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Abstract

Iron is essential for cellular respiration, oxidative defense, and host immunity, but its
dysregulation is increasingly associated with metabolic disorders, such as obesity and
type 2 diabetes. In these diseases, regional iron accumulation occurs in adipose tissue,
independent of systemic overload. This process disrupts the mitochondrial redox balance,
induces ferroptotic stress, and activates the innate immune pathways. Recent studies have
highlighted the NLRP3 (nucleotide-binding domain, leucine-rich repeat, pyrin domain-
containing protein 3) inflammasome and its effector cytokine interleukin-13 (IL-13) as
important mediators of the interface between iron and inflammation. In both adipocytes
and macrophages, labile iron increased reactive oxygen species (ROS) production and
promoted inflammasome formation. Simultaneously, metabolic stress factors upregulate
hepcidin expression, suppress ferroportin activity and exacerbate intracellular iron reten-
tion. These molecular events converge to maintain low-grade inflammation and impair
insulin signaling. Despite these compelling associations, direct mechanistic evidence re-
mains limited, particularly with respect to depot-specific responses and cell type resolution.
In this review, I examine the current evidence linking iron handling and inflammasome
biology in adipose tissue, focusing on ferroptosis, thioredoxin-interacting protein (TXNIP)
signaling, and spatial mapping of iron—cytokine networks. I also discuss novel therapeu-
tic strategies targeting iron overload and inflammasome activation, including chelation,
hepcidin modulation, and inflammasome inhibition in the context of metabolic diseases.

Keywords: iron metabolism; NLRP3 inflammasome; IL-1(3; adipose tissue; obesity; type
2 diabetes; ferroptosis; hepcidin; ferritin; metabolic inflammation

1. Introduction

Obesity and type 2 diabetes mellitus (T2D) continue to be pressing global health prob-
lems, affecting over 890 million and 500 million people, respectively [1,2]. Although both
conditions are traditionally characterized by excessive caloric intake and energy imbalance,
they are increasingly recognized as systemic inflammatory conditions characterized by
persistent, low-grade immune activation, commonly referred to as “metaflammation” [3-6].
Immunological remodeling is particularly evident in adipose tissue, where the proliferation
of hypertrophic fat cells, local hypoxia, and monocyte recruitment remodels the tissue into
a pro-inflammatory niche, promoting insulin resistance and impaired metabolic flexibil-
ity [7-15]. At the center of this immunometabolic shift is the NLRP3 (nucleotide-binding
domain, leucine-rich repeat, pyrin domain-containing protein 3, often shorten to NOD-,
LRR-, and pyrin domain-containing protein 3) inflammasome, a cytosolic sensing com-
plex activated by metabolic danger signals, such as saturated fatty acids, reactive oxygen
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species (ROS), and other damage-associated molecular patterns (DAMPs). After priming
and activation, NLRP3 facilitates autocatalytic cleavage of pro—caspase-1, thereby convert-
ing pro—interleukin-1f (pro-IL-1p) to its mature, biologically active form [6,16-18]. This
metabolic pathway has been directly linked to local and systemic metabolic inflammation
in obesity and insulin resistance [16,19-24].

At the same time, disturbances in iron homeostasis have been shown to be important,
but underestimated, factors in adipose tissue inflammation. Iron is essential for the oxygen
supply, mitochondrial electron transport, and enzymatic redox processes [25,26]. However,
excess iron, particularly in the ferrous form (Fe?*), can promote the formation of hydroxyl
radicals (OH) via Fenton chemistry, contributing to widespread oxidative damage to DNA,
lipids, and proteins [27,28]. Oxidative damage is not harmless; it triggers ferroptosis, an
iron-dependent form of regulated cell death that is increasingly associated with adipocyte
attrition and metabolic disorders [29-31]. In fat depots, iron overload impairs mitochondrial
respiration, suppresses key insulin-sensitizing adipokines, such as adiponectin and leptin,
and reprograms resident macrophages to an inflammatory phenotype [32-35].

Furthermore, mitochondrial dysfunction in conjunction with excess iron can drive
NLRP3 activation through ROS production and release oxidized mitochondrial DNA,
providing a molecular bridge between iron dysregulation and cytokine-mediated inflam-
mation [36-38].

An intriguing clinical paradox occurs in many people with obesity and T2D, and
elevated serum ferritin levels often occur concurrently with normal or low transferrin satu-
ration, a pattern referred to as dysmetabolic iron overload syndrome (DIOS) or metabolic
hyperferritinemia [39,40]. These iron biomarkers indicate intracellular iron deposition
rather than classic systemic iron overload. Recent studies have shown a disproportion-
ate accumulation of iron in visceral adipose tissue (VAT), particularly in iron-containing
macrophages, which exhibit increased NLRP3 expression and contribute to impaired glu-
cose homeostasis [41,42].

Despite growing interest, many mechanistic gaps remain. Few studies have clarified
how iron handling, including ferritin storage, ferroportin export, and hepcidin regulation,
modulate the priming or activation of inflammasomes in adipose tissue. Furthermore,
the roles of ferroptosis and iron-mediated oxidative stress in the maintenance of inflam-
matory signals have not been sufficiently characterized [34,43]. This review summarizes
the current mechanistic and translational literature on iron-inflammasome interactions in
adipose tissue. I evaluated the roles of redox imbalance, ferroptosis, iron trafficking, and
macrophage—adipocyte crosstalk in the modulation of inflammation and insulin resistance.
Finally, I explored therapeutic options targeting iron metabolism or inflammasome signal-
ing, such as iron chelation, hepcidin antagonism, and interleukin-1 beta (IL-1f3) blockade,
as potential interventions to treat adipose tissue dysfunction in obesity and T2D.

