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Abstract

This study aimed to investigate the molecular binding mechanisms of bromocriptine toward
histamine-associated targets, exploring both antagonist-like and other potential interaction
modes that may support therapeutic repurposing. Network pharmacology was applied to
identify histamine-related pathways and prioritize potential protein targets. CXCR4, GHSR,
and OXTR were selected based on combined docking scores and pharmacophore modeling
evidence. Molecular dynamics (MD) simulations over 100 ns assessed structural stability,
flexibility, compactness, and solvent exposure. Binding site contact analysis and MM/PBSA
free binding energy calculations were conducted to characterize binding energetics and
interaction persistence. Bromocriptine exhibited stable binding to all three receptors,
engaging key residues implicated in receptor modulation (e.g., Asp187 in CXCR4, Asp99
in GHSR, Arg232 in OXTR). The MM/PBSA ∆G_binding values of bromocriptine were
−22.67 ± 3.70 kcal/mol (CXCR4 complex), −22.11 ± 3.55 kcal/mol (GHSR complex), and
−21.43 ± 2.41 kcal/mol (OXTR complex), stronger than standard agonists and comparable
to antagonists. Contact profiles revealed shared and unique binding patterns across targets,
reflecting their potential for diverse modulatory effects. Bromocriptine demonstrates high-
affinity binding to multiple histamine-associated GPCR targets, potentially exerting both
inhibitory and modulatory actions. These findings provide a molecular basis for further
experimental validation and therapeutic exploration in histamine-related conditions.

Keywords: bromocriptine; histamine; molecular dynamics; network pharmacology;
pharmacophore modeling

1. Introduction
Histamine is a biogenic amine that mediates various physiological and pathological

processes via its four canonical G protein-coupled receptors: histamine receptor H1 (H1R),
H2 (H2R), H3 (H3R), and H4 (H4R). Each receptor subtype has distinct tissue distributions,
ligand affinities, and signaling pathways contributing to diverse roles in inflammation,
neurotransmission, and gastric physiology [1–3]. H1R is predominantly involved in al-
lergic responses and neuroinflammation, while H2R regulates gastric acid secretion in
the gastrointestinal tract [4]. In contrast, H3R and H4R are high-affinity receptors with
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specialized roles in the central nervous and immune systems. H3R, primarily expressed
in the brain, acts as a presynaptic auto-receptor that modulates the release of neurotrans-
mitters, including histamine, dopamine, acetylcholine, and serotonin [5,6]. H4R, expressed
on hematopoietic cells and microglia, participates in chemotaxis, cytokine release, and
immune surveillance [7].

Dysregulation of histaminergic signaling has been implicated in multiple disease
states, including allergic conditions, neurodegenerative diseases, and inflammatory dis-
orders [8,9]. Notably, growing evidence has highlighted the importance of histamine-
dopamine crosstalk, particularly in the pathophysiology of Parkinson’s disease and related
neurodegenerative conditions [10]. For instance, excessive histaminergic activity via H1R
is known to contribute to microglial activation and oxidative stress in the substantia ni-
gra, exacerbating dopaminergic neuron degeneration [11,12]. H3R has been shown to
modulate dopamine and γ-aminobutyric acid (GABA) levels in basal ganglia circuits,
which are crucial for motor control and cognition [13]. Additionally, H4R plays a role in
neuroimmune signaling, with reported effects on blood–brain barrier integrity and neu-
roinflammation [9,14]. These findings have positioned histamine receptors as attractive
therapeutic targets in neurodegenerative and neuroinflammatory diseases.

Bromocriptine is a semi-synthetic ergot alkaloid and a potent dopamine D2 receptor
agonist. Clinically, it is employed in treating hyperprolactinemia, Parkinson’s disease, and
type 2 diabetes mellitus [15,16]. The therapeutic effects of bromocriptine stem from its high-
affinity binding and functional agonism at D2 receptors, though it also exhibits interactions
with serotonergic (5-HT1A, 5-HT2B) and adrenergic receptors [17]. Beyond its classi-
cal dopaminergic effects, recent studies have uncovered anti-inflammatory properties of
bromocriptine. It has been shown to inhibit nitric oxide production and cytokine release in
RAW264.7 macrophages and reduce mast cell degranulation in RBL-2H3 cells [18]. Intrigu-
ingly, bromocriptine has also demonstrated the ability to attenuate histamine-stimulated
gastric acid secretion in experimental models [19,20]. Despite these findings, bromocrip-
tine’s direct molecular interaction with histamine receptors or histamine-related biological
pathways has not yet been systematically studied. The potential intersection of bromocrip-
tine’s pharmacological profile with histaminergic systems opens new opportunities for
drug repurposing, especially in diseases where both dopamine and histamine signaling
are dysregulated, such as Parkinson’s disease, schizophrenia, and multiple sclerosis. A
systems-level exploration of bromocriptine’s interactions with histamine-associated targets
may reveal novel polypharmacological mechanisms and therapeutic implications.

Advances in computational drug discovery now enable the integration of network
pharmacology with structure-based simulation techniques to characterize drug–target
interactions on a systems scale [21–23]. Network pharmacology allows for identifying
intersecting targets and pathways shared between drugs and diseases, providing insight
into pleiotropic effects and off-target interactions [24]. Structural modeling approaches,
such as pharmacophore modeling, molecular docking, and molecular dynamics (MD) simu-
lations, can validate and refine the predicted interactions, offering atomistic resolution into
ligand–receptor binding events [25,26]. Despite increasing interest in histamine receptor
modulators, no prior computational study has comprehensively assessed bromocriptine’s
potential interaction with histamine-related targets.

In this study, we aimed to comprehensively investigate the potential interactions
between bromocriptine and histamine-associated targets using a multiscale computational
approach. We first identified the intersection between bromocriptine-related and histamine-
related target proteins through integrated network pharmacology analysis, leveraging
publicly available databases such as GeneCards, NCBI Gene, and OMIM. Protein–protein
interaction (PPI) networks and pathway enrichment analyses were conducted to elucidate
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the biological significance of these overlapping targets. Pharmacophore modeling was
performed to identify shared chemical features between bromocriptine and known his-
tamine receptor ligands. Molecular docking and MD simulations were applied to validate
specific target engagements and assess binding affinity, interaction stability, and key residue
contacts. Finally, MM/PBSA calculations were used to estimate the binding free energy
of bromocriptine at selected receptor sites. Through this integrative approach, we aimed
to elucidate the polypharmacological landscape of bromocriptine in relation to histamine
signaling, providing novel insights into its mechanism of action and potential repositioning
opportunities in neuroinflammatory and histamine-mediated disorders.

2. Results
2.1. Network Pharmacology-Based Target Mapping Reveals Histamine-Related Polypharmacology
of Bromocriptine

An integrative target-mapping approach, combining cheminformatics predictions
with disease-associated gene repositories, was employed to investigate potential histamine-
related mechanisms of bromocriptine. Comparative analysis revealed a notable inter-
section of 307 shared targets between bromocriptine and histamine-associated protein
sets (Figure 1a). This overlap accounted for 16.54% of the unique proteins identified,
with bromocriptine-exclusive targets representing 15.15% and histamine-exclusive tar-
gets representing 68.31%. The substantial intersection suggests that bromocriptine, tra-
ditionally recognized for dopaminergic receptor agonism, may also modulate histamine-
related pathways, indicating a broader pharmacological profile. This finding supports the
hypothesis of bromocriptine’s potential polypharmacological action in disorders where
dopamine–histamine interactions are pathophysiologically significant. The Venn diagram
in Figure 1a represents the first-level overlap analysis between predicted bromocriptine tar-
gets (obtained from SEA, DrugBank, STITCH, TargetNet, and PharmMapper) and curated
histamine-associated proteins (obtained from GeneCards, NCBI Gene, and OMIM). The
shared 307 proteins were then extracted and subjected to STRING-based protein–protein
interaction (PPI) analysis to assess their network-level interconnectivity (Figure 1b). This
explains the transition from the overlap (Figure 1a) to the full PPI network (Figure 1b).
Functional relationships among the intersecting targets were explored by constructing a
PPI network. The network comprised 302 nodes and 5477 edges (Figure 1b), reflecting
a dense interconnectivity indicative of functional cooperation and co-regulation within
histamine-related signaling systems. The high edge-to-node ratio suggests that perturba-
tion of even a single highly connected node could trigger cascading effects across multiple
pathways. The absence of isolated clusters further indicates a unified network in which
modulation of one target could propagate through extensive biological processes.

Subsequently, to derive Figure 1c from Figure 1b, we applied a stepwise topological
filtering approach. Specifically, four centrality parameters (degree centrality (DC), eigen-
vector centrality (EC), betweenness centrality (BC), and closeness centrality (CC)) were
calculated for every node in the PPI network. Nodes exceeding predefined thresholds
(DC ≥ 17.00, EC ≥ 0.220, BC ≥ 0.118, CC ≥ 0.947) were designated as hubs. This reduced
the 302-node global PPI network to a compact core of 19 highly interconnected hub proteins,
visualized as Figure 1c. Thus, Figure 1c is not an independent network, but rather a filtered
subnetwork derived directly from Figure 1b by applying topological metrics. This analy-
sis identified 19 core hub proteins (Figure 1c) forming a compact, highly interconnected
subnetwork, with dense and reciprocal edges suggesting strong functional associations
and possible co-regulation. Biological characterization of these 19 hubs revealed multiple
proteins implicated in neuroinflammation and neurodegeneration, including TNF (tumor
necrosis factor), IL2 (interleukin-2), ICAM1 (intercellular adhesion molecule 1), and CXCR4
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(C-X-C chemokine receptor type 4), all central to immune cell trafficking, cytokine sig-
naling, and inflammatory cascades [27–29]. Apoptosis-related regulators such as CASP3
(caspase-3) and BCL2 suggest potential involvement in neuronal survival pathways, rele-
vant to dopaminergic neuron preservation in neurodegenerative disorders [30,31]. Growth
factor and kinase signaling proteins, including EGFR (epidermal growth factor recep-
tor), IGF1 (insulin-like growth factor 1), AKT1 (AKT serine/threonine kinase 1), and SRC
(proto-oncogene tyrosine-protein kinase Src), indicate convergence with cell proliferation,
differentiation, and synaptic plasticity mechanisms [32–34]. Additional targets such as
APP (amyloid precursor protein) implicate potential connections to Alzheimer’s disease
pathology, while MMP9 (matrix metalloproteinase-9) may modulate extracellular matrix
remodeling and blood–brain barrier integrity [35,36]. The diversity of these hub proteins
underscores the possibility that bromocriptine’s histamine-related target network spans
multiple biological systems, including immune modulation, neuronal survival, vascular
function, and extracellular matrix regulation. Such multifunctional engagement suggests
that bromocriptine holds repurposing potential for a broad spectrum of histamine-mediated
pathologies, ranging from neuroinflammatory diseases such as multiple sclerosis to neu-
rodegenerative disorders including Parkinson’s and Alzheimer’s disease. The complete
network pharmacology results can be seen in Supplementary Data S1.

