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Abstract

The causal contributions of specific mitochondrial genes to common pain phenotypes
remain unclear. We employed a multi-omics Mendelian randomization (SMR) approach,
integrating QTL data (expression, methylation, protein) for mitochondrial genes with
GWAS summary statistics for seven pain phenotypes. We identified 18 candidate genes
with robust SMR associations across omics layers. However, strong colocalization evidence
(PP.H4 > 0.7) was largely absent, pointing towards complex genetic architectures. A notable
exception was a strong signal for a shared causal variant found at the methylation level for
the MCL1 gene in hip pain (PP.H4 = 0.962), nominating it as a high-confidence candidate.
Additionally, genetically predicted higher protein levels of Glycine amidinotransferase
(GATM) showed consistent protective associations with neck or shoulder, back, and knee
pain. This study provides novel evidence for mitochondrial gene regulation in pain,
highlighting the GATM pathway as protective and identifying MCL1 methylation as a
potential causal mechanism in hip pain.

Keywords: neuralgia; neuritis; Mendelian randomization; mitochondria; methylation; gene
expression; protein

1. Introduction
Chronic pain, including neuralgia and neuritis, is a major global health challenge with

a complex pathophysiology. Among the factors contributing to this complexity, emerging
evidence highlights the critical role of cellular bioenergetics and mitochondrial function in
neuronal health and sensory processing, as mitochondria are essential for neuronal energy
supply, calcium homeostasis, and redox signaling vital for normal nociception [1,2].

Mitochondrial dysfunction is increasingly implicated in specific pain conditions, such
as neuropathic pain associated with nuclear polymerase gamma (POLG) mutations or
certain mitochondrial DNA (mtDNA) variants [3]. However, systematic investigation
into the broader mitochondrial gene repertoire’s contribution to common neuralgia and
neuritis phenotypes remains limited, particularly through causal inference methods. To
address this knowledge gap, this study leverages a multi-omics summary-data-based
Mendelian randomization (SMR) approach [4,5]. By integrating large-scale genetic data for
methylation (mQTL), expression (eQTL), and protein quantitative trait loci (pQTL) with
genome-wide association study (GWAS) summary statistics [6] for seven distinct neuralgia

Int. J. Mol. Sci. 2025, 26, 8690 https://doi.org/10.3390/ijms26178690

https://doi.org/10.3390/ijms26178690
https://doi.org/10.3390/ijms26178690
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms26178690
https://www.mdpi.com/article/10.3390/ijms26178690?type=check_update&version=2


Int. J. Mol. Sci. 2025, 26, 8690 2 of 19

and neuritis phenotypes, we aim to systematically identify potential causal links between
mitochondrial gene regulation and susceptibility to these debilitating pain conditions.

2. Results
2.1. Integrated Multi-Omics SMR Identifies Candidate Mitochondrial Genes Associated with
Pain Phenotypes

Following the analytical workflow (Figure 1), we performed a multi-omics SMR
analysis to identify mitochondrial genes associated with seven neuralgia and neuritis
phenotypes using UK Biobank GWAS summary statistics (Supplementary Table S2). We
systematically evaluated genetic instruments for methylation (mQTL), expression (eQTL),
and protein (pQTL) across 1136 mitochondrial genes from the MitoCarta 3.0 database
(Supplementary Table S1).

 
Figure 1. The analytical workflow. The analysis was based on 1136 human genes coding for
mitochondrial proteins identified from MitoCarta 3.0 [7]. The workflow integrated multi-omics data,
including DNA methylation quantitative trait loci (mQTL) from McRae et al. [8], gene expression
quantitative trait loci (eQTL) from Võsa, U. et al. [9], and protein quantitative trait loci (pQTL) from
Ferkingstad et al. [10]. SMR, summary-data-based Mendelian randomization; HEIDI, heterogeneity
in dependent instruments.

After applying significance and heterogeneity filters (p_SMR < 0.05 and p_HEIDI > 0.05),
our integrative analysis yielded 18 unique mitochondrial genes robustly associated with at
least one pain outcome across multiple omics layers. The specific genes identified for each
pain phenotype are detailed in Table 1. Notably, the gene GATM was associated with three
distinct conditions: neck or shoulder pain, back pain, and knee pain.

Subsequent colocalization analyses were performed to assess whether these SMR
associations were driven by shared causal variants. While strong evidence for colocalization
was largely absent, we identified a notable exception: the association between a methylation
QTL (mQTL) for the MCL1 gene and hip pain demonstrated strong evidence for a shared
causal variant (PP.H4 = 0.962), as noted in Table 1. For the remaining associations with
low PP.H4, we performed a deeper analysis of the full posterior probability distributions
to investigate alternative genetic scenarios, such as linkage disequilibrium. The complete
results of these expanded analyses are presented in Supplementary Table S4.
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Table 1. Mitochondrial-related genes identified by multi-omics SMR analyses across seven neural-
gia phenotypes.