2. NLRP3 Inflammasome: Activation and Function

NLRP3 inflammasome is a cytosolic multiprotein complex that plays a critical role in
innate immunity and regulation of inflammation, particularly in the context of metabolic
diseases such as obesity and type 2 diabetes (T2D) [44—46]. This complex consists of the
sensor molecule NLRP3, adaptor protein ASC (apoptosis-associated speck-like protein
containing a CARD), and effector enzyme pro-caspase-1, which recognizes various endoge-
nous danger signals and pathogen-associated molecular patterns (PAMPs) and triggers
inflammatory responses [47-49]. The NLRP3 inflammasome functions as a cytoplasmic
surveillance system capable of recognizing a variety of metabolic stressors. Its activa-
tion occurs through a well-characterized two-step process involving distinct priming
and activation signals, an arrangement that provides regulatory checkpoints critical for
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preventing abnormal cytokine release [50-52]. The initial “priming” signal typically in-
volves Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS), or cytokines
such as tumor necrosis factor alpha (TNF-o) and IL-13, which activate the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) [53-56].This transcription program
upregulates important inflammasome components such as NLRP3, pro-IL-1§3, and pro-
IL-18 [45,57]. The subsequent “activation signal” arises from intracellular perturbations
such as adenosine triphosphate (ATP)-induced potassium efflux, lysosomal destabiliza-
tion, and accumulation of mitochondria-derived reactive oxygen species (mtROS), all of
which serve as DAMPs [53,58,59]. These stimuli (second signal) trigger oligomerization of
NLRP3 and recruitment of the adaptor protein ASC, leading to autocatalytic activation of
caspase-1 [49,60-63]. Activated caspase-1 then cleaves pro-IL-1§3 and pro-IL-18 into their
mature, biologically active cytokines. It also cleaves Gasdermin D (GSDMD), releasing its
N-terminal fragment, which oligomerizes and forms pores in the plasma membrane. These
pores facilitate the release of IL-13 and IL-18, which are potent pro-inflammatory medi-
ators [45,64], and induce pyroptotic cell death [65,66]. In particular, IL-1p plays a central
role in chronic inflammation underlying insulin resistance and glycemic dysregulation in
obesity and T2D [44,45]. After binding to its receptor (IL-1R), IL-1p amplifies inflammation
by triggering the expression of additional cytokines, such as TNF-«, thus reinforcing a
feed-forward inflammatory loop [44,45]. This mechanism enables an intricate interplay
between immune cells, especially macrophages and metabolic cells such as adipocytes, and
drives adipose tissue inflammation during metabolic stress [45]. In visceral adipose tissue,
IL-1p also mediates a pro-inflammatory loop between macrophages and CD4+ T cells via
IL-22, which worsens insulin resistance and glycemic control [67]. Thus, the NLRP3-IL-13
axis represents an important molecular link that translates metabolic excess into systemic
inflammation and organ dysfunction in various tissues in metabolic diseases.

A wide range of stimuli can serve as secondary signals to activate NLRP3 inflamma-
some. Among the best characterized is ion flux, including potassium (K*) efflux, com-
monly triggered by extracellular ATP via P2 x 7 receptors activation. Other contributing
signals include calcium (Ca?*) mobilization from the endoplasmic reticulum, chloride
(C17) efflux, and sodium (Na*) influx [68,69]. A molecular link is the redox-sensitive
protein thioredoxin-interacting protein (TXNIP), which dissociate from thioredoxin dur-
ing oxidative stress directly binds to NLRP3. Notably, TXNIP expression is elevated in
response to high glucose conditions, connecting metabolic stress to inflammasome activa-
tion [57,70,71]. Metabolic lipids such as palmitate and ceramides promote inflammasome ac-
tivation through mitochondrial stress and AMPK inhibition, while uric acid and cholesterol
crystals, as well as aggregated IAPP in pancreatic islets, also serve as well-characterized
activators [51,61,72-74]. Other modulators, such as the mitochondrial antiviral signaling
protein (MAVS), microtubule dynamics, and the kinase NEK7, have also been implicated in
facilitating inflammasome assembly of the inflammasome [74,75].

Overall, activation of the NLRP3 inflammasome is not a singular or isolated event
but a finely tuned multi-signaling process that is closely intertwined with metabolic stress,
immune cell activation, and inflammation (Figure 1). In the context of obesity and T2D,
this process unfolds primarily in adipose tissue and pancreatic islets but also extends
to vascular, hepatic, renal, and neural tissues, exacerbating systemic dysfunction. In the
adipose tissue microenvironment, NLRP3 expression is normally minimal but is signifi-
cantly increased under obese conditions, where chronic nutrient excess and insulin resis-
tance are prevalent [22,23]. Obesity-associated stimuli such as lipotoxicity, mitochondrial
dysfunction and increased extracellular ATP lead to activation of the NLRP3 inflamma-
some in both adipocytes and resident immune cells [29,31]. Recent evidence suggests that
ferritinophagy—the autophagic degradation of ferritin—is a mechanistic link between
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iron metabolism and inflammasome activation. This process releases labile iron, enhances
lipid peroxidation, and facilitates ferroptotic death, which further enhances NLRP3 activ-
ity [36,76]. These findings suggest that redox-active iron is an important upstream regulator
of inflammasome signaling in metabolically stressed adipose tissue.
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Figure 1. Molecular mechanisms of NLRP3 inflammasome priming and activation.

