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Abstract

Cannabis sativa is a crop which has been cultivated since ancient times, with important
cultural and industrial value. Due to its substantial economic impact, cannabis has at-
tracted widespread scientific attention. A pan-genome is a significant tool for breeding,
because it provides a comprehensive representation of genetic diversity. To provide a
valuable tool for Cannabis breeding, we constructed a Cannabis pan-genome based on
113 accessions. A total of 24,679,380 bp of non-reference-genome sequences were assembled,
identifying 1313 protein-coding genes. Using pan-genome analyses, a total of 32,428 gene
presence/absence variations (PAVs) were obtained, and gene loss was recovered during
the domestication of Cannabis. By partitioning the pan-genome using PAVs, a total of
23,309 core genes were identified, accounting for 71.88% of all genes in the pan-genome.
In particular, there were 7148 flexible genes, making up 22.05% of the pan-genome. The
flexible genes were associated with adaptive traits, including stress resistance and disease
resistance in Cannabis. Population genetic analysis presented gene distribution, gene flow,
and gene specificity on a pan-genome level. These results provide important genetic basis,
functional genes, and guidance for Cannabis breeding.

Keywords: Cannabis sativa; pan-genome; PAV; flexible genes; gene loss; stress resistance;
cannabis breeding

1. Introduction
Cannabis (Cannabis sativa, 2n = 20) is an annual erect herbaceous plant in the

Cannabaceae family and Cannabis genus, with a long history of cultivation worldwide [1].
As a cultivated species, Cannabis has nine pairs of autosomes and one pair of sex chro-
mosomes, with both dioecious and monoecious varieties. Cannabis plays a significant
role in cultural, daily life, and industrial applications [2]. Archeological evidence also
confirms the versatility of Cannabis in ancient times. Chinese archeologists have detected
cannabinol-related residues at a historic site on a mountaintop in western China. The
presence of these Cannabis residues suggests that Cannabis was probably used by the
ancient people of this area for rituals or as a medicine [3]. The different tissues of Cannabis
have a wide range of industrial and medical applications. Its bast fibers, for example,
are used in the manufacture of textiles, while the seeds are rich in oil, which can be pro-
cessed into edible oils and nutritional supplements. In addition, the glandular hairs on the
inflorescences, leaves, and bracts of Cannabis sativa are rich in cannabinoid compounds,

Int. J. Mol. Sci. 2025, 26, 8354 https://doi.org/10.3390/ijms26178354

https://doi.org/10.3390/ijms26178354
https://doi.org/10.3390/ijms26178354
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4463-0218
https://orcid.org/0000-0003-2609-2401
https://doi.org/10.3390/ijms26178354
https://www.mdpi.com/article/10.3390/ijms26178354?type=check_update&version=1


Int. J. Mol. Sci. 2025, 26, 8354 2 of 15

which are of great medical value in the field of pharmaceuticals. With the development of
pharmacological research, tetrahydrocannabinol (THC) has been found in Cannabis, which
is a compound with strong psychoactive properties that is addictive when taken for a long
period of time, which is why Cannabis has been classified as a drug in some countries
around the world. The THC content is currently the main criterion for determining the
type of Cannabis; Cannabis varieties with more than 0.3% THC are classified as drug
type (marijuana) on a dry weight basis, and Cannabis varieties with less than 0.3% THC
are classified as industrial type (hemp). Subsequent research on cannabinoids led to the
discovery of another cannabinoid, cannabidiol (CBD), which is widely used clinically for
pain relief, depression, and psychiatric disorders [4]. CBD also has anti-tumor properties
that may improve median survival time in patients with advanced tumors along with
treatments such as pain relief [5]. In addition, CBD has the effect of treating acne and
inhibiting sebum secretion, so CBD is also used to add to cosmetics [6].

Several genomes of Cannabis have been published [7–9]. A pan-genome refers to a
non-redundant collection of genetic information contained in all individuals of a certain
species. A pan-genome can meet the comprehensive mutation detection of a species or even
all species in a genus, and can identify new genes to answer problems that cannot be solved
by a single reference genome. A pan-genome enables the discovery of previously hidden
genetic variations, provides insights into crop domestication and breeding, and enables
the identification of functional genes [10]. Based on the pan-genome, more variants can be
detected and analyzed, such as the detection of gene presence/absence variants (PAVs).
Compared with other variations, PAVs have a more profound impact on the genome,
because they not only present the structure of the genome, but also directly reveal the
function and traits of genes [11–19].