Neuralgia
Phenotype

Significant
mQTL

Associations
(CpG Sites) 1

Significant
mQTL

Associations
(Unique Genes) 1

Significant eQTL
Associations

(Unique Genes) 1

Significant pQTL
Associations

(Unique Genes) 1

Integrated Genes
(Significant

Across
m/e/pQTL) 2

Evidence of
Strong

Colocalization 3

Headache 1797 368 82 10 ETFA, GRHPR,
MMAB No

Facial pain 646 243 45 8 FASN, SPHK2 No

Neck or
shoulder pain 1275 361 75 10 GATM, GSTZ1,

HIBCH, PRDX6 No

Back pain 1340 373 78 8 ACSF2, ECHS1,
GATM No

Stomach or
abdominal pain 993 318 63 11 NME4, RMDN1,

QDPR No

Hip pain 1014 317 67 7 FAHD1, MCL1 YES (MCL1
mQTL)

Knee pain 1421 394 93 9 DBI, DCXR,
GATM No

Summary statistics of summary-data-based Mendelian randomization (SMR) analyses linking mitochondrial-
related molecular features (methylation QTLs-mQTLs, expression QTLs-eQTLs, protein QTLs-pQTLs) to seven
neuralgia phenotypes. 1 Columns indicate the number of CpG sites or unique genes showing a significant
summary-data-based Mendelian randomization (SMR) association (p_SMR < 0.05) that also passed the HEIDI test
(p_HEIDI > 0.05). 2 Genes listed met the SMR significance criteria (p_SMR < 0.05, p_HEIDI > 0.05) across all three
available omic levels (mQTL, eQTL, and pQTL) for the respective phenotype. 3 Indicates whether strong evidence
for colocalization (PP.H4.abf > 0.7) was found between the integrated QTL signals and the pain phenotype GWAS
signal for the genes listed in the previous column. One association, between a methylation QTL for MCL1 and hip
pain, met this threshold in our expanded analysis (PP.H4 = 0.962). ETFA: Electron transfer flavoprotein subunit
alpha; GRHPR: Glyoxylate reductase/hydroxypyruvate reductase; MMAB: Metabolism of cobalamin associated B;
FASN: Fatty acid synthase; SPHK2: Sphingosine kinase 2; GATM: Glycine amidinotransferase; GSTZ1: Glutathione
S-transferase zeta 1; HIBCH: 3-Hydroxyisobutyryl-CoA hydrolase; PRDX6: Peroxiredoxin 6; ACSF2: Acyl-CoA
synthetase family member 2; ECHS1: Enoyl-CoA hydratase, short chain 1; NME4: NME/NM23 nucleoside
diphosphate kinase 4; RMDN1: Regulator of microtubule dynamics 1; QDPR: Quinoid dihydropteridine reductase,
FAHD1: Fumarylacetoacetate hydrolase domain containing 1; MCL1: MCL1 apoptosis regulator; DBI: Diazepam
binding inhibitor; DCXR: Dicarbonyl and L-xylulose reductase.

2.2. Effect Sizes and Directionality Reveal Diverse and Complex Roles of Mitochondrial Genes

We next examined the directionality and consistency of the 18 candidate gene associa-
tions across the different omic layers. The multi-omics SMR effect estimates for each pain
phenotype are summarized in Figure 2. The complete forest plots for each phenotype, detail-
ing all individual mQTL associations, are provided in Supplementary Figure S1a–g. Our
analysis of these results revealed three distinct patterns: consistent protective effects, con-
sistent risk-increasing effects, and complex or conflicting effects between molecular layers.

First, several genes showed consistent protective associations, where genetically pre-
dicted higher expression and protein levels were linked to a reduced risk of pain. The most
prominent example was GATM, which demonstrated a robust protective effect against neck
or shoulder pain (pQTL OR = 0.984), back pain (pQTL OR = 0.988), and knee pain (pQTL
OR = 0.988) (Figure 2c,d,g). Similarly, genes identified for headache (e.g., ETFA, GRHPR,
MMAB) and facial pain (e.g., FASN, SPHK2) also consistently showed protective trends at
both the expression and protein levels (Figure 2a,b).