This figure illustrates the two-step model of NLRP3 inflammasome activation.
Step 1 (priming) involves the transcriptional upregulation of key components of the in-
flammasome, such as NLRP3, pro-IL-13, and pro-IL-18, mainly through NF-kB signaling
activated by pattern recognition receptors (PRRs) such as TLRs (Toll-like receptors), NOD?2,
and cytokine receptors (e.g., IL-1R, TNFR). This step also involves the induction of IFN-§3 via
IRF3, which further enhances immune responses. Step 2 (activation) is triggered by various
cellular stress signals, including ATP, K* efflux, ROS, mitochondrial dysfunction, lysosomal
rupture, and ion fluxes (CI~, Ca?*). (Iron overload and mitochondrial Fe** dysregulation
enhance ROS production and release of oxidized mitochondrial DNA (mtDNA)—both
potent NLRP3 activators). These events promote the conformational change and oligomer-
ization of the NLRP3 inflammasome complex with ASC (apoptosis-associated speck-like
protein containing a CARD), NEK7, and pro-caspase-1, leading to autocatalytic activation
of caspase-1, which converts pro-IL-1 and pro-IL-18 to their mature forms and cleaves
Gasdermin D (GSDMD), triggering pyroptotic cell death and the release of inflammatory
cytokines. Thus, iron homeostasis directly modulates inflammasome sensitivity and inflam-
matory outcomes. Abbreviations: ASC, apoptosis-associated speck-like protein containing
a CARD; CARD, caspase activation and recruitment domain; CASP1, caspase-1; DAMPs,
damage-associated molecular patterns; GSDMD, Gasdermin D; IFN-f3, interferon beta;
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IL-1R, interleukin-1 receptor; IRF3, interferon regulatory factor 3; MAVS, mitochondrial
antiviral signaling protein; mtDNA, mitochondrial DNA; NEK7, NIMA-related kinase 7;
NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3, NOD-like
receptor family pyrin domain-containing 3; P2 x 7, purinergic receptor P2 x 7; PAMPs,
pathogen-associated molecular patterns; PYD, pyrin domain; ROS, reactive oxygen species;
TLR, Toll-like receptor; TNFR, tumor necrosis factor receptor; TWIK2, tandem pore domain
weak inwardly rectifying K* channel 2.

The NLRP3-IL-1p axis converts intracellular stress signals into extracellular inflam-
matory responses that impair insulin signaling, promote apoptosis of (3 cells, and maintain
metabolic imbalance. Thus, the inflammasome acts as both a sensor and amplifier of
metabolic dysfunction. Its central role in orchestrating chronic inflammation makes it a
promising target for therapeutic intervention in metabolic diseases, particularly through
inhibitors that suppress inflammasome assembly or cytokine release as well as dietary
interventions aimed at mitigating upstream triggers. To synthesize the diverse molecular
pathways by which iron influences inflammatory and metabolic processes, Table 1 presents
a comparative overview of key mechanisms, including ferroptosis, hepcidin signaling, and
macrophage—adipocyte iron flux, along with their associated mediators, affected tissues,
and pathophysiological consequences in obesity and T2D.

Table 1. Mechanistic pathways linking iron metabolism and inflammation in obesity and T2D.

Aspect/Mechanism

Key Findings and Molecular Pathways References

Adipocyte iron
overload

Elevated intracellular iron in adipocytes suppresses
insulin-sensitizing adiponectin (via FOXO1) and leptin (via
CREB), promoting insulin resistance and metabolic dysregulation.
Iron homeostasis in adipocytes is governed by the
hepcidin—ferroportin axis, where both systemic (hepatic,
inflammation-induced) and local
(adipocyte/macrophage-derived) hepcidin mediate autocrine and
paracrine signaling.

[32,36,77,78]

Atm (adipose tissue
macrophage) iron
handling

Obesity drives macrophage polarization toward

pro-inflammatory M1 phenotypes, which exhibit reduced iron

content, lower ferroportin expression, and

diminished iron recycling. [41,79-83]
This transition depletes MFe™ (iron-rich, M2-like) macrophages

and contributes to iron sequestration, ROS generation, ferroptosis,

and amplified adipose tissue inflammation.

Inflammation-induced
hepcidin expression

IL-6-driven STATS3 activation stimulates hepcidin synthesis in
both liver and adipose tissue; this is reinforced by

BMP/SMAD signaling.

Hepcidin degrades ferroportin, restricting iron export and
promoting intracellular iron retention in adipocytes, macrophages,
and enterocytes.

The result is localized iron overload, impaired insulin signaling,
and dysregulated adipokine secretion.

[84-87]
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Table 1. Cont.