Figure 1. Network-based identification of bromocriptine–histamine-associated core targets.
(a) Venn diagram showing the overlap between predicted bromocriptine-related targets (blue) and
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histamine-associated targets curated from GeneCards, NCBI Gene, and OMIM (pink). A total of
307 proteins were found in common, representing putative histamine-related targets of bromocriptine.
(b) Protein–protein interaction (PPI) network constructed from the 307 overlapping proteins using
the STRING database. The network comprises 302 nodes and 5477 edges, demonstrating a densely
interconnected architecture with extensive functional cross-talk. (c) Hub subnetwork extracted from
the PPI network in (b) by applying topological filtering based on four centrality metrics (degree
centrality ≥ 17.0, eigenvector centrality ≥ 0.220, betweenness centrality ≥ 0.118, closeness centrality
≥ 0.947). This analysis reduced the global network to 19 highly interconnected hub proteins forming
a tightly clustered module. The dense reciprocal connections suggest these hubs act as critical control
points coordinating bromocriptine’s potential modulation of histamine-related signaling pathways.

The Gene Ontology (GO) enrichment analysis, based on the 19 core hub pro-
teins/receptors, was categorized into Biological Process (BP), Molecular Function (MF), and
Cellular Component (CC), along with Kyoto Encyclopedia of Genes and Genomes (KEGG)
signaling pathways. This multi-dimensional analysis provides a systems-level view of
the functional roles and signaling contexts in which these hub targets operate. In the BP
category (Figure 2a), the most enriched terms were associated with G protein-coupled
receptor (GPCR)-related signaling, including phospholipase C-activating GPCR signal-
ing pathway (GO:0007200) and adenylate cyclase-modulating GPCR signaling pathway
(GO:0007188). Both stimulatory and inhibitory adenylate cyclase GPCR pathways were
represented, indicating a capacity for bidirectional regulation of cyclic nucleotide second
messengers. Other highly enriched processes included positive regulation of intracellular
signal transduction, MAPK cascade regulation, and cellular responses to oxygen-containing
compounds, suggesting that these receptors are central to environmental signal detection,
kinase cascade activation, and cellular stress adaptation. This aligns with the expected
multi-functional nature of hub proteins like EGFR, IGF1, AKT1, and SRC, which bridge
extracellular ligand binding with intracellular signaling responses.

The MF category (Figure 2b) reinforced these findings, significantly enriching G
protein-coupled amine receptor activity, G protein-coupled receptor activity, and protein ty-
rosine kinase activity, representing both ligand-binding and catalytic functions. Enrichment
in chemokine binding and serotonin receptor activity highlights the potential cross-talk
between neurotransmission and immune modulation, which is highly relevant to neuroin-
flammation and neuronal repair contexts. Carbonate dehydratase activity and serine-type
endopeptidase activity further indicate metabolic and proteolytic regulatory roles within
the hub protein network. In the CC category (Figure 2c), the top hits, neuron projection,
dendrite, and membrane raft point to a strong neuronal and synaptic localization, par-
ticularly within lipid-rich signaling microdomains that facilitate receptor clustering and
intracellular signaling initiation. Additional enrichment in endosome lumen and secretory
granule lumen suggests involvement in vesicular trafficking and regulated exocytosis.
Structural terms such as collagen-containing extracellular matrix indicate a role in extra-
cellular architecture remodeling, potentially linked to synaptic plasticity or repair. The
enrichment of phosphatidylinositol 3-kinase (PI3K) complex components is consistent with
activation of PI3K–Akt survival signaling by several of the hub proteins. KEGG pathway
analysis (Figure 2d) placed neuroactive ligand–receptor interaction as the most significantly
enriched pathway, highlighting the role of neurotransmitter and neuromodulator signaling
in the system. Pathways such as PI3K–Akt signaling, cAMP signaling, and calcium signal-
ing connect directly with the BP and MF findings, indicating convergent intracellular routes
triggered by receptor activation. The enrichment of disease-related pathways, including
pathways in cancer, lipid and atherosclerosis, AGE–RAGE signaling in diabetic compli-
cations, and human cytomegalovirus infection, suggests broader systemic relevance and
potential links between neuronal receptor activity, metabolic regulation, and inflammatory
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pathophysiology. These results reveal that the 19 core hub proteins/receptors are positioned
at the interface of extracellular ligand recognition, intracellular kinase cascade activation,
and neuronal structural localization. Integrating GPCR, tyrosine kinase, and PI3K–Akt
pathways underscores their potential as multifunctional regulators in neuroprotective,
neuroinflammatory, and regenerative contexts.

Figure 2. Functional enrichment analysis of the 19 core hub proteins/receptors. (a) Gene Ontology
(GO) Biological Process (BP) enrichment showing significant association with G protein-coupled
receptor (GPCR) signaling pathways, regulation of the MAPK cascade, and intracellular signal
transduction. (b) GO Molecular Function (MF) enrichment dominated by GPCR activities, protein
tyrosine kinase activity, chemokine binding, and neurotransmitter receptor activity. (c) GO Cellular
Component (CC) enrichment indicating predominant localization to neuron projections, dendrites,
membrane rafts, and collagen-containing extracellular matrix, as well as association with the phos-
phatidylinositol 3-kinase (PI3K) complex. (d) Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment highlighting neuroactive ligand–receptor interaction, PI3K–Akt signaling, cAMP
signaling, calcium signaling, and multiple disease-related pathways. Color coding: pink (BP), green
(MF), yellow-olive (CC), and cyan-teal (KEGG).

The KEGG pathway enrichment analysis of the 19 core hub proteins revealed multiple
signaling and disease-related pathways, many closely associated with neurodegeneration,
neuroinflammation, and cancer-related signaling. In Figure 3a, the top enriched pathway
was neuroactive ligand–receptor interaction, showing the highest fold enrichment and
statistical significance. This was followed by signaling pathways such as calcium signal-
ing, PI3K–Akt signaling, and cAMP signaling, which are crucial for neuronal excitability,
synaptic plasticity, and neuroprotective mechanisms [37,38]. In addition to these neurobi-
ological pathways, several cancer-related and metabolic pathways, including pathways
in cancer, prostate cancer, lipid and atherosclerosis, and proteoglycans in cancer, were
also enriched, reflecting the pleiotropic roles of the identified hubs in cell proliferation,
immune modulation, and vascular integrity. The hierarchical clustering dendrogram in
Figure 3b illustrates the relationships between these enriched pathways based on gene
overlap. Closely related pathways, such as PI3K–Akt signaling, endocrine resistance, and
proteoglycans in cancer, suggested functional convergence in growth factor signaling, cel-
lular survival, and extracellular matrix interactions. Similarly, neuroactive ligand–receptor
interaction and the calcium signaling pathway were closely linked, reflecting their shared
roles in neurotransmitter-mediated signaling and calcium-dependent neuronal responses.
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Figure 3. KEGG pathway enrichment and coding sequence analysis of the 19 core hub pro-
teins/receptors. (a) KEGG pathway enrichment dot plot showing the top 10 significantly en-
riched pathways, with point size representing the number of genes and color intensity indicating
–log10(FDR). The neuroactive ligand–receptor interaction pathway showed the highest enrichment,
followed by calcium signaling, PI3K–Akt signaling, and cAMP signaling pathways, along with
multiple disease-related pathways. (b) Hierarchical clustering dendrogram of KEGG pathways based
on gene overlap, revealing functional grouping between related signaling and disease modules.
(c) Pathway–pathway interaction network visualization, with node size proportional to enrichment
significance, highlighting the central position of neuroactive ligand–receptor interaction in the path-
way network. (d) Coding sequence (CDS) length distribution comparison between the enriched gene
set (blue) and the reference genome (red), with statistical significance determined by the Kolmogorov–
Smirnov test (p = 1.4 × 10−10). *** indicates a highly significant difference (p < 0.001).

A network representation of the KEGG pathways (Figure 3c) further highlights the
interconnectedness of these signaling modules. The neuroactive ligand–receptor interaction
pathway emerged as a central hub in this network, linking with other signaling systems
such as calcium signaling, PI3K–Akt, and cAMP. This network topology reinforces the idea
that the 19 core hub proteins may function in a coordinated fashion to regulate neuronal and
non-neuronal biological processes. Finally, Figure 3d shows a density distribution of coding
sequence (CDS) lengths for genes in the enriched list compared to the reference genome. The
observed CDS length distribution for the hub-associated genes significantly differed from
the genome-wide distribution (p = 1.4 × 10−10), suggesting a non-random selection of genes
with characteristic coding sequence properties. This may reflect evolutionary constraints or
functional specializations of these hub proteins in maintaining signal transduction fidelity
and structural complexity.