In contrast, other genes were associated with an increased risk of pain. For instance,
higher expression and protein levels of ECHS1 were linked to a greater risk for back pain
(pQTL OR = 1.047) (Figure 2d). A similar risk-increasing pattern was observed for DBI in
knee pain (pQTL OR = 1.008) (Figure 2g), and for GSTZ1, HIBCH, and PRDX6 in neck or
shoulder pain (Figure 2c).
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Finally, our analysis highlighted the complexity of mitochondrial gene regulation,
revealing conflicting signals between different molecular layers for some genes. A clear
example is MCL1 in hip pain, where higher expression (eQTL) was protective (OR = 0.993),
but higher protein levels (pQTL) suggested increased risk (OR = 1.006) (Figure 2f). A similar
conflict was observed for RMDN1 in stomach or abdominal pain (Figure 2e). Furthermore,
the effects of DNA methylation (mQTL) often showed significant heterogeneity; the box-
plots summarizing CpG site effects frequently spanned the null value (OR = 1) and had
medians close to 1.0, even for genes with clear directional effects at the eQTL or pQTL level.
This suggests that the regulatory impact of these genes on pain susceptibility is highly
context-dependent and varies across different biological layers.

 

Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. Multi-omics SMR associations for neuralgia phenotypes. Forest plots illustrating the causal
association estimates between mitochondrial gene regulation and seven pain phenotypes. The figure
comprises seven panels, each displaying the results for a specific phenotype: (a) headache, (b) facial
pain, (c) neck or shoulder pain, (d) back pain, (e) stomach or abdominal pain, (f) hip pain, and (g) knee
pain. Within each panel, the most significant genes identified via SMR are displayed. Odds Ratios
(ORs) and their 95% Confidence Intervals (CIs) are derived from summary-data-based Mendelian
randomization (SMR) analysis. The estimated OR and 95% CI for each protein (pQTL) and expression
(eQTL) are represented by a point and a horizontal line. For methylation (mQTL), the results are
summarized based on the number of significant CpG probes (n), which is annotated on the right side
of the plot. For genes with three or more significant probes (n ≥ 3), the distribution of ORs is shown
as a box plot, where the central line represents the median (Med) effect, accompanied by individual
red dots for each probe. For genes with fewer than three probes (n < 3), only the individual points are
displayed, and their summary effect is represented by the mean (Mean). The vertical dashed line
indicates the null effect (OR = 1.0). ORs below 1.0 suggest a potential protective effect, while ORs
above 1.0 suggest a potential risk-increasing effect.

2.3. Shared Gene Patterns and Functional Insights from Enrichment Analysis

The analysis of 18 integrated mitochondrial genes predominantly revealed phenotype-
specific associations, with most genes correlating with a single pain condition (Figure 3).
Notably, GATM was the only gene associated with multiple phenotypes; it was concurrently
linked to neck or shoulder pain, back pain, and knee pain. GATM may, therefore, serve as a
shared mitochondrial node that influences these interconnected musculoskeletal conditions.
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Figure 3. Overlap patterns of integrated mitochondrial genes across seven neuralgia phenotypes.
The UpSet plot visualizes the distribution and intersections of the 18 mitochondrial genes identified
via integrated multi-omics SMR analysis (listed in Table 1) across the seven pain phenotypes, which
represent the ‘sets’. The horizontal bar chart on the left indicates the set size, the total number of
integrated genes associated with each respective pain phenotype. The vertical bar chart at the top
represents the intersection size, the number of genes belonging to each specific intersection category.
The matrix below the top bar chart indicates set membership for each intersection: solid black dots,
connected by a solid black line, identify the pain phenotypes included in that specific set, while light
gray dots indicate phenotypes that are not part of the set. Notably, the intersection representing
genes exclusively associated with neck or shoulder pain, back pain, and knee pain contains only one
gene (GATM).

To further elucidate the biological functions of the associated genes, we performed
gene ontology (GO) enrichment analysis and visualized the results as enrichment network
maps. In these networks, GO terms are represented as nodes that are connected if they
share overlapping genes, thereby revealing distinct functional clusters. To specifically
highlight the contribution of GATM, which was pleiotropically associated with three pain
phenotypes, its related GO terms were distinctly visualized as orange diamonds.

