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Abstract

Influenza A virus (IAV) infection triggers excessive activation of PANoptosis—a coordi-
nated form of programmed cell death integrating pyroptosis, apoptosis, and necroptosis—
which contributes to severe immunopathology and acute lung injury. However, the molecu-
lar regulators that drive PANoptosis during IAV infection remain poorly understood. In this
study, we integrated bulk and single-cell RNA sequencing (scRNA-seq) datasets to dissect
the cellular heterogeneity and transcriptional dynamics of PANoptosis in the influenza-
infected lung. PANoptosis-related gene activity was quantified using the AUCell, ssGSEA,
and AddModuleScore algorithms. Machine learning approaches, including Support Vector
Machine (SVM), Random Forest (RF), and Least Absolute Shrinkage and Selection Op-
erator (LASSO) regression, were employed to identify key regulatory genes. scRNA-seq
analysis revealed that PANoptosis activity was primarily enriched in macrophages and
neutrophils. Integration of transcriptomic and computational data identified cathepsin B
(CTSB) as a central regulator of PANoptosis. In vivo validation in an IAV-infected mouse
model confirmed elevated expression of PANoptosis markers and upregulation of CTSB.
Mechanistically, CTSB may facilitate NLRP3 inflammasome activation and promote lyso-
somal dysfunction-associated inflammatory cell death. These findings identify CTSB as a
critical mediatoCTSBr linking lysosomal integrity to innate immune-driven lung injury and
suggest that targeting CTSB could represent a promising therapeutic strategy to alleviate
influenza-associated immunopathology.

Keywords: PANoptosis; influenza A virus; cathepsin B (CTSB); single-cell RNA sequencing;
machine learning

1. Introduction
Influenza is a viral respiratory infection that causes an acute febrile illness often

accompanied by myalgia, headache, and cough. The emergence of influenza A viruses
has triggered four global pandemics, each resulting in high mortality, significant public
health threats, and substantial economic losses worldwide [1–3]. Since the 1918 “Span-
ish” influenza outbreak, highly pathogenic strains of influenza A virus have emerged
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unpredictably yet repeatedly, contributing to an estimated 50 million deaths over the past
century [4]. Given the rapid variation in influenza viruses and the low rate of vaccine cov-
erage, antiviral drug therapy remains the primary treatment for influenza. Anti-influenza
drugs include M2 inhibitors (adamantanes, such as rimantadine and amantadine), neu-
raminidase inhibitors (NAIs, such as peramivir, zanamivir, and oseltamivir), and, more
recently, the cap-dependent endonuclease inhibitor targeting the PA polymerase subunit
(baloxavir) [5–7]. However, adverse drug reactions and the emergence of resistant viral
strains have underscored the urgent need for the development of new, safe, and effective
antiviral agents for both therapeutic and prophylactic purposes.

Following influenza virus infection, its invasion of alveolar epithelial cells initiates a
coordinated cellular defense response. This triggers a cascade of pathogenic cellular events
characterized by three distinct yet synergistic forms of cell death—pyroptosis, apoptosis,
and necroptosis—collectively termed PANoptosis [8]. Pyroptotic cells undergo membrane
pore formation with rapid osmotic lysis, apoptotic cells display controlled chromatin
condensation and cytoplasmic shrinkage, while necroptotic cells exhibit cytoplasmic gran-
ulation with delayed membrane rupture [9,10]. While this orchestrated multi-modal cell
death mechanism effectively eliminates virus-infected cells, its excessive activation induces
pathological consequences, including increased alveolar epithelial barrier permeability,
neutrophil infiltration, and cytokine storm formation. These perturbations collectively
contribute to the progression of acute lung injury [11]. In clinical manifestations, this
immunopathological cascade manifests as alveolar interstitial edema, impaired oxygena-
tion function, and potential progression to respiratory failure in influenza patients [12].
The dynamic equilibrium of PANoptosis demonstrates critical regulatory significance in
maintaining immune homeostasis post influenza infection.

Advances in sequencing technology have propelled the widespread adoption of single-
cell RNA sequencing (scRNA-seq) in biomedical research. This pivotal technique enables
detailed analysis of cellular heterogeneity and plays a critical role in investigating the
pathogenesis of diseases [13]. Integrating machine learning algorithms with bioinformatic
approaches facilitates the identification of novel diagnostic biomarkers [14,15]. Grow-
ing evidence suggests that PANoptosis plays a role in the pathogenesis of pulmonary
diseases [16–18]. This study employed a multi-omics integration strategy, combining
single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic data, to systematically in-
vestigate hub genes orchestrating the pathological upregulation of PANoptosis in influenza-
infected hosts. Machine learning algorithms were systematically applied to prioritize
candidate genes, culminating in the identification of core regulator genes mechanistically
linked to PANoptosis activation post-influenza. The biological relevance and predictive
accuracy of these findings were further validated through preclinical murine models. This
integrated approach not only delineates key molecular drivers of PANoptosis but also
establishes a mechanistic foundation for developing targeted therapeutic interventions
against influenza-associated immunopathology.