Mapping the 19 core hub proteins to the KEGG neuroactive ligand–receptor interaction
pathway revealed enrichment across diverse receptor families, including neurotransmitter,
neuropeptide, hormone, cytokine, and ion channel receptors (Figure 4). From these, 32 re-
ceptors were prioritized for molecular docking based on functional relevance, tractable
drug-binding properties, and their potential to interact with bromocriptine. Importantly,
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these 32 receptors are not redundant but occupy distinct KEGG pathway branches, each
representing a unique docking context defined by ligand class, receptor family, and down-
stream signaling outcomes. For example, the histamine receptor family (HRH1, HRH2,
HRH3, HRH4) is clustered within the aminergic GPCR branch, of particular interest given
emerging evidence of histaminergic pathways in modulating neurotransmission, inflam-
matory signaling, and vascular tone [39,40]. This cluster highlights mechanistic domains
where bromocriptine may exert modulatory effects, consistent with reports linking his-
tamine receptor modulation to conditions such as migraine, sleep–wake regulation, and
neuropsychiatric disorders [41]. This suggests that bromocriptine’s binding to these tar-
gets could extend its therapeutic profile beyond dopaminergic activity. The dopamine
receptor family (DRD2, DRD3, DRD4) was also identified, with DRD2 included for re-
docking validation using its bromocriptine-bound crystal structure (PDB ID: 7JVR [42]),
underscoring its well-established role as a primary bromocriptine target. Other functional
clusters were also evident: serotonin receptors (HTR1A, HTR2A) within the aminergic
GPCR group; chemokine signaling represented by CXCR4; neuropeptide signaling by
GHSR, OXTR, NPY1R, NTSR1, and PRLR; nuclear hormone receptors including ESR1
and PPARG; adrenergic (ADRA1B) and cholinergic (CHRM1, CHRNA4) receptors; in-
flammatory mediators (C3AR1, PTGER3); glutamatergic (GRIN1, GRM3); and sensory
transduction receptors (TRPV1, TAAR1). By explicitly mapping these distinct receptor fami-
lies and pathway branches, Figure 4 demonstrates how bromocriptine may engage multiple
signaling systems in a pathway-specific manner. This integrative mapping provides a
strategic foundation for probing bromocriptine’s multi-receptor pharmacology, particularly
its unexplored potential in histaminergic signaling. The complete chosen receptor database
can be seen in Supplementary Data S2.

2.2. Binding Affinity and Interaction Profiles of Bromocriptine with Target Receptors Identified
from Network Pharmacology

Molecular docking analysis revealed that bromocriptine exhibited favorable bind-
ing affinities toward multiple target receptors at the intersection of bromocriptine and
histamine-associated proteins. The table presented here focuses on the top 10 bromocriptine–
receptor complexes, ranked by HADDOCK score, with docking scores ranging from
−62.9 to −40.9 a.u., corresponding to estimated binding free energies between −10.67
and −9.02 kcal/mol (Table 1). The growth hormone secretagogue receptor (GHSR) com-
plex showed the most favorable HADDOCK score (−62.9 ± 1.6 a.u.), followed closely
by CXCR4 (−56.1 ± 0.7 a.u.) and DRD2 (−57.4 ± 0.5 a.u.). Interestingly, CXCR4 exhib-
ited the strongest predicted binding energy (−10.67 kcal/mol). In comparison, GHSR
demonstrated a slightly lower binding energy (−10.36 kcal/mol) but achieved the best
overall docking score, suggesting an optimal combination of van der Waals, electrostatic,
and desolvation contributions. The complete molecular docking results for all chosen
receptors are provided in Supplementary Data S3. Component-wise energy decomposition
revealed distinct interaction profiles across complexes. Electrostatic interactions domi-
nated in CXCR4 (−124.0 ± 9.1 kcal/mol) and HRH3 (−84.0 ± 3.6 kcal/mol), whereas van
der Waals interactions were more prominent in DRD3 (−30.3 ± 0.3 kcal/mol) and OXTR
(−32.0 ± 0.4 kcal/mol). The most favorable desolvation energy was observed for OXTR
(−22.8 ± 1.3 kcal/mol), suggesting advantageous hydrophobic contributions to binding.
RMSD values for all top-ranked complexes were ≤0.6 Å, reflecting the stability of the dock-
ing poses. A re-docking validation was performed using the bromocriptine-bound DRD2
crystal structure as a reference to ensure docking reliability. The re-docking reproduced
the experimental binding pose with an RMSD of 0.2 ± 0.2 Å, confirming the accuracy and
robustness of the docking protocol.
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Figure 4. KEGG neuroactive ligand–receptor interaction pathway mapping of prioritized docking
receptors. The diagram illustrates the distribution of the 32 selected receptor targets (highlighted in
red) within the neuroactive ligand–receptor interaction pathway. The highlighted receptors represent
the intersection of bromocriptine-related and histamine-related target proteins identified through
network pharmacology screening. Pathway visualization was generated using Pathview based on
KEGG database annotations.

Table 1. Top 10 bromocriptine–receptor complexes ranked by HADDOCK score, with associated
binding free energies and interaction energy components.

Complex HADDOCK
Score (a.u.)

Binding Energy
(kcal/mol)

Van der Waals
Energy

Electrostatic
Energy

Desolvation
Energy RMSD

CXCR4_Bromocriptine −56.1 ± 0.7 −10.67 −36.9 ± 0.6 −124.0 ± 9.1 −7.2 ± 0.4 0.2 ± 0.1
GHSR_Bromocriptine −62.9 ± 1.6 −10.36 −39.4 ± 1.5 −54.3 ± 7.5 −18.4 ± 0.7 0.3 ± 0.2
DRD2_Bromocriptine −57.4 ± 0.5 −10.29 −35.5 ± 1.4 −71.5 ± 7.3 −14.9 ± 0.6 0.2 ± 0.2
OXTR_Bromocriptine −56.5 ± 0.9 −9.93 −32.0 ± 0.4 −21.3 ± 7.3 −22.8 ± 1.3 0.4 ± 0.2
DRD3_Bromocriptine −52.8 ± 0.3 −9.77 −30.3 ± 0.3 −71.8 ± 5.0 −15.4 ± 0.5 0.3 ± 0.2

HTR1A_Bromocriptine −52.6 ± 0.1 −9.50 −33.0 ± 0.6 −53.3 ± 1.9 −14.4 ± 0.4 0.3 ± 0.2
ERBB2_Bromocriptine −42.5 ± 1.7 −9.37 −32.5 ± 0.8 −79.5 ± 8.4 −3.3 ± 0.4 0.6 ± 0.0
HRH3_Bromocriptine −56.7 ± 0.2 −9.15 −37.3 ± 0.4 −84.0 ± 3.6 −11.1 ± 0.4 0.3 ± 0.2
TSHR_Bromocriptine −40.9 ± 2.9 −9.08 −31.0 ± 1.1 −76.0 ± 6.6 −6.7 ± 0.2 0.3 ± 0.0
EGFR_Bromocriptine −43.8 ± 1.0 −9.02 −35.7 ± 1.6 −36.7 ± 5.8 −5.1 ± 1.2 0.5 ± 0.0
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The 2D interaction maps (Figure 5) illustrate residue-specific contacts and their corre-
sponding pharmacophoric features, thereby linking atomic binding patterns to functional
group recognition and enabling comparison with agonist- and antagonist-derived pharma-
cophore models. In the CXCR4 complex (Figure 5a), bromocriptine forms hydrogen bond
donor and acceptor interactions with Asp97 and Asp187, complemented by aromatic π–π
stacking with Tyr190. This configuration mirrors antagonist-like pharmacophore features,
including polar stabilization and aromatic anchoring, consistent with later pharmacophore
modeling results (Supplementary Data S6). In GHSR (Figure 5b), hydrogen bonding with
Arg102 is accompanied by hydrophobic/aromatic pharmacophore contacts with Tyr106
and Phe312. These hydrophobic anchor points overlap with those engaged by the antag-
onist JMV-2959, unlike the agonist GHRP-6, which displays a more limited hydrophobic
profile. The DRD2 complex (Figure 5c) shows hydrogen bonding with His393 and Tyr408
alongside van der Waals/aromatic pharmacophore interactions with Phe389 and Thr412,
consistent with its canonical dopaminergic binding mode. For OXTR (Figure 5d), hydrogen
bonding with Lys116 and Tyr200 appears critical to ligand stabilization, mapping onto
basic donor–acceptor pharmacophore elements characteristic of the antagonist atosiban.
DRD3 (Figure 5e) and HTR1A (Figure 5f) exhibit a mixed pharmacophore profile combining
H-bonding, hydrophobic contacts, and aromatic stacking, indicating partial overlap with
known agonist and antagonist binding motifs. Thus, while the residue-level maps highlight
specific atomic contacts, the pharmacophore-level interpretation underscores recurring
motifs, hydrogen-bond donors/acceptors, hydrophobic/aromatic groups, and charged
interactions that position bromocriptine closer to antagonist-like profiles in CXCR4, GHSR,
and OXTR, while maintaining canonical dopaminergic engagement.

Figure 5. Two-dimensional interaction maps of top-performing bromocriptine-receptor complexes.
(a) CXCR4_Bromocriptine complex. (b) GHSR_Bromocriptine complex. (c) DRD2_Bromocriptine com-
plex. (d) OXTR_Bromocriptine complex. (e) DRD3_Bromocriptine complex. (f) HTR1A_Bromocriptine
complex. The interaction types are color-coded as follows: hydrogen bonds (bright green), van der
Waals interactions (pale green), Pi-Alkyl (pink), Pi-Sigma (purple), Pi-Sulfur (orange), and Halogen
interactions (bright blue).
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The molecular interaction profile analysis (Table 2) revealed that carbon–carbon (CC)
interactions were the most dominant across all bromocriptine–receptor complexes, with
the GHSR_Bromocriptine complex exhibiting the highest CC count (3658), followed by
DRD2_Bromocriptine (3298) and CXCR4_Bromocriptine (3179). Carbon–oxygen (CO) and
carbon–nitrogen (CN) interactions were also prevalent, generally ranging between 892
and 1545, and 1091 and 1414 interactions, respectively. Notably, GHSR_Bromocriptine and
CXCR4_Bromocriptine consistently demonstrated higher CO and CN interaction counts
compared to other complexes, suggesting stronger polar contact contributions. Carbon–any
heavy atom (CX) interactions, although relatively low in frequency, were most prominent
in DRD2_Bromocriptine (58) and HTR1A_Bromocriptine (62). Oxygen–oxygen (OO) and
oxygen–any heavy atom (OX) interactions occurred at minimal levels, with the highest OO
count in GHSR_Bromocriptine (162) and OX count in DRD2_Bromocriptine (10). Nitrogen–
oxygen (NO) interactions were moderately frequent, with GHSR_Bromocriptine again
showing the highest value (283), followed closely by DRD2_Bromocriptine (270). Nitrogen–
nitrogen (NN) and nitrogen–any heavy atom (NX) interactions were comparatively rare,
with the highest NN count (142) in EGFR_Bromocriptine and the highest NX count (14)
in HTR1A_Bromocriptine. Interestingly, no any heavy–heavy atom (XX) interactions
were detected in any complex, indicating the absence of direct heavy atom–heavy atom
contacts without carbon, nitrogen, or oxygen mediation. These findings suggest that
bromocriptine’s binding to various receptors is primarily driven by carbon-mediated
hydrophobic contacts, supplemented by polar interactions involving oxygen and nitrogen
atoms, with interaction patterns varying subtly between receptor types. The complete
results of molecular interactions can be seen in Supplementary Data S4.