For neck or shoulder pain, the analysis revealed a dense network where GATM acts as
a central hub connecting core mitochondrial metabolic processes, such as ‘alpha-amino acid
catabolic process’ and ‘oxoacid metabolism’, with a prominent functional cluster related
to redox balance and detoxification, including terms like ‘cellular oxidant detoxification’
and ‘glutathione peroxidase activity’ driven by the other associated genes (GSTZ1, HIBCH,
PRDX6) (Figure 4a).
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Figure 4. Cont.
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Figure 4. Gene ontology (GO) enrichment network maps for GATM-associated pain phenotypes.
To visualize the biological functions of the associated gene sets, gene ontology (GO) enrichment
analysis was performed using the clusterProfiler package; significance was determined based on
a Benjamini–Hochberg adjusted p-value (p.adjust) < 0.05 and a minimum gene count of two per
term. The results for (a) neck or shoulder pain, (b) back pain, and (c) knee pain are displayed as
enrichment network maps. In these networks, each node represents a significantly enriched GO term,
and the edges connect terms that share overlapping genes, grouping them into functional clusters.
The thickness of the gray connecting lines (edges) represents the degree of gene overlap between GO
terms—thicker lines indicate higher proportions of shared genes between connected terms. The size
of each node is proportional to the number of genes enriched in that term (enriched genes). The color
intensity reflects the statistical significance of the enrichment, represented as −log10 (p-value). To
specifically highlight the role of the target gene GATM, nodes representing GO terms that include
GATM are displayed as orange diamonds, with their color gradient corresponding to the GATM-
specific enrichment p-value. Nodes for terms enriched only by other genes in the set are displayed as
circles, with their color gradient reflecting their respective p-values. The abbreviated GO term labels
shown in the plots correspond to the full GO term descriptions available in Supplementary Table S3.

Similarly, for back pain, the gene set (GATM, ACSF2, ECHS1) was almost exclusively
enriched in a tightly interconnected network of mitochondrial metabolism. GATM bridged
various organic and carboxylic acid metabolic pathways, while other genes contributed
specifically to ‘fatty acid metabolism’ within the ‘mitochondrial matrix’ (Figure 4b).

Interestingly, the gene set for knee pain (GATM, DBI, DCXR) showed GATM connect-
ing its characteristic metabolic hub with a unique and significant cluster of terms related to
the extracellular environment, such as ‘extracellular exosome’ and ‘extracellular vesicle’
(Figure 4c). This suggests a potential role for GATM not only in cellular bioenergetics but
also in intercellular communication in the context of knee pain.

Significant GO enrichment was also observed for phenotypes not associated with
GATM. The gene set for headache (ETFA, GRHPR, MMAB) was enriched in two pri-
mary functional clusters: one centered on core mitochondrial energy pathways, including
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‘oxoacid metabolism’; and another related to molecular binding functions, such as ‘nucleo-
side phosphate binding’ (Supplementary Figure S2a). For facial pain, the associated genes
(FASN, SPHK2) showed a highly specific enrichment in a network of ‘lipid biosynthetic’
and ‘lipid metabolic’ processes (Supplementary Figure S2b). In contrast, no statistically
significant GO term enrichment (p.adjust < 0.05, count ≥ 2) was found for the gene sets
related to stomach or abdominal pain or hip pain. Additionally, no significantly enriched
KEGG pathways were identified for any of the evaluated gene sets.

3. Discussion
This study employed a multi-omics SMR framework to investigate mitochondrial

genes in seven pain phenotypes, identifying 18 candidates with multi-layer regulatory
signals. Our analysis offers novel insights into the complex genetic basis of pain, notably
by nominating MCL1 methylation as a high-confidence causal candidate in hip pain and
highlighting a consistent protective role for GATM across musculoskeletal pain conditions.
These findings prioritize specific mitochondrial pathways for further validation.

While growing evidence links mitochondrial dysfunction (involving processes like
calcium homeostasis and reactive oxygen species (ROS) management that are relevant to
neuroinflammation) to chronic pain pathophysiology [1,2], systematic exploration using
advanced genetic causal inference, particularly multi-omics SMR/colocalization across
diverse pain phenotypes for the nuclear-encoded mitochondrial gene repertoire, remains
limited. Despite known links (e.g., mtDNA variants in chemotherapy-induced peripheral
neuropathy, CIPN) [3] and related SMR studies in conditions like T2DM-neuropathy [11],
dedicated multi-phenotype pain studies using this comprehensive framework are scarce.
Our study addresses this gap using a robust methodology. SMR leverages genetic vari-
ants as instruments, mitigating confounding and strengthening causal inference on gene
regulation’s role in pain susceptibility over observational methods [4]. Integrating multi-
omics data (epigenetic, transcriptomic, proteomic) provides converging evidence, boosting
confidence in the functional relevance of candidates like the 18 identified genes [5]. Uti-
lizing large-scale GWAS/QTL data maximized power [6], while HEIDI/colocalization
analyses added rigor in assessing shared causal variants versus LD confounding [12]. This
multi-layered genetic approach effectively nominates specific mitochondrial genes for
mechanistic investigation in pain pathways.