2. Results
2.1. Analysis of PANoptosis-Related Features in Influenza Using scRNA-Seq Datasets

This study’s workflow is illustrated in Figure 1. We employed a scRNA-seq dataset to
identify specific cell subsets demonstrating elevated PANoptosis activity, aiming to unravel
the complexities of PANoptosis during influenza infection. Principal component analysis
(PCA) revealed stable cellular distributions across all samples with minimal batch effect
interference (Figure 2A). UMAP visualization demonstrated careful partitioning of cells
into 12 distinct clusters (Figure 2B,C). Manual annotation using canonical marker genes
successfully categorized these clusters into eight major cell types: T cells, endothelial cells,
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epithelial cells, fibroblasts, macrophages, neutrophils, natural killer (NK) cells, and B cells
(Figure 2D,E). Gene Ontology (GO) analysis of pathway enrichment across these cell types
provided deeper biological insights (Figure 2F).

Figure 1. Schematic representation of the integrative transcriptomic analyses and machine learn-
ing workflow.

To investigate PANoptosis activity at the single-cell level post-influenza infection,
PANoptosis scores for individual cells were calculated using the AUCell, ssGSEA, and
AddModuleScore algorithms. These analyses revealed heterogeneity in PANoptosis activ-
ity across different cell types following H1N1 challenge. Neutrophils and macrophages
exhibited the highest activity levels (Figure 3A,B). This elevated activity in neutrophils
and macrophages was consistently visualized on UMAP plots (Figure 3C–E). We extracted
genes specific to neutrophils and macrophages, resulting in 1319 genes for neutrophils
and 2802 genes for macrophages. Differential expression analysis (DEG) was performed
on all genes between the normal and influenza groups, yielding a total of 2274 DEG. A
Venn diagram was constructed to intersect the DEG with the neutrophil and macrophage
gene sets, revealing 270 genes (Figure 3F). These 270 genes represent differential genes in
neutrophils and macrophages between the normal and influenza groups.
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Figure 2. Integrative analysis of bulk GSVA and single-cell data processing. (A) PCA visualization
demonstrated stable cellular distributions across samples with minimal batch effect susceptibility.
(B) Clustering resolution was optimized to refine single-cell grouping. (C) UMAP analysis revealed
systematic partitioning of cells into 12 distinct clusters. (D,E) Manual annotation using canonical
marker genes categorized cells into 8 major types. (F): The relationship between the marker genes of
the eight types of cells mentioned above, along with the relevant pathways enriched by GO analysis.
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Figure 3. Single-cell PANoptosis dynamics during influenza infection. (A,B) Cross-algorithm valida-
tion using AUCell, ssGSEA, and AddModuleScore revealed elevated PANoptosis activity specifically
in neutrophils and macrophages. (C–E) Spatiotemporal visualization of PANoptosis dynamics
through UMAP projections comparing influenza-infected vs. control mononuclear cells. (F) Integra-
tive Venn diagram analysis correlating PANoptosis-related pathways with DEGs identified through
correlation analysis.

2.2. Results of GO Analysis and PPI Analysis

We conducted GO analysis to elucidate the relationships between the 270 positively
regulated PANoptosis genes and their roles in various biological processes (Figure 4A). For
instance, within the biological process (BP) category, the results indicate a focus on pro-
cesses related to translation, biogenesis, immune response regulation, and cell proliferation,
including in lymphocytes, mononuclear cells, and leukocytes. In terms of cellular compo-
nent (CC), the analysis highlights components related to ribosomal subunits, ribosomes,
transport vesicles, vacuolar membranes, and postsynaptic density. Regarding molecular
function (MF), the results indicate a focus on activities related to ribosome structure, bind-
ing to mRNA, rRNA, ribonucleoprotein complexes, ubiquitin ligases, and various binding
functions, such as amide, peptide, and active transmembrane transporter activity.