Table 2. Molecular interaction profiles between bromocriptine and target proteins based on atom–
atom contact types.

Complex CC CO CN CX OO OX NO NN NX XX

CXCR4_Bromocriptine 3179 1357 1366 35 133 2 267 132 4 0
GHSR_Bromocriptine 3658 1545 1414 47 162 9 283 126 8 0
DRD2_Bromocriptine 3298 1504 1212 58 149 10 270 100 9 0
OXTR_Bromocriptine 3376 1234 1164 43 111 12 193 90 7 0
DRD3_Bromocriptine 2949 1302 1150 32 131 1 239 112 5 0

HTR1A_Bromocriptine 3015 1216 1189 62 115 10 242 120 14 0
ERBB2_Bromocriptine 2719 1172 1183 44 101 5 218 121 6 0
HRH3_Bromocriptine 2468 936 1091 27 83 0 196 108 4 0
TSHR_Bromocriptine 2371 1252 892 14 145 5 233 84 3 0
EGFR_Bromocriptine 2919 1260 1321 55 113 4 263 142 9 0

Note: CC: Carbon–carbon interaction; CO: Carbon–oxygen interaction; CN: Carbon–nitrogen interaction; CX:
Carbon–any heavy atom interaction; OO: Oxygen–oxygen interaction; OX: Oxygen–any heavy atom interaction;
NO: Nitrogen–oxygen interaction; NN: Nitrogen–nitrogen interaction; NX: Nitrogen–any heavy atom interaction;
XX: Any heavy–heavy atom interaction.

To address binding pocket flexibility, we employed a semi-flexible docking protocol
where bromocriptine was fully flexible while key side chains in the receptor LBDs were
allowed limited conformational adjustment during docking. Furthermore, all docking
poses were subsequently validated through MD simulations, which explicitly account
for full receptor and ligand flexibility in a solvated environment. This two-step strategy
ensured that the proposed docking modes in Figure 6 are not rigid artifacts but rather
conformationally stable poses consistent with dynamic pocket fluctuations. CXCR4, GHSR,
and OXTR were prioritized for detailed molecular docking and MD simulations because
their potential interactions with bromocriptine have not been previously explored, and
preliminary screening indicated promising binding affinities. Interestingly, bromocriptine
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displayed notable similarities with specific standard ligands, including a shared hydrogen
bond with Arg188 in the CXCR4 ligand-binding domain (LBD), a critical interaction also
observed with the standard antagonist Plerixafor. Molecular docking analysis comparing
bromocriptine with known agonists and antagonists revealed notable interaction similar-
ities and differences across the CXCR4, GHSR, and OXTR LBDs (Table 3, Figure 6). For
CXCR4, bromocriptine achieved a HADDOCK score of −56.1 ± 0.7 a.u. and a binding free
energy of −10.67 kcal/mol, positioning it between the agonist CXCL-12 (−7.06 kcal/mol)
and the potent antagonist Plerixafor (−14.21 kcal/mol). In addition to its interaction with
Arg188, bromocriptine formed a hydrogen bond with Asp97 and engaged in aromatic
stacking with Tyr190, contributing to electrostatic stabilization.

Table 3. Comparative molecular docking results of bromocriptine compared to standard agonists
and antagonists in CXCR4, GHSR, and OXTR.

Complex HADDOCK
Score (a.u.)

Binding Energy
(kcal/mol)

Van der
Waals Energy

Electrostatic
Energy

Desolvation
Energy RMSD

CXCR4_Bromocriptine −56.1 ± 0.7 −10.67 −36.9 ± 0.6 −124.0 ± 9.1 −7.2 ± 0.4 0.2 ± 0.1
CXCR4_CXCL-12 (agonist) −21.0 ± 2.6 −7.06 −17.3 ± 2.2 −62.2 ± 21.1 1.2 ± 0.5 0.5 ± 0.0

CXCR4_Plerixafor
(antagonist) −79.7 ± 4.2 −14.21 −26.1 ± 1.8 −530.0 ± 19.2 −3.3 ± 0.4 0.5 ± 0.1

GHSR_Bromocriptine −62.9 ± 1.6 −10.36 −39.4 ± 1.5 −54.3 ± 7.5 −18.4 ± 0.7 0.3 ± 0.2
GHSR_GHRP-6 (agonist) −48.6 ± 0.4 −8.58 −37.9 ± 1.2 −19.9 ± 20.4 −12.2 ± 1.5 0.7 ± 0.1

GHSR_JMV-2959
(antagonist) −62.5 ± 1.3 −10.49 −36.3 ± 0.8 −89.8 ± 9.2 −17.5 ± 1.3 0.3 ± 0.2

OXTR_Bromocriptine −56.5 ± 0.9 −9.93 −32.0 ± 0.4 −21.3 ± 7.3 −22.8 ± 1.3 0.4 ± 0.2
OXTR_Oxytocin (agonist) −58.6 ± 1.3 −8.93 −35.9 ± 2.4 −29.7 ± 4.4 −21.6 ± 1.5 0.2 ± 0.1

OXTR_Atosiban (antagonist) −56.5 ± 1.1 −8.99 −33.9 ± 0.7 −36.5 ± 9.8 −19.4 ± 0.7 0.6 ± 0.1

In GHSR, bromocriptine exhibited a strong docking performance with a HADDOCK
score of −62.9 ± 1.6 a.u. and a binding energy of −10.36 kcal/mol, comparable to the an-
tagonist JMV-2959 (−10.49 kcal/mol) and surpassing the agonist GHRP-6 (−8.58 kcal/mol).
Key interactions included hydrogen bonds with Arg102 and hydrophobic contacts with
Phe279 and Phe312, suggesting a potential modulatory role in receptor activity. For OXTR,
bromocriptine showed favorable docking metrics (HADDOCK score −56.5 ± 0.9 a.u.;
binding energy −9.93 kcal/mol), similar to the antagonist Atosiban and slightly lower
than the agonist Oxytocin. Bromocriptine formed a key hydrogen bond with Lys116 in
OXTR, the same residue targeted by Atosiban, along with another hydrogen bond to
Tyr200 and favorable van der Waals interactions that help stabilize its binding. The 2D
and 3D interactions of GHSR and OXTR complexes can be seen in Supplementary Data S5.
Figures S1 and S2 show the comparative 3D and 2D binding pose of GHSR and OXTR
complexes, respectively.
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Figure 6. Comparative 3D and 2D binding pose of bromocriptine, standard agonists, and antagonists
in the CXCR4 ligand-binding domain (LBD). (a) 3D binding pose of bromocriptine in CXCR4. (b) 2D
interaction map of bromocriptine–CXCR4 complex showing hydrogen bonds with Asp97 and Arg188.
(c) 3D binding pose of CXCL-12 (agonist) in CXCR4. (d) 2D interaction map of CXCL-12–CXCR4
complex highlighting hydrogen bonds and hydrophobic contacts. (e) 3D binding pose of Plerixafor
(antagonist) in CXCR4. (f) 2D interaction map of Plerixafor–CXCR4 complex showing hydrogen
bonding with Arg188 and Glu288. The interaction types are color-coded as follows: hydrogen bonds
(bright green), van der Waals interactions (pale green), Pi-Alkyl (pink), Pi-Sigma (purple), Pi-Sulfur
(orange), and Halogen interactions (bright blue). In the 3D binding poses, atoms are color-coded by
element: oxygen (red), nitrogen (blue), and sulfur (yellow).
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2.3. Pharmacophore Modeling Supports and Extends Molecular Docking Insights

Pharmacophore modeling further validated the molecular docking results for
bromocriptine and reference ligands in the CXCR4 LBD (Figure 7). The pharmacophore
model of the CXCR4_Bromocriptine complex (Figure 7a,b) revealed a combination of hy-
drogen bond donor and acceptor features, hydrophobic contacts, and a positive ionizable
group interacting with Glu288, similar to the standard antagonist Plerixafor, closely mirror-
ing key pharmacophoric elements seen in the standard antagonist Plerixafor. Bromocriptine
exhibited hydrogen bond donor and acceptor interactions with Arg188, significantly stabi-
lizing antagonist-like binding in CXCR4. Additional hydrophobic interactions with Ile185,
Phe189, and Ile284 enhanced its binding complementarity within the LBD. In contrast, the
pharmacophore profile of the CXCR4_CXCL-12 complex (Figure 7c,d) was dominated by
hydrogen bond acceptor features at Arg30, Lys38, and Arg183, consistent with agonist-
mediated activation patterns. This configuration differed markedly from bromocriptine’s
binding, suggesting that while some hydrogen bonding overlap exists, bromocriptine’s
pharmacophore aligns more closely with antagonist characteristics. The CXCR4_Plerixafor
model (Figure 7e,f) demonstrated extensive hydrogen bond donor interactions, including
Arg188, Asp193, and Glu288, and a dense network of positive ionizable sites. Bromocriptine
shared the Arg188 hydrogen bond donor interaction, reinforcing the docking observation
that it may partially mimic the binding strategy of this established antagonist. The phar-
macophore mapping collectively underscores bromocriptine’s hybrid binding potential,
retaining antagonist-like interactions such as Arg188 hydrogen bonding while engaging
additional hydrophobic and polar contacts that could modulate receptor conformation.