A critical observation, consistent with similar complex trait analyses [13], was that
strong evidence for a shared causal variant (PP.H4 > 0.7) was not widespread across
the 18 SMR-significant associations. The juxtaposition of significant SMR signals with
low colocalization probabilities necessitated a deeper investigation into the underlying
genetic architecture of these loci by evaluating the full posterior probability distribution
(H0–H4) [14]. This deeper analysis (Supplementary Table S4) yielded our study’s most
significant signal: strong evidence for a shared causal variant (PP.H4 = 0.962) between a
methylation QTL for the apoptosis regulator MCL1 and hip pain risk. While this signal
is compelling, we interpret it with caution, as it was specific to the methylation level and
was not observed in our eQTL or pQTL analyses. Therefore, we propose MCL1 as a high-
confidence candidate that highlights a potential epigenetic mechanism in hip pain, which
warrants further functional validation. For other associations, a prominent alternative was
strong evidence for Hypothesis H3 [14], exemplified by the link between an mQTL for
MMAB and headache (PP.H3 = 0.994), which indicates the SMR signal is likely genuine but
driven by two separate, closely linked variants.

These findings highlight that a lack of colocalization does not negate a gene’s potential
causal role but instead points towards a spectrum of complex scenarios. Other possibilities
that require consideration include horizontal pleiotropy missed by HEIDI [15], statistical
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power limitations [16], methodological choices [16,17], or allelic heterogeneity. Thus, our
expanded analysis successfully uses the full posterior probability distribution to charac-
terize a landscape of locus-specific genetic architectures, nominating causal genes within
complex genomic regions.

Examining association patterns across seven pain phenotypes revealed shared and
phenotype-specific genetic links (Figure 3), aligning with expectations of common pathobi-
ological pathways alongside unique characteristics. A striking finding was the recurrent
protective association of GATM (Glycine amidinotransferase) across neck or shoulder,
back, and knee pain, as indicated by SMR analysis of genetically predicted protein lev-
els. This suggests GATM involvement in generalized mechanisms relevant to common
musculoskeletal or neuropathic pain conditions. To address the potential issue of tissue
specificity arising from the use of blood-based QTL data, we verified the expression profile
of GATM using the Genotype-Tissue Expression (GTEx) portal [18]. The data confirm
that GATM is expressed in numerous pain-relevant tissues, including skeletal muscle
(median TPM = 15.84), tibial nerve (median TPM = 12.31), spinal cord (cervical c-1) (me-
dian TPM = 18.51), and various brain regions. This multi-tissue expression pattern, with
transcript-per-million (TPM) values indicating meaningful expression levels, enhances the
biological plausibility of GATM’s systemic role in pain modulation, suggesting its function
is not confined to the blood and is indeed relevant to the tissues implicated in the pain
phenotypes studied. Furthermore, a systematic examination revealed that the majority of
our 18 candidate genes are expressed across these pain-relevant tissues (see Supplementary
Table S5).

Mechanistically, GATM is the rate-limiting enzyme in the biosynthesis of creatine, a
molecule vital for energy homeostasis in high-demand tissues like muscle and neurons [19].
The observed protective association, therefore, likely stems from the multi-faceted benefits
of a robust creatine system. These include enhanced bioenergetics that improve tissue
resilience against metabolic stress [20], potent anti-inflammatory and antioxidant effects
that can mitigate pain-related inflammation [21], and direct neuroprotective functions that
support neuronal health and may modulate pain signaling pathways [22,23].

In contrast to GATM’s broad associations, our findings for other genes suggest
phenotype-specific links to pathways pertinent to unique pain syndrome contexts. This un-
derscores the potential heterogeneity in mitochondrial contributions across pain conditions.
Our investigation has now identified novel mechanistic hypotheses for the associations
between MCL1 and hip pain, and MMAB and headache, suggesting distinct ways mi-
tochondrial dysfunction can modulate pain [24]. The role of MCL1, a key regulator of
apoptosis, appears linked to inflammation and cellular survival within joint tissues [25]. Its
established involvement in the chronic inflammation of rheumatoid arthritis and its protec-
tive function in chondrocytes in osteoarthritis provide direct mechanisms for its association
with hip pain [26]. In contrast, the MMAB gene’s link to headache stems from metabolic
dysfunction [27]. Deficiency in MMAB, which is critical for vitamin B12 metabolism, leads
to the accumulation of neurotoxic methylmalonic acid (MMA) [28]. Elevated MMA impairs
neuronal energy metabolism by inhibiting mitochondrial respiratory chain function, a
plausible trigger for headaches and migraines [29].

While the primary pathways are distinct—MCL1 in inflammation-driven cell survival
and MMAB in metabolic neurotoxicity—both may ultimately converge on downstream
effectors like oxidative stress, a known driver of chronic pain [30]. These findings highlight
the diverse roles of mitochondrial genes in the pathogenesis of specific pain phenotypes and
identify them as potential therapeutic targets [31]. We have also compiled a summary of
their core functions and their potential relevance to pain pathophysiology in Supplementary
Table S6 [32–46]. This resource may help in forming further hypotheses for future research.
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While leveraging multi-omics SMR strengths for hypothesis generation, our study
has several limitations that require careful consideration. First, the validity of MR/SMR
relies on instrumental variable assumptions that are hard to fully verify [47], and residual
confounding from complex horizontal pleiotropy cannot be ruled out, even with the use of
HEIDI and colocalization analyses [15,48].