Aspect/Mechanism

Key Findings and Molecular Pathways References

Iron-driven oxidative stress
and ferroptosis

e  Redox-active Fe>* promotes hydroxyl radical formation via
Fenton chemistry, leading to lipid peroxidation and
ferroptotic cell death in adipocytes and hepatocytes.
e In obesity models, ferroptosis inhibition (e.g., by
deferoxamine or GPX4 activation) preserves tissue integrity [36,88]
and metabolic function.
e  Iron accumulation in adipose and skeletal muscle
correlates with mitochondrial dysfunction and autophagy
impairment.

Macrophage-adipocyte
iron exchange

e  Obesity alters ATM iron export/import dynamics,
particularly in MMe (metabolically activated)
macrophages, enhancing iron transfer to adipocytes.

e  Stable isotope tracing confirms bidirectional iron
misdistribution within obese adipose tissue, reinforcing a
feedback loop of inflammation and insulin resistance.

[41,81-83]

Role of CD163 in
hemoglobin clearance and
atm phenotype

e  (CD163-deficient models exhibit impaired
hemoglobin-haptoglobin scavenging, increased cytokine
production, elevated adipocyte iron, and worsened
insulin resistance.

e  These findings link iron clearance to ATM polarization and
broader metabolic homeostasis.

[79]

Iron-regulated gene
networks

e  Obesity alters expression of iron-handling genes in
adipocytes and macrophages, including transferrin, ferritin,
ferroportin, DMT1, TfR1, and IRP1/2.

e  Non-canonical regulators of hepcidin—such as leptin and
ER stress—may influence local iron retention beyond
inflammation alone.

[84,86,89,90]

Abbreviations: ATM, adipose tissue macrophage; BMP, bone morphogenetic protein; CD-163, cluster of differ-
entiation 163; CREB, cAMP response element-binding protein; DMT-1, divalent metal transporter 1; FOXO1,
forkhead box protein O1; GPX4, glutathione peroxidase 4; IL-6, interleukin-6; IRP1/2, iron regulatory protein 1
and 2; MFehi, macrophages with high iron content; ROS, reactive oxygen species; SMAD, small mothers against
decapentaplegic homolog; STAT3, signal transducer and activator of transcription 3; TfR1, transferrin receptor 1.

3. NLRP3 and IL-1f3 in Obesity and Type 2 Diabetes
3.1. Mechanistic Role of the NLRP3-IL-18 Axis in Metabolic Inflammation

Obesity and T2D are characterized by chronic low-grade inflammation involving both
innate and adaptive immunity [91,92]. At the center of this inflammatory process is the
NLRP3 inflammasome, an intracellular sensor activated by a wide range of metabolic
danger signals that accumulate in obesity, including saturated fatty acids (e.g., palmitate),
ceramides, uric acid, high glucose, and islet amyloid polypeptide (IAPP) [45,64,72,93].
These signals promote the assembly and activation of inflammasomes, leading to the activa-
tion of caspase-1 and release of the pro-inflammatory cytokines IL-1f3 and IL-18. In adipose
tissue, obesity leads to adipocyte hypertrophy and recruitment of immune cells, particularly
adipose tissue macrophages (ATMs), which are a major source of NLRP3 expression and
inflammasome activity [37,45,92,94]. The bidirectional interaction between macrophages
and adipocytes leads to a pro-inflammatory environment that interferes with insulin
signaling [95,96]. IL-1p impairs IRS-1 phosphorylation and inhibits insulin-stimulated
lipogenesis in adipocytes [96], whereas caspase-1 inhibition promotes adipogenesis and
improves insulin sensitivity in vitro and in obese mice [22]. Elevated IL-1§3 and IL-18 levels
are consistently observed in the adipose tissue and serum of individuals with obesity
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and insulin resistance [64,67,97], and higher NLRP3 expression in visceral adipose tissue
correlates with the severity of insulin resistance [45,67]. Importantly, NLRP3 inhibition,
both genetic and pharmacological, has been shown to attenuate adipocyte hypertrophy
induced by a high-fat diet and improve insulin signaling in adipose tissue, the liver, and
skeletal muscle, which is often associated with increased Akt/PKB phosphorylation and
improved glucose uptake [17,47,96,98,99].

In the pancreas, NLRP3 activation contributes to 3-cell dysfunction—a defining fea-
ture of T2D. IL-13 plays a central role in the progressive decline of pancreatic 3-cell function
in both type 1 and type 2 diabetes. Evidence from human and animal studies suggests
that IL-13 directly impairs glucose-stimulated insulin secretion, in part by inducing ni-
tric oxide synthase and disrupting mitochondrial metabolism, thereby reducing insulin
production in 3-cells [100,101]. In addition, IL-13 suppresses the proliferation of 3-cells
by downregulating cell cycle regulators such as cyclin D2 and increasing the expression
of cell cycle inhibitors including p21 and p27 [101,102]. Prolonged exposure to IL-1f also
triggers apoptosis via activation of the nuclear factor-«B (NF-«B) and end oplasmic retic-
ulum stress pathways, which promote the expression of pro-apoptotic proteins such as
Bim and Bax [103,104]. The combined effects impaired insulin secretion, decreased regen-
erative capacity of 3-cells, increased apoptotic death, and accelerated [3-cell mass decline
and functional failure, contributing to the onset and progression of hyperglycemia in
diabetes [44,105,106].