Cannabis has important value in industry, food, and medicine. In particular, since
many countries have changed their Cannabis policy to increase its value [20], breeding
new varieties will be in demand. A pan-genome is a valuable tool to improve breeding. To
construct a Cannabis pan-genome and provide a genetic resource for Cannabis breeding,
we sequenced the genomes of three Cannabis varieties from Heilongjiang Province, China,
and constructed a pan-genome by integrating these sequences with 110 resequencing
datasets and the CBDRx reference genome [9]. We obtained 24,679,380 bp of de-redundant
non-reference genome sequences, and identified 1313 protein-coding genes. Based on this
pan-genome, several key findings emerged, such as gene loss during Cannabis domesti-
cation and the association of dispensable genes with adaptive traits, including stress and
disease resistance.

2. Results
2.1. Assembly of Cannabis Pan-Genome and Gene Prediction

The resequencing data of 113 Cannabis varieties are mapped to the reference genome,
and a total of 2.04 Gbp of non-reference sequences are obtained. After removing redundant
sequences, 14,306 contigs are obtained, with a total length of 24,679,380 bp. These non-
reference sequences are combined with reference genome CBDRx as the Cannabis pan-
genome. Using RepeatModeler and RepeatMasker to predict repetitive sequences in
non-reference sequences, finally, a total of 12,636,404 bp of repetitive sequences are masked,
accounting for 51.20% of all non-reference sequences. This is lower than reference genome
CBDRx (63%). The largest proportion of repetitive sequences is retroelements, accounting
for 32.74% (Table 1). Among them, long interspersed nuclear elements (LINEs) and long
terminal repeats (LTRs) are the largest proportions (Figure 1). In contrast, the Cannabis
reference genome has few LINEs (~0.13%). LINEs can result in nonallelic homologous
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recombination (NAHR) to generate long indels [21–23]; this may explain why non-reference
sequences are absent from the reference genome.

Table 1. Distribution of repeating sequences in non-reference sequences.

Number Length (bp) Proportion

Retroelement 12,772 8,080,389 32.74%
DNA transposon 2138 783,571 3.18%

Rolling circles 272 81,427 0.33%
Unclassified 14,822 3,105,612 12.58%
Small RNA 73 28,829 0.12%

Satellites 86 16,393 0.07%
Simple repeats 8912 383,968 1.56%

Low complexity 2248 120,709 0.49%

Figure 1. Retroelements in non-reference sequences. (A) Retroelement distribution. (B) LTR element
distribution.

Using previously assembled Cannabis transcript data as transcript evidence, and using
homologous protein sequences to assist gene prediction, 1313 new protein-coding genes
were identified in the non-reference sequence (Table 2) and combined with genes from the
reference genome for subsequent analysis.

Table 2. Gene number.

Reference
Genome

Non-Reference
Sequences

Non-Reference
Sequences

(The Length of the
Encoded Protein > 100 aa)

Gene number 31,170 1919 1313
mRNA number 33,639 1919 1313
Exon number 234,131 3619 2858
CDS number 190,424 3592 2840

CDS length (bp) 46,210,977 1,143,501 1,006,458

After gene prediction, we used multiple databases to annotate all proteins in the pan-
genome. More than 99.1% of proteins were annotated using Uniref50 and other databases
(Table 3). A total of 1274 proteins from non-reference sequences were annotated, accounting
for 97.03% of all non-reference genes. The high percentages of annotated proteins also
indicated that all these proteins were reliable. GO (Gene Ontology) and KEGG (Kyoto
Encyclopedia of Genes and Genomes) annotations were also carried out (Table 3), and all
these annotations were used for subsequent analysis.
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Table 3. Gene annotation.