The KEGG pathways highlight interconnected mechanisms underlying infectious
diseases, immune responses, and neurodegeneration. Viral carcinogenesis pathways (e.g.,
HPV, EBV, KSHV) and bacterial infections (Salmonella, Mycobacterium tuberculosis) in-
tersect with host processes like endocytosis, phagocytosis, and antigen presentation. Dys-
regulated lipid metabolism and oxidative phosphorylation contribute to atherosclerosis
and viral replication. Neurodegenerative pathways (Parkinson’s, prion diseases) and pro-
teasomal dysfunction link to mitochondrial stress and neurotrophin signaling, while viral
infections (HIV-1, HSV-1, HCMV) exploit host ribosomes and lysosomes, underscoring
complex host–pathogen interactions in disease pathogenesis (Figure 4B). The results of
PPI analysis revealed that these genes were closely interconnected and exhibited high
functional correlation (Figure 4C). MCODE was employed to identify candidate hub genes
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from the protein–protein interaction (PPI) network of 270 differentially expressed genes
(DEGs), including CTSB, Taldo1, Pgd, Gpx1, Itgb2, Myd88, Vav1, and Cd274 (Figure 4D).

 

Figure 4. Results of GO analysis, KEGG analysis, and PPI analysis. (A): The results of GO analysis of
the DEG genes. (B): The results of KEGG analysis of the DEG genes. (C): The results of PPI analysis
of the DEG genes. (D): The results of MCODE analysis.

2.3. Results of Machine Learning Algorithms

Three machine learning algorithms were deployed to identify core feature genes from
the initial 270 candidates. SVM analysis prioritized 45 key genes (Figure 5A,B), while the
RF algorithm revealed 29 genes with non-zero importance scores (Figure 5C,D). LASSO
regression further refined this list to 13 diagnostic markers for PANoptosis (Figure 5E–G).
Cross-validating these results through algorithmic intersection, we ultimately identified six
optimal feature genes: Rpl35a, Btg1, Gpcpd1, Psme2, Tra2b, and CTSB (Figure 5H). Notably,
CTSB emerged as the sole overlapping gene when comparing this panel with previously
identified hub genes, highlighting its potential as a critical PANoptosis regulator.
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Figure 5. Machine learning algorithms evaluated the optimal feature genes. (A,B): SVM Classification
Performance: 5-fold cross-validation error rate (%) and accuracy rate (%) as functions of feature set
size. (C,D): Determination of optimal tree count in Random Forest analysis. (E): Top 15 gene features
ranked by importance in Random Forest analysis. (F,G): Lasso variable screening process. (H): The
results of Venn diagram of the above four machine learning algorithms.

2.4. Comprehensive Validation of Core Feature Genes at Single-Cell Resolution and Analysis of
Cellular Communication Networks

The results of UMAP demonstrated that CTSB exhibited high expression in macrophages
(Figure 6A). The results of the violin plot for CTSB indicated elevated gene expression
in macrophages and T cells (Figure 6B). Comparative analysis of cellular communication
revealed a marked increase in both the number of interacting cells and the intensity of sig-
naling in the influenza-infected group compared to the normal control group (Figure 6C,F).
Figure 6D,E illustrates the outgoing and incoming pathways for each cell population,
with the size of the circles representing the degree of contribution. The figure also illus-
trates ligand–receptor interactions between different cell types. Our analysis revealed
that macrophages bind to other cells via the App–C74, Cd52–Siglecg, and Lgais9–Ighm
receptor–ligand pairs.
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Figure 6. Validation of the optimal feature genes at the single-cell level and analyzing cell-cell interac-
tions. (A): The results of UMAP indicated that CTSB was predominantly expressed in macrophages.
(B): The results of violin plot for CTSB. (C): Intercellular communication quantity and intensity in
control and influenza-infected cohorts. (D,E): The results of metabolic pathway analysis in monocytes.
(F): The analysis of cellular communication revealed the magnitude and frequency of intercellular
interactions among distinct cell types.

2.5. Histopathological and Molecular Characterization of Influenza-Induced PANoptosis

To further validate the pathological features and molecular mechanisms underlying
PANoptosis in influenza infection, we performed H&E staining, cytokine profiling, and
Western blot analysis. Histological examination revealed severe alveolar damage and
inflammatory infiltration in the lungs of infected mice, with significantly higher histopatho-
logical scores than the control group (Figure 7A). Concurrently, pro-inflammatory cy-
tokines, including IL-10, CCL2, GM-CSF, IL-6, IFN-γ, and TNF-α, were markedly elevated
(Figure 7B), suggesting a robust inflammatory response. Notably, Western blot analysis
confirmed the upregulation of PANoptosis-associated proteins, including CTSB, MLKL,
p-MLKL, Caspase-3, RIPK3, NLRP3, and GSDMD (Figure 7C,D). The increased expression
of ZBP1 implies its potential role as an upstream sensor initiating PANoptosis signal-
ing. These results collectively support the activation of PANoptosis as a key driver of
immunopathology in influenza infection.
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Figure 7. The results of experimental verification of influenza mice. (A): Histopathological ex-
amination via H&E staining revealed significant pathological alterations in pulmonary tissues of
influenza-infected mice, with markedly evident inflammatory cell infiltration. Scale bars = 100 µm.
n = 3 per cohort. (B): Assessment of pro-inflammatory cytokine levels (including CCL2, GM-CSF,
IL-6, IFN-γ, and TNF-α) demonstrated a significant elevation in the influenza-infected group com-
pared to controls. Conversely, the anti-inflammatory cytokine IL-10 exhibited a marked decrease.
(n = 6/group). (C,D): The results of western blotting revealed that compared to the control group,
the protein expression of Zbp1, CTSB, MLKL, p-MLKL, Caspase-3, RIPK3, NLRP3, and GSDMD
increased post influenza (n = 3/group). For statistical significance we labeled **, * and ns to indicate
p-values of <0.01, <0.05, >0.05, respectively.