NLRP3 is activated in the pancreatic islets and by infiltrating macrophages in response
to IAPP oligomers that aggregate in the islets of patients with T2D [44,70]. These IAPP
structures trigger inflammasome activation in macrophages and dendritic cells, further
increasing IL-1f3 production and 3-cell death [70,72]. Chronic hyperglycemia enhances
NLRP3 activation by increasing the expression of thioredoxin-interacting protein (TXNIP)
and the production of ROS, creating a forward loop of glucotoxicity (including paracrine
and autocrine damage to (3-cells) and inflammation [16,38,57,70,71]. In mouse models,
genetic ablation of NLRP3 or ASC adaptor protects against the loss of 3-cells, increases islet
area, and improves insulin levels, highlighting the pathogenic role of the inflammasome in
islet degeneration [48,107,108].

3.2. Tissue-Specific Inflammatory Pathways and Iron-Mediated Activation

In mice fed a high-fat diet (HFD), the expression of NLRP3 and IL-1 is significantly
increased in visceral white adipose tissue (VWAT), which precedes the development of
hyperglycemia and hyperinsulinemia. Genetic deletion of nlrp3 or caspase-1 (casp)1 leads
to resistance to diet-induced insulin resistance despite equal energy intake and weight
gain, underscoring the causal role of the inflammasome [48,109]. This pro-inflammatory
signaling is anatomically specific [110]. Visceral fat depots, especially epididymal and
perigonadal, exhibit stronger inflammasome activity than subcutaneous adipose tissue,
which is due to differences in stromal vascular composition, immune infiltration, and
adipocyte size [4,5]. Crown-like structures (CLS), characterized by clusters of differen-
tiation 11c (CD11c") macrophages surrounding necrotic fat cells, are enriched in vVWAT
and correspond with impaired insulin signaling via reduced insulin receptor substrate
1 (IRS-1) phosphorylation and protein kinase b (PKB) (AKT) activation [111,112]. IL-13
acts as a versatile mediator of metabolic dysfunction. Mechanistically, it impairs insulin
signaling by upregulating the suppressor of cytokine signaling (SOCS) proteins and acti-
vating c-Jun N-terminal kinase/mitogen-activated protein kinase (JNK/MAPK) cascades,
thereby inhibiting insulin receptor substrate (IRS) function [113,114]. In human studies,
increased IL-13 expression in adipose tissue correlates with insulin resistance indepen-
dent of obesity [9,35]. Beyond glucose metabolism, IL-13 disrupts adipokine profiles by
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downregulating adiponectin and stimulating leptin secretion, which exacerbates systemic
inflammation and metabolic imbalance [32,40,115]. Although macrophages remain the ma-
jor source of IL-1§3 in adipose tissue, functional inflammasome machinery is also expressed
in preadipocytes, mature adipocytes, dendritic cells, and mast cells, all of which contribute
to a self-sustaining inflammatory cycle [94,109,116].

Iron metabolism overlaps with inflammasome signaling in several important nodes.
Enlargement of the labile iron pool (LIP), often triggered by hepcidin-mediated ferroportin
degradation, promotes mitochondrial ROS production and activates the NLRP3 inflamma-
some [29,41,42,117,118]. Iron chelation with deferoxamine and the human myelomonocytic
cell line THP-1 has been shown to suppress the release of IL-13 and restore insulin sensi-
tivity in obese mice and adipocyte cultures [36,119]. Inflammatory syndromes associated
with iron dysregulation are increasingly recognized in clinical contexts of chronic iron
overload. A prominent example is (3-thalassemia, in which both transfusional iron loading
and ineffective erythropoiesis contribute to the excessive release of intracellular iron into
the plasma [120,121]. This leads to increased concentrations of non-transferrin-bound iron
(NTBI), particularly in the Fe?* state, which can catalyze Fenton reactions and generate
ROS [122]. ROS initiate and propagate oxidative damage, leading to the activation of
pro-inflammatory signaling pathways such as NF-«B [123,124]. This mechanism underlies
the chronic inflammation observed in 3-thalassemia and other iron-containing anemias
and establishes a clear pathophysiological link between excess iron at the cellular iron
and systemic inflammatory responses [121,125]. These effects highlight the potential of
targeting excess iron as a therapeutic strategy for metabolic inflammation.

3.3. Therapeutic Approaches to Modulating NLRP3 Activity

Chelation therapy is a rational intervention to reduce iron-induced redox stress and in-
terrupt inflammasome activation. Of the available agents, deferoxamine (DFO), deferiprone
(DFP), and deferasirox (DFX) have shown efficacy in lowering labile iron and suppressing
ROS production in preclinical models [122,126]. DFO, a hexadentate iron chelator, pref-
erentially binds Fe** and reduces the availability of iron for Fenton chemistry, whereas
DFP and DFEX show better tissue penetration and prolonged plasma activity. These agents
not only prevent iron accumulation in key metabolic organs such as the liver and heart
but also blunt downstream inflammasome responses. In experimental models of dietary
obesity, chelation with DFP and DFO has been shown to reduce IL-1(3 expression, normal-
ize insulin signaling, and reduce macrophage infiltration into adipose tissue [36,127,128].
Additionally, chelators can indirectly stabilize mitochondrial function by preventing iron
overload-induced depolarization and oxidative stress. The specificity of these agents for
Fe3* suggests that their anti-inflammatory effects are mediated by limiting labile iron
availability and curbing Fe?*-driven formation of hydroxyl radical formation. Beyond
inflammation, iron chelators improve metabolic parameters by restoring adipokine profiles
and reversing insulin resistance [129,130]. These pleiotropic benefits make iron chelation a
potential adjunct therapy for metabolic syndrome, particularly in individuals with subclin-
ical iron overload or inflammatory hyperferritinemia. In combination with lifestyle and
pharmacological interventions, iron detoxification may offer a multi-pronged approach to
break the metabolic-inflammatory cycle driven by the NLRP3-IL-1f3 axis.