The Number of Sequences
Annotated

Proportion of All
Sequences

Swiss-Prot 26,868 75.49%
Trembl 35,168 98.81%

Uniref50 35,275 99.11%
NCBI_nr 35,198 98.89%

Interproscan 33,345 93.68%
GO 20,953 58.87%

KEGG 13,865 38.95%
Uniprot and GOA 33,402 93.84%

NCBI_nr and Uniprot 35,294 99.16%

2.2. Population Genetic Analysis Based on Pan-Genome

After mapping the Cannabis pan-genome, we kept 109 Cannabis accessions for sub-
sequent analysis. We identified 13,905,272 single nucleotide polymorphisms (SNPs) for
population genetic analysis. The phylogenetic tree was constructed using the same strat-
egy as in the previous study [24]. Principal component analysis and gene flow analysis
were also performed based on SNPs. The samples are obviously clustered into four parts
(Figure 2A,B), which is similar to reported results [9]. Drug-type Cannabis and feral
drug-type Cannabis are on the same branch, showing the clustering phenomenon of their
respective groups. This result also indicates that the pan-genome is reliable and can reflect
evolution relation. The hemp-type and the basal Cannabis (naturally cultivated varieties
or landraces) are on the same branch; Qing2 (Q2) and NEB1, NEB2, NEB3, and NEB4
belonging to the basal Cannabis are on the same branch; and the FKS and FNA belonging
to the basal cannabis are clustered into the hemp-type group.

The gene flow ranges from the base Cannabis population to the feral drug-type
Cannabis population. In the phylogenetic tree and principal component analysis (PCA),
the feral drug-type Cannabis group is closer to the basal Cannabis group, which indicates
gene exchange happened between the two groups (Figure 2C). This result indicates few
gene exchanges happened among different types of Cannabis, and shows great potential to
gain new genotypes and traits for breeding.

To analyze the selection interval during domestication in the pan-genome, XP-CLR
and Fst were used to identify the selection signal, and the first 10% of the results were used
to identify the selection interval. There were 1182 genes in all selection intervals between
the feral varieties of basal Cannabis and hemp-type Cannabis cultivars, which contained
1172 reference genome genes and 10 non-reference sequence genes. There were 537 genes
in all intervals between the feral drug-type Cannabis and drug-type Cannabis populations,
including 534 reference genome genes and 3 non-reference genome genes. The two groups
of the selection interval shared 45 genes, 44 of which were from the reference genome and 1
was from the non-reference genome.

To study the functional role of genes in the selection intervals, functional enrichment
of genes was performed. Significant enrichment was observed in the selection interval
between the feral population of basal Cannabis and the cultivated population of hemp-type
Cannabis (adjusted p value < 0.05). Among them, in terms of biological processes (BPs),
these genes are mainly enriched in the entry “Flower development”. In terms of molecular
function (MF), the enriched entries are “DNA binding”, “DNA-binding transcription factor
activity”, and “transcription regulator activity” (Figure 3). This result discovers the genes
and their functions associated with domestication. In the selection interval between the
feral drug-type Cannabis group and drug-type Cannabis group, neither the GO enrichment
nor the KEGG enrichment have significant entry.
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Figure 2. Population structure and gene flow of Cannabis accessions. (A) Neighbor-joining phyloge-
netic tree based on SNPs. Samples clustered by Cannabis groups. (B) Principal component analysis
based on SNPs. Different colors represent different Cannabis groups, and shapes represent variety
categories. (C) Gene flow analysis based on SNPs, completed by Treemix; the arrow represents the
direction of gene flow. Gene exchange present in the feral drug-type Cannabis group and basal
Cannabis group.

Figure 3. Analysis of GO enrichment of genes in the selection interval of domestication of hemp-type
Cannabis. These genes are involved in gene regulation and flowering and should be associated with
agronomic traits. BP: biological process, MF: molecular function.
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A large number of genes related to the regulation of flowering have been found in
the selected genes of the hemp-type population, such as Hd3a, HDR1, and FPF1. Fiber-
related genes have also been found, such as KCS, GA20-oxidase1, and TBL. KCS affects
the elongation of fibers in cotton; GA20-oxidase1 increases plant height, fiber length, and
strength after overexpression; and TBL affects the thickening and strength of cell wall,
which may also be related to fiber growth [25–27]. Genes that are in the non-reference
genome are also involved in selection, and they are mostly related to methylation, growth
and development, and stress response. These genes were selected perhaps because people
wanted to obtain more fiber in hemp-type Cannabis. In the selection interval of drug-type
Cannabis, there are a large number of genes related to substance metabolism. Similarly to
industrial hemp, there are genes that regulate flowering (such as SPL, LATE, etc.), and there
is also the Seipin-1 gene, which is involved in the biosynthesis of lipid droplets to promote
pollen transmission and reduce seed dormancy. The SPL gene has been reported to be
involved in glandular hair growth in Artemisia japonica and tillering in switchgrass [28–31].
This gene has been selected in drug-type Cannabis, because cannabinoids are synthesized
and stored in large quantities in glandular hairs. This result is consistent with the fact
that the cultivation direction of drug-type Cannabis is mainly to grow more branches and
glandular hairs to increase the content of cannabinoids.