Second, a significant and valid limitation of our study is the use of QTL data derived
primarily from blood, which may not fully represent the gene regulatory mechanisms in the
most causally relevant tissues for pain (e.g., dorsal root ganglia, spinal cord, muscle) [49].
Critically for pain research, tissue specificity remains a major challenge, as QTLs from
accessible tissues like blood may not reflect regulation in relevant pain-related tissues [50].
This mismatch could lead to biased estimates or false negatives. To partially mitigate this,
we examined the expression of our candidate genes in the GTEx database and confirmed
that most, including our primary candidate GATM, are expressed in skeletal muscle and
nervous tissues (Supplementary Table S5). This lends support to their potential roles in the
identified pain phenotypes. Nevertheless, this tissue mismatch may also explain the general
lack of strong colocalization in our study, as a true causal link is unlikely to colocalize with
blood QTLs if the mechanism operates tissue-specifically [51].

Finally, we acknowledge several key statistical and methodological considerations. A
primary consideration is multiple testing; in this exploratory, hypothesis-generating study,
we did not apply a formal study-wide correction such as FDR for the final selection of our
18 integrated candidates. Instead, we prioritized a strategy of cross-omics validation. The
statistical probability of a single gene emerging as a false positive by chance at p < 0.05
across three independent molecular datasets is exceedingly low (p < 0.053 or 0.000125). This
convergence of evidence acts as a stringent filter that substantively mitigates the risk of
false positives. Further limitations include potential statistical power constraints for multi-
omics integration and colocalization [16], which may obscure some true associations, and
the influence of methodological choices (e.g., window size, priors, single-variant assump-
tion) [17]. Taking these factors into account, our list of candidates should be interpreted as
high-priority hypotheses requiring further validation, rather than as definitively confirmed
causal genes.

4. Materials and Methods
4.1. Comprehensive Study Design and Data Integration

This study employed a multi-omics Mendelian randomization (MR) framework, pri-
marily utilizing summary-data-based MR (SMR), to delineate potential causal associations
between mitochondrial genes and seven distinct neuralgia and neuritis phenotypes by
assessing the causal influences of mitochondrial expression (eQTL), methylation (mQTL),
and protein levels (pQTL) on these outcomes. Subsequent colocalization analyses examined
the congruence of genetic signals between mitochondrial quantitative trait loci (QTLs) and
these phenotypes. Gene set enrichment analyses probed the biological ramifications of
identified mitochondrial genes. The integrated analytical strategy, covering gene selection,
causal inference, and functional annotation, is depicted in Figure 1.

4.2. Acquisition and Processing of mQTL, eQTL, and pQTL Data

To identify genetic variants that affect mitochondrial function, we used a curated list
of 1136 mitochondria-related genes from MitoCarta3.0 [7], which is a thoroughly updated
resource that includes information on gene localization and pathways (see Supplementary
Table S1). We then identified and processed cis-acting single nucleotide polymorphism
(SNPs) (within ±1000 kb of each target gene) across three molecular layers.
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4.2.1. DNA Methylation Quantitative Trait Loci (mQTL)

mQTL data were obtained from meta-analyses of the Brisbane Systems Genetics
Study (n = 614) and Lothian Birth Cohorts (n = 1366), comprising a total of 1980 European
individuals [8]. The intensities of methylation probes were normalized using generalized
linear modeling (logistic link), accounting for technical (microarray chip), demographic
(age, sex), and interaction factors (age2, sex × age, sex × age2) [8]. After normalization,
linkage disequilibrium (LD) pruning was conducted using PLINK software (version 2.0)
(parameters: clump_kb = 10,000, clump_r2 = 0.001) with the 1000 Genomes EUR reference
panel [52,53]. Cis-mQTLs that achieved genome-wide significance (p < 5 × 10−8) were
selected for SMR analysis.

4.2.2. Gene Expression Quantitative Trait Loci (eQTL)

Summary-level eQTL statistics were obtained from the eQTLGen Consortium (https:
//www.eqtlgen.org), which includes peripheral blood samples from 31,684 European indi-
viduals [9]. Gene expression measurements derived from RNA-sequencing platforms un-
derwent trimmed mean of M-values (TMM) normalization followed by log2-transformation,
whereas expression data originating from microarray platforms were subjected to quantile
normalization. Linear regression models were employed to adjust for technical covariates
(e.g., batch effects), demographic factors (age and sex), and principal components (PCs).
Cis-eQTL SNPs linked to mitochondrial genes that reached genome-wide significance
(p < 5 × 10−8) were retained for further analysis.