Taken together, these data demonstrate that the NLRP3-IL-1( axis is an important
link between metabolic stress, redox imbalance, and immunological remodeling in adipose
tissue. Its activation is modulated by depot location, iron availability, and mitochondrial
integrity. Determining the temporal and spatial dynamics of this pathway may provide
new therapeutic targets to interrupt the iron-inflammatory cycle in metabolic diseases.
Promising therapeutic strategies targeting NLRP3 include small molecule inhibitors such
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as MC(C950, which reduce systemic inflammation and improve glycemic control, and di-
etary interventions, such as n-3 polyunsaturated fatty acids (PUFAs) like DHA, which
block saturated fat-triggered NLRP3 activation and insulin resistance [63,69,71,131-133].
Nevertheless, further research is needed to elucidate tissue- and cell-type-specific mecha-
nisms, differences between canonical and non-canonical activation pathways, and relative
contributions of central versus peripheral NLRP3 activity to systemic metabolic diseases.

4. Iron-Induced Inflammasome Activation: Molecular Pathways

The intersection of iron metabolism and inflammasome signaling represents a critical
axis in the development of metabolic inflammation, particularly in adipose tissue under
conditions of obesity and T2D. Chronic low-grade inflammation, also known as metaflam-
mation, has emerged as a hallmark of insulin resistance and a defining feature of T2D
pathogenesis [3]. At the center of this inflammatory cascade, the NLRP3 inflammasome is a
cytosolic pattern recognition complex that integrates metabolic, redox, and inflammatory
factors to drive caspl activation and IL-13 maturation [22,23]. Iron overload is increasingly
being recognized as an upstream trigger of NLRP3 activation through its role in redox
imbalance, mitochondrial dysfunction, and ferroptosis [134,135]. These iron-dependent
processes promote the release of DAMPs, mitochondrial ROS, and oxidized lipids that
activate inflammasomes. In particular, adipose tissue exhibits depot-specific susceptibility,
with visceral adipose tissue (VAT) showing greater susceptibility to iron accumulation,
oxidative damage, and inflammasome induction than subcutaneous and brown adipose
tissues. The following subsections describe the major mechanisms by which iron disrupts
adipose tissue (BAT) immune homeostasis, including ferroptosis, ferritinophagy, and
thioredoxin-interacting protein (TXNIP).

4.1. Iron Overload and ROS

The ability of iron to switch between ferrous (Fe?*) and ferric (Fe3*) states makes it a
strong catalyst for ROS via the Fenton reaction, which converts H,O; into -OH that can
damage lipids, proteins, and DNA [136-140]. In lipid-rich environments, such as adipose
tissue, this oxidative potential is amplified, particularly under conditions of diet-induced
obesity where mitochondrial iron accumulation occurs. In the VAT, mitochondrial iron over-
load increases mtROS production, which serves as the initial signal for NLRP3 activation
and subsequent IL-1§3 secretion [48,53,141]. Experimental models fed a high-fat diet (HFD)
consistently showed increased expression of NLRP3 and downstream effectors in parallel
with macrophage infiltration and systemic insulin resistance, linking mitochondrial iron
dysregulation to metabolic disturbances [23]. These redox disturbances not only activate
the inflammasome but also initiate a self-reinforcing loop of adipocyte dysfunction and
immune cell recruitment. The increased sensitivity of NLRP3 to mtROS makes this axis
particularly susceptible to dietary, genetic, and pharmacological modulation and provides
a therapeutic target for intervention [56,142,143].

4.2. Ferroptosis and Ferritinophagy

Ferroptosis, a form of regulated necrosis characterized by iron-catalyzed lipid peroxida-
tion, is increasingly being recognized as a central mediator of adipose tissue inflammation.
Disruption of glutathione peroxidase 4 (GPX4) activity leads to the accumulation of lipid
peroxide and the formation of cytotoxic aldehydes such as 4-hydroxynonenal (4-HNE),
which compromise membrane integrity and release DAMPs [31,144,145]. DAMPs released
during ferroptotic cell death serve as crucial mediators linking intracellular iron toxicity
to immune activation. As lipid peroxidation progresses and membranes rupture, DAMPs
such as high mobility group box 1 (HMGB1), ATP, mitochondrial DNA, and oxidized lipids
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are released into the extracellular environment. These signals encounter pattern recognition
receptors such as TLR4, RAGE, and NLRP3 on immune cells, thereby enhancing NF-«B sig-
naling, inflammasome formation, and the release of pro-inflammatory cytokines [146-148].
Among these, HMGBI plays a particularly well-characterized role in ferroptosis, where its
redox-dependent release enhances innate immune responses and promotes macrophage
recruitment. This DAMP-driven inflammatory feedback loop amplifies local cytokine pro-
duction, hepcidin expression, and further labile iron retention—ultimately reinforcing the
iron-ROS-inflammatory axis. In contrast to ferritin-bound Fe3*, which is relatively inert,
unstratified or labile Fe?* drives continuous ROS formation, lipid peroxidation and DAMP
release. This underlies the immunometabolic dysfunction observed in metabolic disease
models with iron overload [129,130].