The pharmacophore modeling of bromocriptine, standard agonists, and antagonists
in the GHSR LBD revealed distinct interaction profiles. For bromocriptine, the 2D and 3D
pharmacophore models showed multiple hydrophobic interactions with residues Val182,
Phe279, Leu37, and Tyr106, along with hydrogen bond donor interactions involving Gln120
and acceptor interactions with Arg102. In the standard agonist GHRP-6, a dominant
hydrophobic interaction was observed with Leu34, while for the antagonist JMV-2959,
hydrophobic contacts with Tyr106, Leu103, and Phe286 were complemented by a positive
ionizable group interaction near Glu124. Moving to OXTR complexes, bromocriptine
exhibited extensive hydrophobic interactions with Ala189, Phe191, Ile201, Phe291, Ile204,
and Phe175, as well as hydrogen bond acceptor contact with Tyr200 and hydrophobic
proximity to Trp99. The agonist oxytocin showed hydrogen bond donor interactions with
Ser298 and hydrophobic contact with Trp188. In contrast, the antagonist atosiban displayed
a combination of hydrophobic interactions with Val299, Phe311, and Ala308, hydrogen
bond acceptor contacts with Lys116, and a positive ionizable group near Lys306. These
pharmacophore features indicate that bromocriptine retains multiple hydrophobic anchor
points across both receptors but engages residue subsets that are more characteristic of
antagonists. This inhibitory-leaning pharmacophoric fingerprint supports its classification
alongside CXCR4, GHSR, and OXTR antagonists. It reinforces its selection for downstream
MD simulations to explore receptor-specific binding stability and conformational effects.
The pharmacophore modeling results of GHSR and OXTR complexes can be seen in
Supplementary Data S6. Figures S3 and S4 show the pharmacophore profiles for GHSR
and OXTR complexes, respectively.
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Figure 7. Pharmacophore modeling results of bromocriptine, standard agonists, and antagonists in the
CXCR4 LBD. (a) 2D pharmacophore model of CXCR4_Bromocriptine. (b) 3D pharmacophore model
of CXCR4_Bromocriptine. (c) 2D pharmacophore model of CXCR4_CXCL-12 (agonist). (d) 3D phar-
macophore model of CXCR4_CXCL-12 (agonist). (e) 2D pharmacophore model of CXCR4_Plerixafor
(antagonist). (f) 3D pharmacophore model of CXCR4_Plerixafor (antagonist). Yellow spheres indi-
cate hydrophobic interactions, green arrows represent hydrogen bond donors, red arrows signify
hydrogen bond acceptors, and blue star-shaped spheres represent positive ionizable groups.
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2.4. MD Simulations Corroborate the Robustness and Binding Consistency of the
Ligand–Receptor Complexes

To further validate docking and pharmacophore results and gain insight into the
dynamic behavior of bromocriptine in the CXCR4 LBD, comparative MD simulations were
conducted alongside a standard agonist (CXCL-12) and antagonist (Plerixafor). Four key
structural parameters, including root mean square deviation (RMSD), root mean square
fluctuation (RMSF), radius of gyration (RoG), and solvent-accessible surface area (SASA),
were monitored over 100 ns to assess global stability, residue-level flexibility, compactness,
and solvent exposure of the complexes. RMSD analysis (Figure 8a) demonstrated that
the bromocriptine–CXCR4 complex reached equilibrium within ~10 ns and maintained
an average RMSD of ~0.9 nm for the remainder of the simulation. This stability profile
closely paralleled that of the antagonist Plerixafor (~0.95 nm), whereas the agonist CXCL-12
exhibited higher RMSD values (~1.0–1.1 nm) with more pronounced oscillations through-
out the trajectory. These observations suggest that bromocriptine adopts a persistent
binding orientation within the LBD, comparable to the antagonist, and is less prone to
large-scale conformational drift than the agonist complex. The minimal RMSD fluctuations
in bromocriptine and Plerixafor indicate a well-packed binding conformation that resists
destabilization under dynamic conditions. RMSF analysis (Figure 8b) revealed distinct flex-
ibility profiles across the receptor. Three critical ligand-binding segments—Trp94–Tyr116,
Arg183–Tyr190, and Val280–Ile300—displayed nearly identical fluctuation amplitudes
in the bromocriptine and Plerixafor complexes, whereas CXCL-12-bound CXCR4 exhib-
ited noticeably dampened fluctuations in these same regions. The elevated mobility in
bromocriptine and Plerixafor suggests partial destabilization of local hydrogen bonding
networks between the ligand and these residues, which may hinder the conformational
shifts necessary for receptor activation. This disruption of stabilizing interactions is a
hallmark of antagonistic binding behavior. Conversely, the reduced flexibility in the agonist
complex indicates reinforced contacts that promote an activation-competent conformation
of CXCR4.

RoG profiles (Figure 8c) further differentiated agonist and antagonist binding modes.
Bromocriptine maintained a compact global conformation (~5.4 nm) comparable to Pler-
ixafor (~5.5 nm), with minimal fluctuations throughout the simulation, while CXCL-12
displayed a steady increase in RoG values (~5.5 to >6.5 nm). This gradual expansion in the
agonist complex likely reflects activation-associated conformational changes that increase
the overall molecular dimensions of the receptor–ligand system. Maintaining a smaller,
more rigid structural envelope in bromocriptine supports its functional resemblance to
antagonist binding. SASA measurements (Figure 8d) also aligned with this interpretation.
Bromocriptine and Plerixafor consistently exhibited low solvent exposure (~300–400 nm2)
across the simulation window, indicating that the ligand–receptor interfaces remained
tightly packed and shielded from solvent penetration. In contrast, the agonist complex
showed a progressive increase in SASA, surpassing 600 nm2 toward the simulation end,
consistent with receptor expansion and increased solvent accessibility during activation.

Moving to the GHSR complex, in RMSD analysis (Figure S5a), bromocriptine bound
to GHSR stabilized around ~0.85 nm after ~15 ns, showing slightly lower fluctuation
than the antagonist JMV-2959 (~1.0–1.2 nm) but higher stability than the agonist GHRP-6
(~0.9–1.0 nm). This suggests bromocriptine adopts a stable binding mode comparable to
the antagonist but with marginally tighter RMSD convergence. RMSF patterns (Figure S5b)
revealed that bromocriptine exhibited fluctuation peaks in three critical ligand-binding re-
gions, including Asp99–Glu124, Leu181–Pro200, and Phe286–Ser308, that closely matched
those of JMV-2959. These fluctuations indicate disruption of hydrogen-bonding and stabi-
lizing contacts within the orthosteric site, a hallmark of antagonist-like interference with
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GHSR activation. In contrast, the agonist GHRP-6 showed dampened flexibility in these
regions, supporting its role in stabilizing the receptor in an active conformation. RoG
profiles (Figure S5c) showed bromocriptine maintained an average compactness of ~5.3 nm,
higher than the agonist (~3.8 nm) but similar to the antagonist (~4.6–4.8 nm). This indicates
that bromocriptine maintains a more open structural state relative to agonist binding,
which may hinder conformational transitions needed for receptor activation. SASA values
(Figure S5d) further supported this pattern, with bromocriptine displaying moderate sol-
vent exposure (~150–250 nm2), lying between the antagonist (~200–300 nm2) and agonist
(~100–200 nm2). The intermediate SASA profile suggests bromocriptine maintains partial
receptor exposure to solvent, consistent with antagonist-like stabilization.

Figure 8. MD simulation profiles of bromocriptine, standard agonists, and antagonists bound to the
CXCR4 LBD. (a) Root mean square deviation (RMSD). (b) Root mean square fluctuation (RMSF).
(c) Radius of gyration (RoG). (d) Solvent-accessible surface area (SASA).

For OXTR (Figure S6a), RMSD analysis revealed that bromocriptine displayed
higher structural fluctuations (~1.3–1.5 nm) compared to both the antagonist atosiban
(~0.85–0.9 nm) and agonist oxytocin (~0.95–1.1 nm). This elevated RMSD suggests that
bromocriptine binding may induce greater conformational rearrangements in OXTR, po-
tentially destabilizing the active-state conformation. RMSF profiles (Figure S6b) showed
that bromocriptine caused enhanced residue mobility in two key ligand-binding segments
(Arg232–Leu265 and Ile280–Ala318) closely paralleling antagonist atosiban’s fluctuation
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patterns. This similarity points to disruption of critical hydrogen-bonding networks within
the ligand-binding domain, limiting the structural rigidity required for agonist-mediated
receptor activation. In contrast, oxytocin binding reduced flexibility in these residues,
favoring activation. RoG analysis (Figure S6c) revealed that bromocriptine maintained a
larger average radius (~5.8–6.2 nm) than both agonist (~5.2 nm) and antagonist (~4.5 nm),
suggesting it induces a more expanded conformation. Such expansion is often linked
with the destabilization of active-state packing. SASA measurements (Figure S6d) showed
bromocriptine markedly increased solvent exposure (~300–600 nm2), particularly in the
latter half of the simulation, while the antagonist atosiban remained consistently low
(~150–200 nm2) and oxytocin showed a moderate increase (~200–350 nm2). The high SASA
profile of bromocriptine suggests reduced burial within the OXTR binding site, which can
hinder receptor activation efficiency. The complete MD simulation results can be seen in
Supplementary Data S7.

To characterize the molecular interactions between CXCR4 and its ligands, contact
frequency histograms and interaction maps were generated throughout the 100 ns MD
simulations for bromocriptine, the reference agonist CXCL-12, and the reference antagonist
plerixafor (Figure 9). These analyses provide insights into which residues in the LBD con-
tribute most consistently to ligand stabilization and whether bromocriptine preferentially
mimics agonist- or antagonist-like contact patterns. For the CXCR4–bromocriptine complex
(Figure 9a), the interaction heatmap and histogram reveal stable and recurrent contacts with
several key residues in the LBD, most notably Asp187, Glu288, and His113. Asp187 stands
out with an interaction fraction exceeding 2.0, indicating persistent and high-frequency
contacts across the simulation trajectory. This is particularly noteworthy because Asp187
is a critical residue for antagonist binding in CXCR4, often involved in ionic or hydrogen-
bond interactions that stabilize inactive conformations. The intense Asp187 contact in
bromocriptine mirrors that observed for plerixafor, suggesting that bromocriptine engages
the receptor in an antagonist-like manner at this site.