4.2.3. Protein Quantitative Trait Loci (pQTL)

pQTL data were sourced from the DECODE study’s plasma proteomics assays
(n = 35,559 Icelanders) [10]. Protein abundance was normalized using rank-based inverse
normal transformation (RINT). Linear regression models adjusted for technical covariates
(processing time, batch) and demographics (age, sex). Genetic variants significantly associ-
ated (p < 1.8 × 10−9) with mitochondria-related proteins were selected for further analysis.

Using the MitoCarta3.0 gene list as a reference, this process resulted in the iden-
tification of 704 methylation-associated, 910 expression-associated, and 109 protein-
associated mitochondrial genes from the respective mQTL, eQTL, and pQTL datasets
for further investigation.

4.3. Acquisition of Outcome GWAS Data and Quality Control of Instrumental Variables

Summary-level genetic association statistics pertaining to seven phenotypes associated
with neuralgia were obtained from the MRC-IEU OpenGWAS database (https://gwas.
mrcieu.ac.uk), which is derived from the UK Biobank cohort comprising 461,857 individuals
of European ancestry [54]. The specific phenotypes, along with their corresponding
GWAS identifiers and case/control counts, are as follows: headache (UKB-B-12181;
93,308 cases/368,549 controls), facial pain (UKB-B-17107; 8595 cases/453,262 controls),
neck or shoulder pain (UKB-B-18596; 106,521 cases/355,336 controls), back pain (UKB-
B-9838; 118,471 cases/343,386 controls), stomach or abdominal pain (UKB-B-11413;
39,646 cases/422,211 controls), hip pain (UKB-B-7289; 52,087 cases/409,770 controls), and
knee pain (UKB-B-16254; 98,704 cases/363,153 controls) (further details can be found in
Supplementary Table S2). It is noteworthy that there was no overlap in samples between
the exposure (QTL) and outcome (GWAS) datasets.

Prior to conducting the SMR analysis, instrumental variables (SNPs) derived from
the QTL datasets underwent a comprehensive quality control process, which included the
following steps:

• Cis-region Selection: SNPs located within ±1000 kb of the target gene were considered.

https://www.eqtlgen.org
https://www.eqtlgen.org
https://gwas.mrcieu.ac.uk
https://gwas.mrcieu.ac.uk
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• Significance Threshold: A significance level of p < 5 × 10−8 was required for m/eQTL
analyses, while a threshold of p < 1.8 × 10−9 was set for pQTL analyses.

• LD Pruning: SNPs exhibiting strong linkage disequilibrium (r2 > 0.9, based on the
1000 Genomes EUR dataset) were excluded.

• Weak Instrument Filtering: SNPs with an F-statistic of less than 10 were removed
from consideration.

• Allele Frequency Concordance: SNPs demonstrating frequency discrepancies greater
than 0.2 between the LD reference, QTL, and GWAS datasets were filtered out.

• Harmonization: A meticulous alignment of effect alleles and sizes between the ex-
posure and outcome datasets was performed to ensure consistent estimation in the
SMR analysis.

4.4. Statistical Analysis and Causal Inference Through Summary-Data-Based Mendelian
Randomization (SMR)

Summary-data-based Mendelian randomization (SMR) was employed to assess poten-
tial causal relationships between molecular exposures, including mitochondrial gene methy-
lation, expression, and protein levels, and specific neuralgia phenotypes [55]. Independent
genetic variants, specifically single nucleotide polymorphisms (SNPs) that met quality con-
trol criteria, were utilized as instrumental variables (IVs). These IVs were presumed to have
a strong association with the exposures (e.g., gene expression) while remaining indepen-
dent of the outcomes (disease phenotype), conditional on the exposure and confounding
variables. The causal effect in SMR (βExposure→Outcome = βSNP→Outcome/βSNP→Exposure) was
estimated, and significant associations were identified through a multi-stage filtering strat-
egy. First, for initial screening within each of the three omics layers (mQTL, eQTL, pQTL),
we identified associations that passed a nominal significance threshold (p_SMR < 0.05). To
address potential confounding from linkage disequilibrium, these associations were then
filtered using the heterogeneity in dependent instruments (HEIDI) test, retaining only those
with p_HEIDI > 0.05.

The final, robust candidates considered for colocalization analysis were selected based
on a stringent cross-omics convergence criterion. This required a gene to meet the signifi-
cance and HEIDI test criteria independently across all three available molecular data types
for a given pain phenotype. This strategy of requiring consistent evidence from multiple,
independent biological layers serves as the primary filter to minimize false-positive find-
ings in this exploratory study. All SMR and HEIDI tests were conducted using the SMR
software package (version 1.3.1) [56].