In adipocytes with ferroportin deficiency or excess iron, ferroptosis is accompanied
by increased IL-1( secretion and NLRP3 activation, suggesting that ferroptotic cell death
directly enhances inflammasome signaling. Pharmacological inhibitors of ferroptosis, in-
cluding ferrostatin-1 and liproxstatin-1, have been shown to reduce IL-1f levels and
improve insulin sensitivity in preclinical models [145,149]. This bidirectional association
suggests that iron overload triggers ferroptosis and that the products of cell death serve as
ligands for inflammasome activation. Furthermore, the regulation of ferroptosis overlaps
with nutrient- and redox-sensing pathways, making it a modifiable node within a broader
immunometabolic network. These findings suggest that ferroptosis is a therapeutically
viable process linking iron dysregulation to chronic obesity. Thus, ferroptosis is a down-
stream manifestation of unbuffered Fe?* reactivity that promotes sustained ROS production
and inflammatory death [150,151].

A related amplification loop is ferritinophagy, the selective degradation of ferritin
via the autophagy nuclear receptor coactivator 4 (NCOA4), which acts as a cargo recep-
tor that binds directly to H-ferritin and facilitates its transport to lysosomes for degrada-
tion [152,153]. This interaction enables the controlled degradation of ferritin and subsequent
release of stored iron into the cytosol [154,155]. The process is crucial for the mobilization
of iron from intracellular stores and the release of iron into the cytosolic labile iron pool
(LIP), making iron available for metabolic needs, especially in times of iron scarcity or
increased demand [155-159]. This interaction ensures that ferritin is delivered to the lyso-
somes, where it is degraded, and the stored iron is released into the cytosol [155,160].
The C-terminus of NCOA4 contains a ferritin-binding domain, and this binding is specifi-
cally upregulated under conditions of iron deficiency, which are often promoted by iron
chelators. NCOA4 also functions as an iron sensor [155]. Under high intracellular iron
conditions, NCOA4 is degraded via polyubiquitination mediated by the E3 ubiquitin ligase
HECT and RLD domain-containing E3 ubiquitin protein ligase 2 (HERC2) [154,161,162].
Conversely, NCOA4 accumulates during iron deficiency, binds to ferritin, and facilitates
iron recycling [155]. This regulatory mechanism provides an additional level of control over
cytosolic iron homeostasis and complements the well-established iron-dependent binding
of Iron Regulatory Proteins (IRPs) to Iron Responsive Elements (IREs) [155].

Under physiological conditions, ferritinophagy supports iron recycling and mito-
chondrial functions. However, the upregulation of this pathway associated with obesity
increases cytosolic Fe?*, which increases susceptibility to ROS formation and ferroptotic
stress [36,163]. The resulting increase in labile iron levels promotes mitochondrial dysfunc-
tion, oxidative DNA damage, and the release of ATP and oxidized lipids, which are known
triggers of NLRP3 activation. These processes are modulated by metabolic regulators such
as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (NRF2),
and mammalian (or mechanistic) target of rapamycin (mTOR), which influence autophagic
flux and redox balance [163]. Dysregulation of ferritinophagy has been associated with
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various metabolic complications including insulin resistance and hepatic steatosis [163].
Studies in preclinical models have shown that inhibiting ferritinophagy or blocking ferrop-
tosis attenuates inflammasome activity and restores insulin sensitivity [79,145]. Therefore,
ferritinophagy represents a key mechanistic pathway by which excess nutrients promote
iron mobilization and immune activation in adipose tissue. Notably, ferritinophagy and
ferroptosis may also reinforce each other through a deleterious positive feedback loop: the
degradation of ferritin via NCOAA4 releases labile Fe?*, which amplifies ROS production
and lipid peroxidation, driving ferroptosis. This ferroptotic damage may, in turn, signal
further ferritin degradation, perpetuating a self-reinforcing “vicious cycle” [149]. The clini-
cal implications of this relationship are far from clear. Although the clinical implications of
this relationship remain to be fully elucidated, targeting the NCOA4—ferritin axis offers
a promising strategy to limit iron release and potentially prevent ferroptosis in metabolic
and inflammatory diseases [158].

4.3. TXNIP and Mitochondrial Stress

Finally, the redox-sensitive adaptor thioredoxin-interacting protein (TXNIP) serves as
an important integrator of oxidative stress and NLRP3 inflammasome activation. Under
basal conditions, TXNIP binds to thioredoxin (TRX), an antioxidant enzyme that neutral-
izes ROS and maintains cellular redox homeostasis. During oxidative insult, particularly
mitochondrial iron overload, TXNIP dissociates from TRX and binds directly to NLRP3,
facilitating the assembly and activation of caspase-1[56,142,143]. In adipose tissue, TXNIP
expression is upregulated in response to a HFD and correlates with mitochondrial frag-
mentation, membrane depolarization, and increased IL-1f3 secretion [4]. Accumulation of
oxidized mitochondrial DNA exacerbates this response by acting as a secondary danger
signal for the inflammasome complex. Genetic ablation of TXNIP in mouse models results
in decreased NLRP3 activation, improved glucose homeostasis, and attenuated adipose
tissue inflammation, confirming its role as a hub in the iron-ROS-inflammasome axis [163].
Together, these interconnected pathways, including ROS formation, ferroptotic cell death,
ferritinophagy-driven iron flux, and TXNIP signaling, form a tightly coupled network of
iron-induced immunometabolic stress. To support the mechanistic framework described
above, various experimental models, ranging from transgenic mice to co-culture systems
and human adipose biopsies, have been employed to dissect the iron-inflammasome axis
in metabolic disease contexts. Table 2 summarizes key in vivo, in vitro, and clinical studies
that have established the biological relevance and translational potential of iron-mediated
inflammasome activation in obesity and type 2 diabetes.