In contrast, the CXCR4–CXCL-12 agonist complex (Figure 9b) displayed a markedly
different contact pattern. While Asp187 contacts were weaker and less frequent, strong
interactions were concentrated in other extracellular loops and N-terminal residues, reflect-
ing the typical engagement profile of peptide agonists. This shift in contact localization is
consistent with agonist-induced receptor activation, which generally involves dynamic rear-
rangements in the LBD and transmembrane regions to facilitate signal transduction. For the
CXCR4–plerixafor antagonist complex (Figure 9c), the contact profile exhibited pronounced
and persistent interactions with Asp187, with an interaction fraction closely matching that
seen in bromocriptine. Additional shared contacts included Glu288 and Tyr45, further
supporting the similarity between bromocriptine and plerixafor in their binding orienta-
tion and stabilization strategy. The alignment of these interaction hotspots, particularly
in Asp187, strongly indicates that bromocriptine preferentially stabilizes CXCR4 in an
inactive conformation.

The MM/PBSA free binding energy calculations provide a quantitative measure of
the thermodynamic stability of each ligand–receptor complex. Across all three receptors
(CXCR4, GHSR, and OXTR), bromocriptine consistently demonstrated substantially fa-
vorable binding free energies, falling closer to those of the reference antagonists than to
the agonists (Table 4). This trend reinforces the hypothesis that bromocriptine may prefer-
entially adopt antagonist-like binding modes. For the CXCR4 complexes, bromocriptine
achieved a binding free energy of −22.67 ± 3.70 kcal/mol, markedly stronger than the
agonist CXCL-12 (−13.33 ± 4.62 kcal/mol) but somewhat weaker than the antagonist
plerixafor (−28.43 ± 2.11 kcal/mol). This suggests that while bromocriptine does not reach
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the extreme binding affinity of plerixafor, it engages the receptor with energetics that are
more characteristic of an antagonist.

Figure 9. Histogram illustrating the number of contacts between CXCR4 and each studied ligand
throughout the 100 ns MD simulation. (a) CXCR4_Bromocriptine complex. (b) CXCR4_CXCL-
12 (agonist) complex. (c) CXCR4_Plerixafor (antagonist) complex. Bar colors represent different
interaction types: blue = hydrogen bonds, green = hydrophobic contacts, pink = water bridges,
purple = ionic interactions. The red dashed boxes highlight residues showing persistent and dominant
interactions (e.g., Arg188 and Asp187) critical for ligand stabilization and help distinguish antagonist-
like from agonist-like binding modes.

Table 4. Comparative MM/PBSA free binding energies of bromocriptine and reference agonists and
antagonists with CXCR4, GHSR, and OXTR.

Complex MM/PBSA Free Binding Energy
∆G_Binding (kcal/mol)

CXCR4_Bromocriptine −22.67 ± 3.70
CXCR4_CXCL-12 (agonist) −13.33 ± 4.62

CXCR4_Plerixafor (antagonist) −28.43 ± 2.11
GHSR_Bromocriptine −22.11 ± 3.55

GHSR_GHRP-6 (agonist) −14.96 ± 4.78
GHSR_JMV-2959 (antagonist) −24.98 ± 3.12

OXTR_Bromocriptine −21.43 ± 2.41
OXTR_Oxytocin (agonist) −16.56 ± 4.72

OXTR_Atosiban (antagonist) −19.87 ± 3.21
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In the GHSR complexes, bromocriptine bound with −22.11 ± 3.55 kcal/mol, again signifi-
cantly stronger than the agonist GHRP-6 (−14.96 ± 4.78 kcal/mol) and only moderately weaker
than the antagonist JMV-2959 (−24.98 ± 3.12 kcal/mol). This similarity to the antagonist pro-
file supports the molecular dynamics contact analysis, which indicated overlap in binding
site engagement patterns. For the OXTR complexes, bromocriptine displayed the least dif-
ferential but still followed the same trend. Its binding free energy (−21.43 ± 2.41 kcal/mol)
was stronger than that of the agonist oxytocin (−16.56 ± 4.72 kcal/mol) and close to that of
the antagonist atosiban (−19.87 ± 3.21 kcal/mol). Interestingly, in OXTR, the bromocrip-
tine antagonist energy difference was narrower, suggesting potentially more balanced
binding characteristics between agonist and antagonist modes in this receptor context.
Thus, MM/PBSA results strongly align with the molecular interaction profiles observed in
the contact analysis. This indicates that bromocriptine generally exhibits antagonist-like
binding energetics across all studied GPCR targets, with particularly strong alignment to
known antagonists in CXCR4.

3. Discussion
This study presents a comprehensive computational exploration of bromocriptine, a

clinically established dopamine D2 receptor agonist, focusing on its potential interactions
with histamine-associated receptor targets. The work began by mapping bromocriptine-
related proteins within histamine-enriched KEGG pathways, revealing a broad network of
neuroactive ligand–receptor interactions. Among these, histamine receptor family mem-
bers and several histamine-adjacent GPCRs emerged as network hubs. CXCR4, GHSR,
and OXTR were prioritized for detailed evaluation from the enriched panel, molecular
docking, and pharmacophore modeling. These receptors were subjected to an integra-
tive molecular simulation pipeline combining MD simulations and MM/PBSA free en-
ergy calculations. Network pharmacology highlighted a substantial overlap between
bromocriptine-associated proteins and histamine-related targets, with hubs enriched for
GPCR signaling, PI3K–Akt, cAMP, and Ca2+ pathways and clustering in the “neuroactive
ligand–receptor interaction” KEGG module. These same modules underlie transmitter and
neuromodulator control in basal ganglia and limbic circuits, where histamine–dopamine
interactions are well documented (e.g., H3R control of dopamine release and histaminergic
contributions to neuroinflammation) [43,44]. Therefore, our pathway enrichments agree
with prior mechanistic reviews that place histamine receptors at the neurotransmission and
immune regulation interface.

Docking, pharmacophores, MD, and MM/PBSA consistently suggested that bromocrip-
tine binds CXCR4, GHSR, and OXTR in more “antagonist-like” ways than “agonist-like.”
For CXCR4, bromocriptine reproduced interaction hotspots around acidic residues that are
known to anchor multiple antagonists. Crystal structures and mutational work have long
implicated Asp97, Asp187, and Glu288 in small-molecule and peptide antagonist binding
(e.g., IT1t and CVX15 in the seminal CXCR4 structures), and our models recapitulated this
triad, with MD contact histograms emphasizing Asp187, mirroring the reference antag-
onist plerixafor [45,46]. For the GHSR, bromocriptine showed docking and MM/PBSA
energies close to the known antagonist JMV-2959 and stronger than the peptide agonist
GHRP-6, with pharmacophores capturing the same hydrophobic anchor regions and a
polar feature near the Arg102/Gln120 pocket described in GHSR ligand studies. These
patterns align with the established pharmacology of JMV-2959 as a competitive ghrelin
receptor blocker and GHRP-6 as an agonist [47,48]. At OXTR, bromocriptine formed key
contacts overlapping those used by small-molecule/peptidic antagonists (atosiban). It
produced MD signatures (higher RMSF in binding loops, larger SASA and RoG) consistent
with antagonist-like disruption rather than agonist stabilization by oxytocin. The structural
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literature on OXTR supports such interpretations: recent high-resolution complexes reveal
how antagonists stabilize inactive conformations by engaging basic residues (e.g., Lys116)
and hydrophobic subpockets that differ from oxytocin’s activation-biased pose [49].

Over 100 ns, bromocriptine–CXCR4 tracked the antagonist (plerixafor) rather than the
agonist (CXCL-12) across four orthogonal MD readouts: (i) RMSD stabilization early and
tightly; (ii) RMSF elevations at Trp94–Tyr116, Arg183–Tyr190, and Val280–Ile300 (consistent
with partial H-bond network disruption required for activation); (iii) compact RoG; and
(iv) lower SASA. Contact histograms localized persistent interactions to Asp187/Glu288,
again echoing antagonist benchmarks. Similar, though receptor-specific, patterns were seen
in GHSR (bromocriptine closer to JMV-2959 than to GHRP-6) and in OXTR (bromocrip-
tine perturbing activation-linked regions more like atosiban). These dynamic behaviors
match what is known from GPCR structural pharmacology: agonists typically reduce local
flexibility in activation microswitches and increase global expansion during active-state
formation, whereas antagonists preserve compactness and elevate local loop mobility that
frustrates productive rearrangements [50,51].

An important limitation to acknowledge lies in the pharmacokinetic–pharmacodynamic
(PK–PD) context. The actual in vivo plasma concentrations of bromocriptine may not
reach the levels required to engage CXCR4, GHSR, or OXTR with the affinities predicted
(∆G_binding ~ −21 to −23 kcal/mol). Bromocriptine undergoes extensive first-pass
metabolism and exhibits low systemic bioavailability, typically resulting in plasma con-
centrations in the low nanomolar range after therapeutic dosing [52,53]. Whether such
exposure is sufficient to modulate these histamine-associated GPCRs remains an open
question. Nevertheless, local tissue concentrations, particularly in the brain or pituitary,
where bromocriptine is known to accumulate, may be higher than plasma levels and could
allow engagement of secondary targets. These PK–PD considerations highlight the need for
experimental studies that not only validate binding but also assess whether physiologically
achievable drug concentrations translate into functional receptor modulation.