2.3. PAV Analysis of Cannabis Pan-Genome

All 32,428 genes of the pan-genome and resequencing data of 109 samples were used
for PAV analysis. PCA based on PAVs showed that the samples clustered according to
their categories, such as the hemp type and drug type (Figure 4A). This is consistent with
the PCA based on SNPs. The phylogenetic tree constructed based on PAVs is also similar
to the phylogenetic tree based on SNPs (Figure 4B). These results suggest the PAVs are
reliable. The numbers of genes in the core genome and pan-genome were simulated. Both
of them reached their limit numbers before the number of genomes used in this study,
which indicates the samples were sufficient for pan-genome construction and PAV analysis
(Figure 4C).

To analyze the difference in gene numbers in different categories of Cannabis, PAVs
were used to count gene numbers (Figure 5). The variety with the largest number of genes
is NER2, which has 31,166 genes and is a cultivar of hemp-type Cannabis. The variety with
the lowest number of genes is FNA, which has 28,174 genes and is a landrace. In cultivar
and feral varieties, drug types have fewer genes than hemp types (Figure 5A). Compared
with feral varieties, cultivar varieties have fewer genes, especially in drug-type Cannabis
(Figure 5B). This shows significant gene loss during domestication and modern breeding.
Gene loss is very common during domestication and modern breeding, and is found in
tomato, soybean, and other pan-genomes.

The Cannabis pan-genome was divided into four parts, namely core genes (contained
in 100% of varieties), softcore genes (contained in 99–100% of varieties), shell genes (con-
tained in 1–99% of varieties), and cloud genes (contained in 0–1% of varieties). A total of
32,428 genes were detected in the Cannabis pan-genome PAV analysis, of which 32,140
genes were successfully identified, accounting for 99.11% of all genes. In this pan-genome,
there are a total of 23,309 core genes (71.88% of the pan-genome), 1971 softcore genes
(6.07%), 6760 shell genes (20.85%), and 388 cloud genes (1.2%) (Figure 6A,B). In the core
genes, a total of 3719 gene pairs were obtained, of which 134 gene pairs (3.83%) had Ka/Ks
(the number of nonsynonymous substitutions per nonsynonymous site/the number of
synonymous substitutions per synonymous site) greater than 1, and 3501 gene pairs had
Ka/Ks less than 1. In the flexible genes (shell genes and cloud genes), a total of 739 gene
pairs were obtained, of which 53 gene pairs (7.17%) had Ka/Ks greater than 1, and 686
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gene pairs had Ka/Ks less than 1. In these two groups, the proportion of gene pairs with
Ka/Ks > 1 in flexible genes was significantly higher (Chi-squared p value < 2.2 × 10−16),
indicating that a higher proportion of flexible genes exhibited signals of positive selection,
likely reflecting their involvement in adaptive processes (Figure 6C).

Figure 4. Phylogenetic analysis and principal component analysis based on PAVs. (A) Principal
component analysis based on SNPs. Different colors represent different Cannabis groups, and shapes
represent variety categories. Samples from same groups clustered together. (B) Maximum likelihood
phylogenetic tree based on PAVs. Samples from same groups are present in same branches, which
is similar to phylogenetic tree based on SNPs. This reflects that PAVs are reliable. (C) Changes in
pan-genome and core genome size with sample filling. Gene numbers of both core genome and
pan-genome changed slowly when genome number was close to sample number used in this study.
This indicates sample number in this study is enough to construct reliable pan-genome.