3. Discussion
Influenza A virus (IAV) has long presented a formidable challenge to global public

health, with its high mutability and antigenic drift circumventing population immunity
established through vaccination [19,20]. Despite advancements in antiviral therapies, such
as neuraminidase inhibitors (oseltamivir) and PA endonuclease blockers (baloxavir mar-
boxil), the persistent burden of severe pneumonia and acute respiratory distress syndrome
(ARDS) underscores unmet clinical needs [21]. Beyond direct cytopathic effects of viral
replication, accumulating evidence implicates dysregulated PANoptosis—a coordinated
activation of pyroptosis, apoptosis, and necroptosis—as a central driver of immunopathol-
ogy in influenza-associated lung injury [22]. During IAV infection, viral RNA sensors
(e.g., ZBP1/DAI) recognize Z-form nucleic acids released from ruptured endosomes, trig-
gering the assembly of the PANoptosome complex. This multi-protein platform recruits
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RIPK3, caspase-3, NLRP3, and MLKL to execute interlinked death pathways [23–25]. Criti-
cally, PANoptosis not only eliminates infected epithelial cells but also unleashes damage-
associated molecular patterns (DAMPs), such as mitochondrial DNA (mtDNA) and high-
mobility group box 1 (HMGB1), which hyperactivate alveolar macrophages through the
TLR9 and RAGE receptors [26,27]. Monocytes/macrophages recruited to the lung mi-
croenvironment further amplify inflammation via TNF-α/IFN-γ synergy, culminating in a
cytokine storm that disrupts endothelial barrier integrity [28,29]. These findings highlight
PANoptosis as a conserved pathway bridging innate immunity and tissue damage across
diverse diseases [30].

Our analysis revealed that macrophages and neutrophils displayed the highest PANop-
tosis activity, suggesting their significant contribution to immunopathology. Machine
learning-driven integration of transcriptomic networks and PPI-MCODE analysis identi-
fied CTSB as the central hub gene, while simultaneously revealing other key regulators
such as MYD88 and CD274 (PD-L1). Notably, MYD88, a key adaptor molecule for TLR
and IL-1R signaling, promotes NF-κB activation and inflammasome priming, thereby
indirectly amplifying pyroptosis through synergistic overactivation of the TNF-α and
NLRP3 pathways [31,32]. CD274 (PD-L1) exerts immunomodulatory effects by binding
to PD-1 on T cells, suppressing T cell activation and cytokine production. Dysregulation
of PD-L1 in macrophages may impair antiviral immunity by inhibiting T cell-mediated
viral clearance, potentially exacerbating chronic inflammation and tissue damage through
indirect pathways [33,34]. This study ultimately pinpointed the optimal feature gene,
CTSB, associated with heightened PANoptosis. Intriguingly, we discovered that CTSB was
also significantly expressed in PANoptosis after H1N1. Several studies have proposed
critical roles for immune cells and specific genes in PANoptosis regulation and H1N1
pathogenesis. Min Zheng et al. suggested that caspase-6 interacts with RIPK3 to enhance
the RIPK3–ZBP1 interaction, promoting PANoptosome assembly, and demonstrated its
requirement for alternative activation of alveolar macrophages during IAV infection [35].
Sk Mohiuddin Choudhury assessed the protein expression and compared the responses
of immune and non-immune cells of human and mouse origin to canonical pyroptotic,
apoptotic (staurosporine), necroptotic, and PANoptotic stimuli [36].

During influenza infection, PANoptosis, a collective term for apoptosis, necroptosis,
and pyroptosis, plays a crucial role in modulating the host response. ZBP1 (Z-DNA binding
protein 1), an interferon-inducible protein, acts as an innate sensor of influenza A virus (IAV)
proteins, specifically the nucleoprotein (NP) and polymerase subunit PB1, triggering cell
death and inflammatory responses via the RIPK1–RIPK3–Caspase-8 axis. ZBP1 deficiency
protects mice from mortality during IAV infection by reducing inflammatory responses
and epithelial damage, highlighting the importance of ZBP1 in the pathogenesis of IAV
infection [24]. ZBP1-dependent cell death pathways, including apoptosis and necroptosis,
contribute to the overall PANoptosis response, which balances viral clearance and host
tissue damage. Furthermore, ZBP1 regulates NLRP3 inflammasome activation and the
production of IL-1β and IL-18, which are protective during acute IAV infection. These
findings underscore the complex interplay between innate immune sensing, cell death
pathways, and inflammatory responses in shaping the outcome of influenza infection.