4.5. Colocalization Analysis for Evaluating Shared Genetic Signals Between Traits

In order to further investigate potential causal interpretations derived from SMR
analyses, statistical colocalization was conducted utilizing the “coloc” R package (version
5.2.3) [57]. This methodology determines the likelihood that the associations observed
between mitochondrial quantitative trait loci (QTLs) and neuralgia phenotypes arise from
a common causal variant, as opposed to being attributable to distinct variants or other
confounding factors. The “coloc” approach employs locus-specific summary statistics
alongside an Approximate Bayes Factor (ABF) framework to calculate posterior probabili-
ties (PP) for five mutually exclusive hypotheses: H0 (no association), H1 (association with
mitochondrial trait only), H2 (association with neuralgia only), H3 (distinct causal variants
for each trait), and H4 (a single shared causal variant for both traits).

Genomic loci were delineated as ±500 kb for mitochondrial QTLs, and ±1000 kb for
expression QTL (eQTL) and protein QTL (pQTL) data [58–60]. Default prior probabilities
were used for colocalization analysis, with 10−4 for association with the mitochondrial
trait only, 10−4 for association with the neuralgia phenotype only, and 10−5 for a shared
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association. In accordance with established conventions, robust evidence for colocalization
was defined as PP.H4.abf > 0.7.

4.6. Enrichment Analysis

To clarify the biological relevance of the identified mitochondrial genes, gene set
enrichment analyses were performed using the clusterProfiler package (version 4.6.2) in R.
Functional annotations were examined against gene ontology (GO) domains (Biological
Process, Molecular Function, and Cellular Component) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway database. Significant enrichment was determined
by a Benjamini–Hochberg adjusted p-value (p.adjust) < 0.05 and a minimum of two genes
from the input list annotated to the term (gene count ≥ 2).

For visualization, the relationships between significantly enriched GO terms were
presented as a network map (enrichment map), generated using the emapplot( ) function.
In this visualization, GO terms are represented as nodes, and an edge is created between
two nodes if they share common genes. The node size is proportional to the number of
genes within the GO term, and the node color indicates the degree of statistical significance
(p.adjust). This approach not only shows the significant terms but also illustrates the
functional relationships between them.

5. Conclusions
Despite its limitations, this study offers valuable insights by systematically applying a

rigorous multi-omics SMR framework to investigate mitochondrial genes across multiple
common pain phenotypes—a relatively neglected area. Our approach identified 18 can-
didate genes with multi-layer regulatory links. Among these, we characterized a robust
protective association for the gene GATM, which is central to creatine biosynthesis, with
common musculoskeletal pain. Moreover, our expanded colocalization analysis helped
to characterize the complex genetic architecture of these associations, identifying a high-
confidence candidate for hip pain through a shared causal variant at a methylation QTL
(mQTL) of the MCL1 gene, and revealing other loci likely driven by linkage disequilibrium.
These findings underscore the intricate relationship between mitochondrial function and
pain susceptibility, highlighting specific genes—notably GATM and MCL1—that warrant
prioritized follow-up to validate their potential causal roles and therapeutic relevance.
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Abbreviations

mtDNA Mitochondrial DNA
SMR Summary-data-based Mendelian randomization
GWAS Genome-wide association study
mQTL DNA methylation quantitative trait loci
eQTL Gene expression quantitative trait loci
pQTL Protein quantitative trait loci
LD Linkage disequilibrium
SNP Single nucleotide polymorphism
FDR False discovery rate
HEIDI Heterogeneity in dependent instruments
GO Gene ontology
BP Biological process
MF Molecular function
CC Cellular component
KEGG Kyoto Encyclopedia of Genes and Genomes
ETFA Electron transfer flavoprotein subunit alpha
GRHPR Glyoxylate reductase/hydroxypyruvate reductase
MMAB Metabolism of cobalamin associated B
FASN Fatty acid synthase
SPHK2 Sphingosine kinase 2
GATM Glycine amidinotransferase
GSTZ1 Glutathione S-transferase zeta 1
HIBCH 3-Hydroxyisobutyryl-CoA hydrolase
PRDX6 Peroxiredoxin 6
ACSF2 Acyl-CoA synthetase family member 2
ECHS1 Enoyl-CoA hydratase, short chain 1
NME4 NME/NM23 nucleoside diphosphate kinase 4
RMDN1 Regulator of microtubule dynamics 1
QDPR Quinoid dihydropteridine reductase
FAHD1 Fumarylacetoacetate hydrolase domain containing 1
MCL1 MCL1 apoptosis regulator
DBI Diazepam binding inhibitor
DCXR Dicarbonyl and L-xylulose reductase
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