If borne out experimentally, antagonist-like modulation of CXCR4, GHSR, and OXTR
by bromocriptine could intersect several histamine-relevant pathobiologies. CXCR4 is a
central chemokine receptor in neuroinflammation and leukocyte trafficking; small-molecule
antagonism (as with plerixafor) is clinically exploited for stem-cell mobilization and has
been explored in neuroimmune contexts [54,55]. GHSR antagonism reduces ghrelin sig-
naling, influencing dopaminergic tone, reward, and neuroinflammation; JMV-2959 has
been widely used as a tool compound in those pathways [56,57]. OXTR antagonism
modulates neuropeptide control of stress and social behavior and can influence glial and
vascular responses [58]. Taken together, our computational findings, tempered by PK–
PD considerations, suggest that bromocriptine’s polypharmacology could contribute to
pleiotropic clinical effects, such as anti-inflammatory, metabolic, or stress-modulating out-
comes, but careful experimental and pharmacological validation is essential before drawing
translational conclusions. Given the literature linking histamine receptors to dopamine
release and microglial activation [12,59], bromocriptine’s multi-receptor footprint might
help explain reports of anti-inflammatory or disease-modifying signals beyond pure D2R
agonism. These results generate specific, experimentally actionable hypotheses about
bromocriptine’s polypharmacology at the interface of neurotransmission and inflamma-
tion, and they encourage prospective testing of this well-known drug in histamine- and
chemokine-modulated indications.
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4. Materials and Methods
4.1. Database Collection

Potential drug targets of bromocriptine were systematically retrieved from multiple
sources, including the Similarity Ensemble Approach (SEA) [52] (https://sea.bkslab.org/
(accessed on 14 April 2025), DrugBank [53] (https://go.drugbank.com/ (accessed on
14 April 2025)), Search Tool for Interacting Chemicals (STITCH) [60] (http://stitch.
embl.de/ (accessed on 14 April 2025)), PharmMapper [61] (https://www.lilab-ecust.cn/
pharmmapper/ (accessed on 14 April 2025)), and TargetNet [62] (http://targetnet.scbdd.
com/(accessed on 14 April 2025)). The PubChem database [63] (https://pubchem.ncbi.nlm.
nih.gov/ (accessed on 14 April 2025)) was used to obtain the Simplified Molecular Input
Line Entry System (SMILES) representation of bromocriptine, which was subsequently
queried in SwissTargetPrediction (STP) [64] (http://www.swisstargetprediction.ch/ (ac-
cessed on 14 April 2025)) to predict additional putative targets. The prediction was re-
stricted to Homo sapiens proteins, applying a Tanimoto Coefficient (TC) cutoff of ≥0.50.
This value was chosen to balance sensitivity and specificity, since higher cutoffs yield
fewer predicted targets but enhance the reliability of the predicted associations [65]. All
retrieved bromocriptine-associated targets were standardized to official gene symbols using
the UniProt database [66] (https://www.uniprot.org/ (accessed on 14 April 2025)), and
duplicate entries were removed to yield a non-redundant target list. Histamine-associated
targets were collected from GeneCards [67] (https://www.genecards.org/ (accessed on
14 April 2025)), Online Mendelian Inheritance in Man (OMIM) [68] https://omim.org/
(accessed on 14 April 2025)), and NCBI Gene (https://www.ncbi.nlm.nih.gov/gene/ (ac-
cessed on 14 April 2025)), with the search restricted to Homo sapiens. Redundant entries
were eliminated to establish a comprehensive histamine target library. The intersection
between bromocriptine and histamine-associated targets was determined and visualized
using a Venn diagram, representing the overlap as potential histamine-related targets of
bromocriptine. This intersection set was the foundation for subsequent network pharma-
cology, pathway enrichment, and structural analysis.

4.2. Protein–Protein Interaction (PPI) Network Construction

The intersecting gene set between bromocriptine and histamine-associated targets was
analyzed to explore potential PPIs using the STRING database [69] (https://string-db.org/
(accessed on 18 April 2025)). The query was restricted to Homo sapiens and a minimum
required interaction score of 0.40 (medium confidence) [21]. The resulting interaction
network was exported for further analysis. Topological analysis of the PPI network was
performed using Cytoscape version 3.10.3 [70] (https://www.cytoscape.org/ (accessed
on 18 April 2025)) with the CytoNCA plugin [71]. Four key topological parameters were
calculated to assess the centrality and importance of each node: DC, EC, BC, and CC.
Nodes with values meeting or exceeding the respective median thresholds across all four
parameters were designated as hub nodes, representing potential core targets. In the
visualization, node color intensity was scaled to reflect the relative topological importance,
with darker hues indicating higher centrality.

4.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Enrichment Analyses

To elucidate the potential biological functions and signaling pathways associated with
bromocriptine’s interaction with histamine-related targets, a network enrichment analy-
sis was performed. In this context, “network enrichment analysis” refers to a statistical
approach used to determine whether specific biological processes, molecular functions, cel-
lular components, or signaling pathways are represented more frequently than expected by
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chance within the set of overlapping bromocriptine–histamine-associated targets. By map-
ping these targets onto curated ontologies and pathway databases, the method highlights
biological modules or signaling cascades that are disproportionately represented, thereby
identifying functional themes that may underlie bromocriptine’s pharmacological effects.
For this purpose, GO annotations were retrieved from the Gene Ontology database [72]
(https://geneontology.org/ (accessed on 22 April 2025)), while KEGG pathway data were
obtained from the KEGG resource [73] (https://www.genome.jp/ (accessed on 22 April
2025)). Enrichment analyses were conducted using the ShinyGO 0.82 [74] web-based plat-
form (https://bioinformatics.sdstate.edu/go/ (accessed on 22 April 2025)), covering the
three GO categories: BP, MF, and CC, as well as KEGG signaling pathways. Statistical
significance was determined using a false discovery rate (FDR) < 0.05 and p < 0.05. The
top 10 enriched GO terms in each category and the top 10 KEGG pathways were selected
for visualization. These results were illustrated through bar plots, network diagrams, and
hierarchical clustering to highlight functional associations, pathway interconnectivity, and
fold enrichment patterns.

4.4. Molecular Docking Simulations and Binding Affinity Analysis

Molecular docking simulations were performed to elucidate the molecular basis
of bromocriptine interaction with histamine-associated targets. The primary objectives
were to identify key binding residues involved in ligand–receptor interactions, charac-
terize the intermolecular forces contributing to binding affinity, and explore the binding
modes and orientations of the compound in comparison with standard ligands. This
approach aimed to provide structural insights into bromocriptine’s potential modulation
of histamine-related signaling pathways. Three-dimensional (3D) structures of selected
receptors identified through PPI network analysis and KEGG pathway enrichment were
retrieved from the RCSB Protein Data Bank (PDB) (https://www.rcsb.org/ (accessed on
25 April 2025)). Prior to docking, receptor structures were refined using Swiss-PdbViewer
version 4.1 [75] (Swiss Institute of Bioinformatics, Lausanne, Switzerland) to ensure optimal
geometry. Refinement steps included energy minimization, removal of crystallographic
water molecules, and reconstruction of missing side chains. Active site identification
was conducted using PDBSum [76] (European Bioinformatics Institute, Cambridge, UK)
(https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/ (accessed on 25 April 2025)),
which provides detailed structural summaries including ligand-binding pockets and sec-
ondary structure features. This ensured docking simulations targeted biologically relevant
binding regions. Bromocriptine molecular structure was generated and energy-minimized
using the molecular mechanics 2 (MM2) force field [77] in Chem3D Ultra version 22
(PerkinElmer, Waltham, MA, USA). This step optimized the molecular geometry to the
lowest energy conformation before docking. Reference ligands known to interact with
the respective receptors were included as controls. These standard ligands underwent
identical MM2 energy minimization procedures to maintain methodological consistency
across docking experiments.

Molecular docking was performed using the High Ambiguity Driven Protein–Protein
Docking (HADDOCK) version 2.4 (University of Utrecht, Utrecht, The Netherlands)
(https://wenmr.science.uu.nl/haddock2.4/ (accessed on 25 April 2025)). HADDOCK
employs ambiguous interaction restraints (AIRs) derived from experimental or predicted
binding site information, improving docking accuracy [78,79]. The standalone HADDOCK
interface enabled advanced customization of docking parameters, integrating both ge-
ometric and energetic constraints to enhance the reliability of the predicted complexes.
Docking results were evaluated using two primary criteria. The first was cluster popu-
lation, in which docking models were grouped into clusters, with the most populated
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cluster considered the most reproducible and stable binding mode. The second was
the HADDOCK score, a composite metric incorporating van der Waals energy, electro-
static interactions, desolvation energy, and buried surface area. The docking model with
the most favorable HADDOCK score was selected for subsequent analysis, representing
the highest predicted binding affinity. PRODIGY (PROtein binDIng enerGY prediction)
(https://wenmr.science.uu.nl/prodigy/ (accessed on 25 April 2025)) [80] was employed
to refine free energy estimates. PRODIGY calculates binding free energy (∆G, kcal/mol)
based on the structural and energetic features of the ligand–receptor complex, providing
an additional layer of validation to the docking results.

4.5. Pharmacophore Modeling

To identify the essential molecular features mediating the interaction between
bromocriptine and histamine-associated target receptors, pharmacophore modeling was
conducted using LigandScout 4.5 (Inte:Ligand, Vienna, Austria) [81]. LigandScout en-
ables the generation of three-dimensional (3D) pharmacophore models by detecting and
mapping critical interaction features, including hydrogen bond donors (HBD), hydrogen
bond acceptors (HBA), hydrophobic regions, aromatic rings, and electrostatic interaction
sites. These features are fundamental for ligand recognition and play a central role in
determining binding specificity and affinity toward target proteins. The receptor–ligand
complexes selected from the molecular docking stage were the basis for pharmacophore
generation. Bromocriptine-bound receptor structures were imported into LigandScout
version 4.4, and the software automatically extracted pharmacophoric features by analyzing
spatial arrangements and interaction patterns within the binding pocket. This process
involved identifying conserved hydrogen bonds, hydrophobic contacts, and π–π stacking
interactions and mapping regions critical for electrostatic complementarity [82,83]. To
improve model robustness and predictive accuracy, the pharmacophore features derived
from bromocriptine were compared with those generated from reference ligands that bind
the same receptors. This comparative analysis facilitated the selection of key chemical
moieties likely responsible for the compound’s biological activity.