CTSB (Cathepsin B), a lysosomal cysteine protease, plays a pivotal role in intracellular
protein degradation and homeostasis, participating in autophagy, apoptosis, and antigen
presentation [37,38]. Dysregulated CTSB expression is implicated in cancers, where it
enhances tumor invasion and metastasis by degrading extracellular matrix components,
serving as a prognostic biomarker in breast cancer and gliomas [39]. Cathepsin-facilitated
invasion of BMI1-high hepatocellular carcinoma cells drives bile duct tumor thrombi
formation [40]. While CTSB’s multifaceted roles in health and disease are increasingly
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recognized, further research is needed to elucidate its tissue-specific functions and trans-
lational applications. The lysosomal membrane permeabilization (LMP) resulted in the
release of CTSB. The released CTSB then activated the NLRP3 inflammasome, which in
turn triggered pyroptosis. Therefore, CTSB acts as a key mediator linking the necroptosis
pathway (via p-MLKL) to the pyroptosis pathway (via NLRP3), contributing to the over-
all PANoptosis process [41]. During IAV infection (0–24 hpi), CTSB exhibits temporally
distinct roles facilitating pathogenesis. In the initial phase (0–6 hpi), CTSB promotes viral
entry/replication and regulates apoptosis. Although non-essential for cellular entry, CTSB
aids viral trafficking and hemagglutinin (HA) surface expression. Concurrently, CTSB
secretion markedly increases by 6 hpi, correlating with inflammasome activation (CASP1
cleavage, IL-18 release) [42]. Progressing to the mid-phase (6–24 hpi), CTSB mediates
inflammatory responses and initiates apoptosis. This involves lysosomal membrane per-
meabilization (LMP), cytosolic CTSB release, and subsequent caspase cascade activation,
linking lysosomal dysfunction to programmed cell death. Thus, CTSB acts as a multifaceted
regulator integrating viral replication, immune activation, and cell fate during early IAV
infection [43].

The interplay between PANoptosis mediators and cytokine signaling networks further
shapes the immunopathological landscape during influenza infection. Elevated levels of
TNF-α, a pivotal pro-inflammatory cytokine, correlate with the ZBP1–RIPK1/3-dependent
necroptosis and pyroptosis pathways, amplifying tissue inflammation and epithelial bar-
rier disruption [44–46]. IL-6, a hallmark cytokine of acute viral infection, synergizes with
TNF-α to amplify NLRP3 inflammasome activation, thereby inducing caspase-1-dependent
pyroptosis through IL-1β and IL-18 maturation and contributing to neutrophil recruit-
ment [47–49]. IL-10, a critical anti-inflammatory cytokine, exerts regulatory counteractions
by attenuating RIPK1-mediated necroptosis and caspase-8-dependent apoptosis, thereby
modulating excessive immune activation and mitigating immunopathology through its
broad suppressive effects on pro-inflammatory cytokine networks [50–52]. MCP-1 (CCL2),
a chemokine pivotal for monocyte recruitment and macrophage chemotaxis, is upregu-
lated in inflammatory conditions in association with GM-CSF. GM-CSF not only sustains
myeloid cell survival but also synergizes with MCP-1 to drive pro-inflammatory polariza-
tion of macrophages [53,54]. The combined upregulation of MCP-1 and GM-CSF promotes
monocyte-derived macrophage infiltration into inflamed tissues, where GM-CSF further
primes macrophages to enhance CTSB-mediated NLRP3 inflammasome activation, thereby
amplifying inflammatory pyroptosis [55–57]. Notably, GM-CSF amplifies TNF-α and IL-6
synthesis via the autocrine/paracrine loops, generating a self-reinforcing inflammatory cir-
cuit that may synergize with PANoptosis-associated factors to escalate multicellular death
and tissue injury [58,59]. These cytokine dynamics underscore the delicate equilibrium
between viral containment and immune-mediated injury. Future studies interrogating
spatiotemporal cytokine profiles in conjunction with cell death pathway activation could
refine therapeutic strategies to preserve antiviral efficacy while minimizing bystander
tissue damage.