Figure 5. Number of genes in Cannabis samples. (A) The number of genes in different types of
Cannabis samples. (B) The number of genes in drug types and hemp types; the colors represent wild
varieties and cultivated varieties, respectively. Gene loss was observed during domestication.

To better understand the differences between flexible genes and core genes, GO en-
richment analysis and KEGG enrichment analysis were performed on these two gene sets.
Core genes were only enriched in the GO terms related to basic activities of life, including
“hydrolase activity”, “pyrophosphatase activity”, and “ubiquitin-protein transferase activ-
ity”. In contrast, flexible genes were enriched in “defense response”, “DNA integration”,
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“response to fungi”, “defense response to fungi”, and various metabolic processes and
purine biosynthesis processes (Figure 7A,B). Among them, the largest number of genes
were enriched in the “defense response” entry, which includes “defense response to fungus”
and “response to fungus” (Figure 7B). Six GO terms were related to purine nucleotide
metabolism, but the total gene number was much less than “defense response” (Figure 7B).
This shows that flexible genomes are significantly related to adaptation to the environment.

Figure 6. Pan-genome of Cannabis sativa. (A) Gene number and presence frequency in C. sativa pan
genes. The pie chart corresponds to the core (present in all accessions), softcore, shell, and cloud
genes. (B) A total of 109 Cannabis sativa accessions; heatmap shows presence and absence of flexible
PAVs. (C) Ratio of nonsynonymous/synonymous (Ka/Ks) mutations of core and flexible genes.

To understand flexible genes’ function on the pathway level, KEGG pathway en-
richment analysis was performed (Figure 7C). Flexible genes were mainly enriched in
“Plant–pathogen interaction”; this shows that there are a large number of disease-resistant
genes in the flexible genes, which may be the reason why Cannabis has strong dis-
ease resistance. Enriching in “Environmental adaptation” and “Biosynthesis of other
secondary metabolites” shows these flexible genes are related to the abiotic stress resis-
tance. Combined with the results of GO enrichment, we found that the flexible genes of
Cannabis are mainly involved in defense, including biotic and abiotic stress resistance.
This finding provides a genetic resource for Cannabis breeding and research, especially for
resistance breeding.
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Figure 7. GO enrichment analysis of flexible genes. (A) Dotplot of flexible genes (BP). (B) Upsetplot
of flexible genes (BP). (C) KEGG enrichment analysis of flexible genes. The functions of flexible genes
are mainly related to adaption to the environment.

3. Discussion
Genetic studies of crop domestication and improvement rely heavily on high-quality

reference genome sequences of related plant species [32]. In this study, an iterative as-
sembly method was used to construct the pan-genome using resequenced data from
Cannabis varieties around the world and the reference genome of CBDRx [8], a high-
quality hemp-type Cannabis variety, and the prediction of protein-encoding genes was
completed (Tables 2 and 3).

Retrotransposon LINEs have the potential to mediate nonallelic homologous re-
combination (NAHR) [21], which can result in long genomic DNA deletion or dupli-
cation [22,23]. LINEs present more in the Cannabis pan-genome than its reference genome
(Table 1, Figure 1); this may explain the absence of non-reference sequences in the reference
genome. This is not reported in pan-genome analysis and is worth focusing more attention
on in future research. This inference also indicates genes beside LINEs may be lost from
cultivated varieties, which can affect breeding strategy.

Population genetics and PAV analyses were performed using the Cannabis pan-
genome. We investigated the genetic differentiation among Cannabis varieties and iden-
tified genes associated with the domestication process. Understanding the population
structure and diversity of crop genomes will facilitate genetic manipulation, and will also
enhance the plant breeding program [33]. We found that Cannabis varieties clearly clus-
tered according to their types (Figures 2 and 4), and only gene flow between the basal
Cannabis group and feral drug-type Cannabis population was found (Figure 2C). The
possible reason is that cultivated Cannabis populations are usually constituted by local
varieties [34]. This indicates few gene communications happened between different types
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of Cannabis, so there is great potential for future Cannabis breeding by introducing genes
from different types of varieties.

