxalase-1, which are natural products in the water extract of
Hangeshashinto or seven crude drugs, are beneficial because they can react with AGE-
origin compounds. Although they can suppress the signaling of AGEs in the body fluid or
the beverages/foods and RAGE/TLR4 in oral epithelial cells, the possibility that they can
suppress various or whole types of AGEs-RAGE/TLR4 signaling remains unclear. Each
natural compound may suppress an individual structure in the AGE-RAGE/TLR4 axis;
this will require further investigation. Natural products in Hangeshashinto water extract
may directly prevent and modulate stomatitis induced by intra-/extracellular AGEs. This
review will be beneficial for future investigations that aim to reveal the mechanisms by
which the Hangeshashinto water extract attenuates AGE-induced stomatitis.
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Abbreviations

The following abbreviations are used in this manuscript:

AGE Advanced glycation end-product
ALE Advanced lipoxidation end-product
BSA Bovine serum albumin

CEL N¢-carboxyethyl-lysine

CML N¢-carboxymethyl-lysine

COX Cyclooxygenase
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CXCL C-X-C motif chemokine ligand
CXCR C-X-C chemokine receptor 4
CVD Cardiovascular disease
DODIC 3-Deoxyglucosone-derived imidazolium cross-link
3D-HPLC Three-dimensional high-performance liquid chromatography
DM Diabetes mellitus
ELISA Enzyme-linked immunosorbent assay
ERK Extracellular signal-regulated kinase
ESI Electrospray ionization
ESI-MS Electrospray ionization-mass spectrometry
GA Glyceraldehyde
GC Gas chromatography
GC-MS Gas chromatography—mass spectrometry
G-H1 Glyoxal-hydro-imidazolone
GLAP Glyceraldehyde-derived pyridinium
GODIC Glyoxal-derived imidazolium cross-link
HAS Human serum albumin
HDL-C High-density lipoprotein cholesterol
HILIC Hydrophilic interaction liquid chromatography
HMGBL1 High-mobility group box-1
HPLC High-performance liquid chromatography
HSP90 Heat shock protein 90
IL Interleukin
LDL-C Low-density lipoprotein cholesterol
LSRD Lifestyle-related disease
MAGE Melibiose-derived advanced glycation end-product
MALDI Matrix-assisted laser desorption/ionization
MG-H1 Methylglyoxal-hydro-imidazolone
MODIC Methylglyoxal-derived imidazolium cross-link
MOLD Methylglyoxal-lysine dimer
MS Mass spectrometry
MyD88 Myeloid differentiation factor
NASH Non-alcoholic heptosteatosis
NF-kf Nuclear factor-k3
NMR Nuclear magnetic resonance
PGE, Prostaglandin E;
PPG Pyrrolopyridinium-lysine dimer-derived glyceraldehyde
PVDF Polyvinylidene fluoride
RAGE Receptor for advanced glycation end-product
ROS Reactive oxygen species
sRAGE Soluble receptor for advanced glycation end-product
SGLT1 Sodium-glucose cotransporter 1
TAGE Toxic advanced glycation end-product
TCM Traditional Chinese medicine
TLR4 Toll-like receptor 4
TCMS Traditional Chinese medical science
TNF-o Tumor necrosis factor alpha
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