The clinical translation of CTSB-targeted therapeutics is advancing. VBY-376, a small-
molecule CTSB inhibitor for hepatic fibrosis/NASH, demonstrates robust preclinical ef-
ficacy, favorable preliminary human safety, and progress into Phase II trials [60]. Au-
tophagy modulators chloroquine (CQ) and hydroxychloroquine (HCQ) act via lysosomal
acidification disruption, inhibited autophagosome–lysosome fusion, and direct CTSB in-
hibition [61,62]. The novel lysosomal inhibitor Lys05 (structure-optimized from chloro-
quine, CQ) efficiently accumulates within lysosomes, exerts autophagy inhibition, and
demonstrates single-agent antitumor activity in vivo [63]. Beyond oncology, CQ/HCQ
exert anti-inflammatory effects through CTSB pathway modulation, showing potential
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in ischemic-reperfusion injury and autoimmune disorders [64,65]. Collectively, these di-
verse agents—spanning novel specific inhibitors to repurposed, multi-mechanism drugs—
demonstrate the broad therapeutic potential of modulating the CTSB activity.

While this study advances our understanding of PANoptosis regulation in influenza
pathogenesis, several limitations warrant attention. First, the translational relevance of
findings in murine models to human infections remains unclear, necessitating validation in
primate models or human lung organoids. Furthermore, we did not analyze the temporal
dynamics of CTSB-mediated NLRP3 activation, and its crosstalk with other PANoptosis
components was not fully elucidated in vivo, leaving causal relationships underexplored.
Future work should address stage-specific interventions: early CTSB inhibition to curb
immunopathology versus late-phase boosting to enhance viral clearance. The role of
ZBP1 isoforms in human susceptibility to severe influenza remains unexplored, offering a
precision medicine avenue. By bridging molecular mechanisms with clinical paradigms,
such efforts could reposition PANoptosis modulators as adjuncts to antiviral therapies.

4. Materials and Methods
4.1. Source of Data

We accessed the GSE99192 bulk dataset from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo, accessed on 9 September 2024), which com-
prises lung and blood samples from 12 healthy mice and 43 influenza-infected mice. Addi-
tionally, we downloaded the scRNA-seq datasets—GSE186839, GSE201541, GSE230435, and
GSE142047—from the GEO database for further analysis. Among these, GSE186839 serves
as a control with a lung sample from a healthy mouse, while GSE201541 and GSE230435
each include a lung homogenate from an influenza-infected mouse, and GSE142047 contains
lung homogenates from three influenza-infected mice.

We selected PANoptosis-related metabolic genes from the GeneCards database (https:
//www.genecards.org/, accessed on 9 September 2024), resulting in a total of 34 genes that
were included in the analysis for this study.

4.2. scRNA-Seq Dataset Analysis

scRNA-seq data were initially converted into Seurat objects within the Seurat R frame-
work. Cellular quality control was implemented with stringent filtering criteria: cells
were retained only if they contained 200–7000 detected genes, exhibited mitochondrial
gene expression below 20%, and demonstrated red blood cell gene expression under
3%. Dimensionality reduction was performed via principal component analysis (PCA)
on highly variable genes, retaining the first 20 principal components (PCs) for down-
stream analysis. Cellular subpopulations were identified using the ‘FindClusters’ algo-
rithm (resolution = 0.8), followed by visualization in two-dimensional uniform manifold
approximation and projection (UMAP) space. Cluster-specific marker genes were subse-
quently defined by applying Seurat’s ‘FindAllMarkers’ function to compare transcriptomes
against all other clusters. Annotation of clusters to established biological cell identities was
performed via cross-referencing with canonical marker genes.

4.3. Evaluation of PANoptosis Activity

This study applied the AUCell [66], ssGSEA [67], and AddModuleScore [68] algo-
rithms to assess PANoptosis activity at the single-cell level and calculate total PANoptosis
activity. Correlation analysis was then performed to identify genes closely associated with
PANoptosis activity. The ‘FindMarkers’ function was used to conduct differential gene ex-
pression (DEG) analysis to identify genes upregulated in PANoptosis. The genes identified
through correlation analysis and DEG were subsequently examined in further analyses.

https://www.ncbi.nlm.nih.gov/geo
https://www.genecards.org/
https://www.genecards.org/


Int. J. Mol. Sci. 2025, 26, 8533 13 of 19

4.4. Enrichment Analysis

We performed gene ontology (GO) analysis to investigate the pathways and associated
protein functions of these genes. To further validate the relevance of the genes to PANopto-
sis, we conducted protein–protein interaction (PPI) analysis to evaluate the interactions
among these genes.

4.5. Machine Learning Algorithms for Identifying the Optimal Feature Genes

To pinpoint PANoptosis-related feature genes from the pre-filtered candidates,
we implemented three distinct machine learning algorithms: Support Vector Machine
(SVM) [69], Random Forest (RF) [70], and Least Absolute Shrinkage and Selection Operator
(LASSO) [71]. Utilizing 5-fold cross-validation for parameter tuning and model optimiza-
tion, we systematically applied each algorithm to identify core feature genes. This approach
enhanced model robustness and mitigated overfitting. Genes consistently detected across
all three analytical frameworks were ultimately defined as the key PANoptosis-associated
feature genes.