High genomic diversity was presented on SNP level (Figure 2) and gene level
(Figures 4–7), which provides rich materials for breeding and researching gene function
and gene evolution. We found that 22.05% of the genes in Cannabis are flexible genes
(Figure 6), lower than cotton (38%) [18], wild soybean (51%) [35], and rice (69.4%) [17]
and higher than tomato (17.9%) [36]. Similarly to these pan-genomes, gene loss during
domestication was observed, which shows gene loss is very common during domestication;
however, gene gain during domestication was observed in the apple pan-genome [24]. For
breeding, gene loss indicates that the lost genes and flexible genes can be introduced into
new cultivars to gain corresponding functions and traits.

PAV analysis shows that flexible genes in Cannabis are mainly associated with environ-
ment adaption and disease resistance (Figure 7); this is also consistent with other published
pan-genomes [12,14,15,17,18,36]. The flexible genes and their distribution in varieties in
this study are valuable in Cannabis breeding and many other studies.

4. Materials and Methods
4.1. Construction of Cannabis Pan-Genome

In this study, the genomes of three main cultivated varieties in Northeast China,
Qing1 (Q1) and Qing2 (Q2) cultivated by the Daqing Branch of Heilongjiang Academy
of Agricultural Sciences, and the newly improved variety Senxin1 (SX1), were sequenced.
Genomic DNA was extracted using FastPure Plant DNA Isolation Mini Kit (Vazyme Biotech,
Nanjing, China) from seedlings; libraries were constructed using TruePrep DNA Library
Prep Kit (Vazyme Biotech) and were sequenced on Illumina NovaSeq6000. Sequencing
data were combined with 110 points of Cannabis resequencing data from all over the world
for pan-genome construction. The genome of CBDRx (GCF_900626175.2) was used as a
reference genome.

The software Trimmomatic (v0.39) [37] was used to remove joints and filter low-quality
fragments. The processed fastq files were mapped to the reference genome CBDRx using
MiniMap2 [38], and then Samtools [39] was used to output the sequences that did not match
the reference genome. Megahit [40] was used to assemble these non-reference sequences
into contigs.

We used MMseqs2 [41] to cluster the non-reference sequences and remove redun-
dancy, and re-compared the obtained sequences to the reference genome. Overlapping
regions were merged using Bedtools [42]; sequences with lengths greater than 500 bp and
overlapping rates with the reference genome of less than 80% were output. We merged
the mitochondrial and chloroplast sequences of Cannabis [43] and used MMseqs2 and
Cap3 [44] to cluster the non-reference sequence obtained in the previous step with similar
sequences of mitochondria and chloroplasts. Then the sequences similar to the mitochon-
dria and chloroplast genomes were removed. The rest of the sequences were aligned to
NCBI’s nt database; sequences matched to non-plant accessions were deleted to remove
contamination.

4.2. Repetitive Sequence Masking of Non-Reference Sequences

After obtaining the de-redundant non-reference sequence, the repetitive sequence
needed to be masked. First, RepeatModeler [45] was used for de novo prediction of repeat
sequences. RepeatMasker [46] was used with RepeatModeler’s results and Dfam3.7 and
Repbase (v20181026) used to mask repetitive sequences. The statistics of the masked
repetitive sequence information were completed in R. The masked non-reference sequences
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were merged with the reference genome to complete the construction of the Cannabis
pan-genome.

4.3. Gene Prediction and Annotation of Cannabis Pan-Genome

The gene prediction of the non-reference sequence of the Cannabis pan-genome
was completed by Augustus and MAKER3 [47]. Trinity [48] was used in advance to
assemble Cannabis transcripts as evidence of transcripts for gene prediction. NCBI’s
nr database and UniProt (Swiss-Prot, TrEMBL, Uniref50) databases were used for gene
annotation. The protein domain, GO, etc., were annotated using Interproscan [49], and the
corresponding GO ID was extracted from the results. The KEGG annotation was obtained
by KofamKOALA [50].

4.4. Population Genetic Analysis Based on Cannabis Pan-Genome

MiniMap2 was used to map the resequenced data to the Cannabis pan-genome, and
then Samtools was used to obtain the bam file. Samtools and Sambamba [51] were used to
sort and de-duplicate bam files. BCFtools [52] was used for SNP calling and filtering. The
filtering criteria were as follows: only bi-allelic SNPs, SNP quality value >10, more than
70% of the sample contained, and a minimum allele frequency greater than 0.05.