4.6. Molecular Dynamics (MD) Simulation for Structural Stability and Interaction Analysis

To evaluate the structural stability and dynamic behavior of the protein–ligand com-
plexes, MD simulations were conducted using the Desmond MD simulation package
integrated within the Schrödinger Suite (v12.5.139). This approach allowed for in-depth
exploration of conformational flexibility, stability of molecular interactions, and time-
dependent structural deviations of the complexes under physiological conditions. The
OPLS3e force field was employed to ensure accurate representation of atomic interactions
throughout the simulation process [84]. Each complex was initially prepared using a
standardized protocol involving solvation, charge neutralization, energy minimization,
equilibration, and production simulation. The protein–ligand systems were solvated using
the TIP3P water model within an orthorhombic periodic boundary box, maintaining a
10 Å buffer distance between the complex and the box edges to prevent boundary artifacts.
Sodium (Na+) and chloride (Cl−) counterions were added to neutralize the total system
charge [85].

Following solvation and neutralization, energy minimization was performed to elimi-
nate unfavorable steric clashes. This step was followed by a stepwise equilibration phase,
consisting of 1 ns under the NVT ensemble (constant number of particles, volume, and
temperature) and 1 ns under the NPT ensemble (constant number of particles, pressure,
and temperature). The Nose–Hoover thermostat was applied to regulate temperature at
300 K, while the Martyna–Tobias–Klein barostat was used to maintain pressure at 1.01 bar,
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simulating realistic biological conditions [86,87]. The production MD simulations were
carried out for 100 ns under NPT conditions. Throughout the simulation, trajectory data
were collected at regular intervals and analyzed using Desmond’s built-in tools. Key
evaluation metrics included RMSD to monitor global structural stability, RMSF to assess
residue-level flexibility, and detailed protein–ligand interaction profiles over time. These
interaction analyses focused on hydrogen bonds, hydrophobic interactions, salt bridges,
and π-π stacking, providing insight into the persistence and stability of binding modes
throughout the simulation period.

4.7. MM/PBSA Binding Free Energy Calculation Using gmx_MMPBSA

The Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method
was applied using gmx_MMPBSA v1.6.4 [88] to estimate the binding free energy of protein-
ligand complexes. Since the original MD simulations were performed using Desmond
(Schrödinger Suite v12.5.139), the resulting trajectories (.dtr) and structural files (.cms)
were first exported to PDB format via Maestro. These were converted into GROMACS-
compatible formats (.xtc, .tpr, .top) using VMD, ACPYPE, and GROMACS v2025.1 util-
ities [89–91]. Ligand topology files were generated using Antechamber with the GAFF
force field, while the full system topology was assembled by merging protein and ligand
components. An index file was created using gmx make_ndx to define the complex, protein,
and ligand groups for downstream analysis. The MM/PBSA analysis was performed using
100 snapshots evenly extracted from the 100 ns MD trajectory, excluding water and ions.
The input file (mmpbsa.in) was configured to apply the Poisson–Boltzmann solvation
model, and the calculation was executed with the standard gmx_MMPBSA command. The
final binding free energy (∆G_bind) was computed as the sum of molecular mechanics
energy (van der Waals and electrostatics), polar solvation energy, and nonpolar solvation
energy based on solvent-accessible surface area (SASA). Entropic contributions (T∆S) were
omitted due to computational limitations. Output files included the total ∆G_bind, energy
decomposition data, and per-residue free energy contributions, which were used to identify
key interacting residues and evaluate the binding strength of each complex.

5. Limitations, Clinical Implications, and Future Works
Several limitations should be acknowledged when interpreting these findings. First,

the study is entirely computational, relying on network pharmacology, molecular docking,
pharmacophore modeling, MD simulations, and MM/PBSA binding energy calculations.
While these approaches provide valuable mechanistic insights, they cannot fully replicate
the complexity of in vivo biological systems. Receptor conformational flexibility, membrane
microenvironment effects, and the influence of co-factors or interacting proteins may alter
bromocriptine’s binding modes in physiological conditions. Furthermore, our analysis
focused on static receptor structures or MD-simulated conformations of selected GPCRs,
potentially overlooking dynamic allosteric sites or ligand-induced conformational states
that could influence functional outcomes. Finally, the network pharmacology component
was constrained by available databases, which may contain incomplete or biased interac-
tion data. In particular, the absence of experimental validation (e.g., receptor binding or
competition assays) limits the ability to directly confirm the predicted interactions, and this
is acknowledged as an essential next step.

We acknowledge that the ~100 ns MD trajectories employed here represent a relatively
short timescale compared with the microsecond-scale simulations commonly used to
capture large-scale conformational rearrangements in GPCRs. Our primary objective,
however, was not to resolve slow allosteric transitions but to validate docking poses
and assess local binding stability. Within 100 ns, the RMSD, RMSF, RoG, and hydrogen-
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bonding analyses reached stable plateaus, supporting equilibration of the complexes and
robustness of the proposed binding modes. Importantly, subsequent MM/PBSA free energy
calculations converged consistently across replicates, further reinforcing stability on this
timescale. In addition, docking itself was performed using a semi-flexible HADDOCK
protocol, which allowed limited side-chain adjustments during complex formation and
reduced dependence on a purely rigid force-field representation. We fully acknowledge that
the absence of steered molecular dynamics (SMD) force-pulling simulations limits the direct
mechanical validation of the proposed binding poses, and that extending MD trajectories
to the microsecond regime would provide deeper insight into slower conformational
events. These remain valuable directions for future work. Nevertheless, the combined use
of semi-flexible docking, explicit-solvent MD equilibration, and MM/PBSA free energy
calculations provides a widely accepted framework for pose validation, mitigating force-
field dependence and supporting the reliability of our conclusions.

Despite these constraints, the findings carry essential potential clinical implications.
Bromocriptine is primarily prescribed as a dopamine D2 receptor agonist, yet our data
suggest it may also engage in both antagonist-like and mixed interaction modes with
histamine-associated GPCRs such as CXCR4, GHSR, and OXTR. This polypharmacology
could explain specific pleiotropic clinical effects of bromocriptine, including modulation
of neuroinflammation, appetite regulation, stress responses, and possibly vascular tone.
CXCR4 antagonism, for example, has been implicated in reducing neuroinflammatory
cascades and influencing immune cell trafficking, which could extend bromocriptine’s
therapeutic utility beyond its dopaminergic profile. Similarly, modulation of GHSR may
contribute to metabolic regulation, while OXTR interaction may influence psychosocial and
stress-related behaviors. Understanding these off-target activities may inform safer dosing
strategies, drug repurposing efforts, and personalized medicine approaches, particularly in
patients with comorbid neurological and inflammatory conditions.

Future studies should validate these computational predictions through experimental
approaches, including competition binding assays in living cells, in vitro receptor binding
assays, cell-based functional assays, and ultimately in vivo pharmacological evaluations.
High-resolution cryo-EM or X-ray crystallography of bromocriptine-bound CXCR4, GHSR,
and OXTR could clarify the structural basis of its observed antagonist-like and modulatory
binding modes. Additionally, given the role of histamine-related pathways in diverse physi-
ological and pathological processes, transcriptomic or proteomic studies in relevant disease
models could help elucidate the downstream effects of bromocriptine’s multi-receptor
engagement. From a translational perspective, these insights may guide the development
of novel bromocriptine derivatives or analogs with optimized selectivity profiles, allowing
therapeutic targeting of specific GPCR subsets while minimizing unwanted effects. Expand-
ing the scope to include other histamine-linked GPCRs and integrating patient-derived
organoid models or induced pluripotent stem cell (iPSC) systems could further bridge the
gap between computational predictions and clinical application.

6. Conclusions
In conclusion, this study provides molecular-level insights into bromocriptine’s inter-

actions with histamine-associated GPCR targets, identified through network pharmacology
as CXCR4, GHSR, and OXTR, and validated by docking, pharmacophore modeling, and
molecular dynamics simulations. Bromocriptine consistently demonstrated stable binding
orientations, persistent residue contacts, and favorable binding free energies, aligning more
closely with antagonist reference ligands yet also exhibiting unique interaction features that
suggest broader modulatory potential. The convergence of structural stability, dynamic
behavior, and energetics underscores bromocriptine’s capacity to engage histamine-related
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receptors in a manner that could influence both dopaminergic and histaminergic sig-
naling. Collectively, these findings highlight bromocriptine’s potential as a multi-target
therapeutic agent and provide a computational framework for its repurposing in histamine-
associated disorders, while warranting further experimental validation to confirm its
functional pharmacology.
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AIRs Ambiguous interaction restraints
AKT1 AKT serine/threonine kinase 1
APP Amyloid precursor protein
BC Betweenness centrality
BP Biological process
CASP3 Caspase-3
CC Closeness centrality
CDS Coding sequence
CXCR4 C-X-C chemokine receptor type 4
DC Degree centrality
DRD2 D2 dopamine receptor
EC Eigenvector centrality
EGFR Epidermal growth factor receptor
FDA Food and Drug Administration
FDR False discovery rate
GABA γ-aminobutyric acid
H1R Histamine receptor H1
HADDOCK High ambiguity driven protein-protein docking
HBA Hydrogen bond acceptor
HBD Hydrogen bond donor
ICAM1 Intercellular adhesion molecule 1
IGF1 Insulin-like growth factor 1
IL2 Interleukin-2
iPSC Induced pluripotent stem cell
LBD Ligand-binding domain
MD Molecular dynamics
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MF Molecular function
MM/PBSA Molecular mechanics/Poisson-Boltzmann surface area
MMP9 Matrix metalloproteinase-9
NPT Number of particles, pressure, and temperature
NVT Number of particles, volume, and temperature
OMIM Online Mendelian inheritance in man
PDB Protein data bank
PI3K Phosphatidylinositol 3-kinase
PK–PD Pharmacokinetic–pharmacodynamic
PPI Protein–protein interaction
PRODIGY Protein binding energy prediction
RMSD Root mean square deviation
RMSF Root mean square fluctuation
RoG Radius of gyration
SASA Solvent-accessible surface area
SEA Similarity ensemble approach
SMD Steered molecular dynamics
SMILES Simplified molecular input line entry system
SRC Proto-oncogene tyrosine-protein kinase Src
STITCH Search tool for interacting chemicals
STP SwissTargetPrediction
TC Tanimoto coefficient
TNF Tumor necrosis factor
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