4.6. Interactions Between Intercellular Communication and Transcription Factors

We integrated gene expression data using CellChat to evaluate variations in hypoth-
esized intercellular communication modules, employing the default CellChatDB as the
ligand–receptor database. Cell type-specific interactions were inferred by identifying over-
expressed ligands or receptors within cell groups and detecting enhanced ligand–receptor
interactions associated with this overexpression. Additionally, we utilized the R package
Scenic (v1.3.0) to infer the activity of gene regulatory networks.

4.7. Animals and Experimental Design

Twenty-four specific pathogen-free (SPF) ICR mice (12 males and 12 females; 13–15 g)
were acquired from SPF (Beijing, China) Biotechnology Co., Ltd. (Animal Production
License No.: SCXK [Jing] 2023-0077). Mice were housed in an SPF facility under controlled
conditions (temperature: 25 ± 2 ◦C; humidity: 60 ± 5%) with a 12 h light/12 h dark cycle.
Irradiated rodent chow (Keao Xieli Feed Co., Ltd., Beijing, China) and sterile water were
provided ad libitum. After 3-day acclimatization, animals were randomly allocated to two
groups (n = 12/group, 6 males/6 females) via computer-generated sequence: (1) control
and (2) influenza model.

For intranasal challenge, mice were anesthetized with diethyl ether (Sinopharm Chem-
ical Reagent Co., Ltd., Shanghai, China) via induction chamber until loss of righting reflex
(<5 min). Anesthetic depth was monitored by hind-paw withdrawal reflex. The influenza
group received 50 µL A/H1N1 FM1 strain (diluted 1:640 in PBS; 35 µL virus suspen-
sion + 15 µL sterile PBS, pH 7.4), while controls received equivalent-volume 0.9% saline,
administered as divided aliquots (25 µL/nostril) with 2 h intervals.

All procedures were approved by the Ethics Committee of the Institute of Chinese
Materia Medica, China Academy of Chinese Medical Sciences (Approval No. 2024D022;
11 June 2024), and complied with Chinese Guidelines for Laboratory Animal Care (GB/T
35892-2018, https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=9BA619057D5C1
3103622A10FF4BA5D14, accessed on 11 June 2024) and ARRIVE 2.0 guidelines.

4.8. Evaluation of Influenza Model in Mice

To characterize the influenza disease model, we performed quantitative cytokine pro-
filing in lung tissues using Luminex multiplex technology and conducted histopathological
evaluation via hematoxylin–eosin (H&E) staining across all experimental mouse cohorts.
After weighing, the entire lungs were aseptically excised, rinsed twice with PBS, and blotted

https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=9BA619057D5C13103622A10FF4BA5D14
https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=9BA619057D5C13103622A10FF4BA5D14
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dry with filter paper. The lung tissues were harvested from mice and immediately fixed in
10% neutral-buffered formalin at room temperature for 24 h. Subsequently, the fixed tissues
underwent dehydration, paraffin embedding, and sectioning into 4 µm-thick slices. Follow-
ing standard histopathological procedures, the sections were stained with hematoxylin and
eosin (H&E) to evaluate inflammatory responses and lymphocyte infiltration within the
pulmonary architecture. Histological assessments were performed using light microscopy
with examination of multiple randomly selected fields to comprehensively evaluate the
distribution and severity of inflammatory cell infiltration. Precisely weighed pulmonary tis-
sue samples were homogenized with ice-cold physiological saline at a tissue-to-saline ratio
of 1:9 using a tissue homogenizer. The homogenate underwent centrifugation at 12,000× g
for 15 min at 4 ◦C. The resultant supernatant was collected for subsequent analysis. The
lyophilized standard was reconstituted in Universal Assay Buffer, thoroughly mixed, and
maintained on ice to prepare the master standard solution. This solution underwent serial
dilution using a two-fold dilution series to generate standard concentration points, which
were then kept on ice. Subsequently, 50 µL of uniformly resuspended antibody-coupled
magnetic beads was aliquoted into a 96-well microplate. The plate was positioned on a
magnetic separation station, allowing for bead sedimentation and subsequent supernatant
removal. Wells were rinsed twice with Wash Buffer. Following the addition of Universal
Assay Buffer, 25 µL of prepared standards or samples was dispensed into corresponding
wells. The plate was sealed with a specialized adhesive membrane and incubated for 30 min
at ambient temperature under constant agitation to facilitate efficacious antigen–antibody
interactions. Post-incubation, the plate was repositioned on the magnetic separation station
for supernatant removal and subjected to three rigorous wash cycles with Wash Buffer.
Subsequently, Streptavidin–Phycoerythrin (PE) conjugate was added to each well. After
resealing, the plate underwent a secondary incubation period at room temperature with
agitation. The sealing membrane was then removed, and sample quantification was per-
formed using the Bio-Plex 200 system (Bio-Rad Laboratories, Inc., Hercules, CA, USA).
Data analysis entailed standard curve generation via non-linear regression methodology,
with analyte concentrations interpolated algorithmically.