Referring to the previous research on the apple pan-genome [24], this study used
SNP data to calculate the distance matrix, and then used the distance matrix to construct
the evolutionary tree. First, VCF2Dis was used to calculate the distance matrix, then
Fastme [53] was used to construct the phylogenetic tree, and the tree was visualized by
iTOL [54]. Principal component analysis was carried out using Plink [55], and subsequent
analysis was carried out using R. The visualization was completed by the R package ggplot2
(v3.5.0).

Allele frequencies were calculated using Plink, format conversion was performed by
Plink2treemix.py (https://github.com/barbatom/plink2treemix, accessed on 12 March
2024), and gene flow analysis was performed using Treemix [56] (m-values were taken
from 0 to 10, and each operation was repeated three times).

VCFtools [57] was used to calculate Fst. XP-CLR (https://github.com/hardingnj/
xpclr, accessed on 12 March 2024, v1.1.2) was used to complete the calculation. The
subsequent data analysis was performed by R, and the visualization was performed by
the R package CMplot (https://github.com/YinLiLin/CMplot, accessed on 10 February
2024) and ggplot2. XP-CLR score and Fst were used to find out the selection signals in the
pan-genome. The top 10% of XP-CLR scores and Fst values were screened out, and the
common segments were used as the selection interval. The genes in the selection interval
were extracted by script, the gene annotation and enrichment analysis in the selection
interval were completed by R language and TBtools (v2.042) [58], and the visualization was
completed in R.

4.5. PAV Analysis Based on Cannabis Pan-Genome

All the resequencing data were mapped to the pan-genome of Cannabis by Minimap2
to obtain the BAM files. The PAV identification was completed using Hupan [59] to invoke
the gene prediction result and the previously obtained bam file, and geneExist (parameters:
0.4 0.4) was used to generate the PAV file.

4.6. Assessment of the Pan-Genome of Cannabis

Using R language scripts for modeling, the scale of the core genome and pan-genome
in the Cannabis pan-genome were evaluated as the sample filling changed, and the type
and sample of the Cannabis pan-genome were judged to be sufficient.

https://github.com/barbatom/plink2treemix
https://github.com/hardingnj/xpclr
https://github.com/hardingnj/xpclr
https://github.com/YinLiLin/CMplot
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4.7. Statistics on the Number and Frequency of Genes in the Cannabis Pan-Genome

The genes that exist in each sample, that is, the genes with a presence rate of 100%,
were divided into core genes, the genes with a presence rate of 99–100% in the sample were
divided into softcore genes, the genes with a presence rate of 1–99% in the sample were
divided into shell genes, and the genes with a presence rate of less than or equal to 1% in
the sample were divided into cloud genes.

4.8. Principal Component Analysis and Phylogenetic Analysis of Cannabis Pan-Genome PAVs

The principal component analysis and visualization based on PAVs were all performed
by ggplot2 (the prcomp function completes the calculation). IQtree2 [60] was used to
construct the developmental tree (maximum likelihood method).

4.9. Analysis of Flexible Genes and Core Genes

The shell genes and cloud genes were merged as flexible genes. The Ka/Ks calculation
of core genes and variable genes was completed by wgd [61]. First, Orthofinder [62]
was used to identify homologous gene pairs, and then wgd was used to calculate Ka/Ks.
Enrichment analysis and visualization of GO and KEGG pathway were performed by
clusterProfiler [63] and Enrichplot. More levels of enrichment analysis were performed
by TBtools.

5. Conclusions
We sequenced genomes of three Cannabis varieties and constructed the Cannabis

pan-genome. Finally, we assembled 24,679,380 bp genome sequences outside the reference
genome, and identified a total of 1313 protein-coding genes in it. A total of 13,905,272 SNPs
were obtained based on the pan-genome. Phylogenetic analysis and principal component
analysis showed that the sample grouping was significant, consistent with the previous
research results. A total of 32,428 gene PAVs were obtained from 109 Cannabis samples, and
7148 flexible genes accounting for 22.05% of all genes in the pan-genome were identified.
Flexible genes were mainly related to traits that adapted to the living environment, such as
Cannabis resistance and disease resistance. This result provides an important genetic basis
and guiding method for targeted Cannabis breeding.
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