4.9. Capillary Western Blotting

Characterization of PANoptosis was performed using an automated capillary elec-
trophoresis western blotting system (WES™, ProteinSimple, San Jose, CA, USA) [72]. Pro-
tein lysates (1 mg/mL) were prepared by mixing 5.6 µL of the sample with 1.4 µL of fluores-
cent master mix and denatured at 95 ◦C for 5 min. The lysates, along with blocking reagent,
primary antibodies (1:1000 dilution of anti-CTSB, anti-ZBP1, anti-GSDMD, anti-RIPK3,
anti-p-RIPK3, anti-NLRP3, anti-MLKL, anti-p-MLKL, anti-Caspase-3 and anti-GAPDH;
Abcam, Cambridge, UK), secondary HRP-conjugated antibodies, and chemiluminescent
substrate, were loaded into the manufacturer’s microplate. The WES system automatically
conducted electrophoretic separation and immunodetection using a 12–230 kDa separation
module under default settings. Chemiluminescence was detected through an exposure
series for optimal signal capture. Data analysis was conducted with Compass software
(v6.3.0) (ProteinSimple, San Jose, CA, USA), producing electropherograms and virtual blot
images to quantify the chemiluminescence signal for comparative purposes. GAPDH was
used as the internal control for normalizing protein expression levels.

4.10. Data Analysis

All data were analyzed using SPSS 27.0 (SPSS Inc., Chicago, IL, USA). A one-way
ANOVA procedure was used to examine the statistically significant differences in the data,
and multiple comparisons were performed using Duncan’s method. Graphs were plotted
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using GraphPad Prism 8.0.2 (GraphPad Software, San Diego, CA, USA) for graphing, and
the results of the tests are presented as means ± the standard deviations, with p < 0.05
indicating a significant difference and p < 0.01 indicating a highly significant difference.

5. Conclusions
This study integrates scRNA-seq and bulk RNA-seq with machine learning to iden-

tify cathepsin B (CTSB) as a pivotal regulator of PANoptosis in influenza A virus (IAV)
infection. We demonstrate that PANoptosis is predominantly activated in macrophages
and neutrophils during IAV challenge. Computational approaches (SVM, RF, and LASSO)
prioritized CTSB among hub genes, which was validated in vivo by its upregulation and
association with elevated PANoptosis markers (MLKL, caspase-3, NLRP3, and GSDMD)
and cytokine release (IL-6, TNF-α). Mechanistically, CTSB promotes NLRP3 inflammasome
assembly and lysosomal membrane permeabilization, amplifying inflammatory cell death.
These findings establish CTSB as a critical link between lysosomal dysfunction and im-
munopathological lung injury, highlighting its potential as a therapeutic target to mitigate
influenza-associated PANoptosis and acute respiratory distress.
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CTSB Cathepsin B
DEGs Differentially Expressed Genes
GO Gene Ontology
GSVA Gene Set Variation Analysis
GSDMD Gasdermin D
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IAV Influenza A Virus
IFN-γ Interferon gamma
IL- Interleukin (e.g., IL-1β, IL-6, IL-10)
LASSO Least Absolute Shrinkage and Selection Operator
LMP Lysosomal Membrane Permeabilization
MCODE Molecular Complex Detection algorithm
MF Molecular Function (in Gene Ontology analysis)
MLKL Mixed Lineage Kinase Domain Like Pseudokinase
NF-κB Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells
NK cells Natural Killer cells
NLRP3 NLR Family Pyrin Domain Containing 3
NASH Non-Alcoholic Steatohepatitis
PAMP Pathogen-Associated Molecular Pattern
PCA Principal Component Analysis
PPI Protein-Protein Interaction
RAGE Receptor for Advanced Glycation Endproducts
RF Random Forest
RIPK1/3 Receptor-Interacting Serine/Threonine-Protein Kinase 1/3
scRNA-seq Single-Cell RNA Sequencing
SVM Support Vector Machine
ssGSEA Single-sample Gene Set Enrichment Analysis
SPF Specific Pathogen-Free
TLR Toll-Like Receptor
TNF-α Tumor Necrosis Factor alpha
UMAP Uniform Manifold Approximation and Projection
ZBP1 Z-DNA Binding Protein 1
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