Table 2. Experimental models and human studies exploring iron-inflammasome dynamics in obesity
and T2D.

Model/System

Notable Features and Mechanistic Relevance References

Mouse genetic models

e  Conditional knockout models targeting ferroportin in

adipocytes, CD163 in macrophages, or systemic/local

hepcidin expression provide direct evidence for iron’s causal

role in adipocyte-macrophage crosstalk. [32,41,79-81,164]
e  These models reveal macrophage phenotype shifts (e.g.,

MFeM to MMe) and measurable downstream metabolic

dysfunction.
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Table 2. Cont.

Model/System

Notable Features and Mechanistic Relevance References

High-fat diet (HFD) rodents

° Chronic HFD feeding induces low-grade metaflammation
and iron misdistribution similar to human obesity and T2D.

° Offers more relevant insights than acute iron-loading or
endotoxemia models.

[41,80,84,86,128,165,166]

Iron chelation/loading
interventions

° Iron chelators (e.g., deferoxamine) lower adipose

inflammation, ROS levels, and insulin resistance in obese

models. [36,128,167]
° Dietary or parenteral iron loading increases ATM iron

burden and modifies inflammatory signaling in VAT.

Adipocyte-macrophage
co-culture and
isotope tracing

e  Invitro co-culture systems and tracer-based models
demonstrate direct, bidirectional iron exchange.

e  Reveal obesity-induced alterations in cell-specific iron flux
and retention [32,41,79-81,167].

[41,81]

Human adipose tissue and
cohort studies

e  Expression levels of key iron metabolism genes (e.g.,
ferroportin, hepcidin, ferritin) in adipose tissue correlate
with adipokine secretion, insulin resistance, and clinical [32,85,87,89,168]
features of metabolic syndrome.

e  Provide translational linkage to rodent findings.

Abbreviations: ATM, adipose tissue macrophage; CD163, cluster of differentiation 163; HFD, high-fat diet; IL-1f3,
interleukin-1 beta; KO, knockout; MFehi, macrophages with high iron content; MMe, metabolically activated
macrophages; ROS, reactive oxygen species; T2D, type 2 diabetes; VAT, visceral adipose tissue.

5. Systemic and Local Iron Metabolism
5.1. Physiological Iron Handling and Cellular Regulation

Iron is essential for numerous biological processes including oxygen transport, oxida-
tive phosphorylation in the mitochondria, DNA synthesis, and host immune defense [25,26].
Dietary iron absorption predominantly occurs in the duodenum, where iron from food,
mainly in the Fe?* form, is transported into enterocytes via the divalent metal transporter
1 (DMT1). Non-heme iron ingested with food is usually absorbed as Fe**, which must first
be reduced to Fe?* by duodenal cytochrome b (Dcytb) prior to transport. Once inside the
enterocyte, Fe?* may be stored intracellularly in ferritin or exported across the basolat-
eral membrane via ferroportin. During export, Fe?" is re-oxidized by ferroxidases such as
hephaestin and ceruloplasmin to enable its binding to transferrin (Tf) in the plasma, ensur-
ing that redox-active Fe?* remains transient and tightly regulated [158]. Cellular uptake
of transferrin-bound iron occurs via transferrin receptor 1 (TfR1)-mediated endocytosis.
Within acidified endosomes, Fe?* is released from transferrin, reduced to Fe?*, and trans-
ported into the cytosol by DMT1. Cytosolic iron is directed toward mitochondrial heme
synthesis and the formation of iron—sulfur (Fe-S) clusters or stored in ferritin (Figure 2).
A portion remains in the labile iron pool (LIP), a metabolically active but redox-reactive
fraction that must be carefully regulated [169]. Ferritin, a 24-subunit heteropolymer, is
capable of safely storing up to 4500 Fe>* atoms in a mineral core [156,170], serving as both a
buffer reservoir and a protective mechanism against oxidative stress. Macrophages, partic-
ularly those within the reticuloendothelial system, recycle iron from senescent erythrocytes
through erythrophagocytosis and subsequent heme degradation, a process mediated by
heme oxygenase-1 (HO-1), which releases bioavailable iron while limiting pro-oxidant
heme accumulation [43,171].
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Figure 2. Integrated regulation of dietary iron absorption and systemic iron homeostasis.

This figure provides a comprehensive overview of the absorption, distribution, and
systemic regulation of iron. Dietary iron is absorbed in the duodenum as non-heme (Fe®")
and heme iron. Non-heme Fe®" is reduced to Fe?* by DCYTB and transported into ente-
rocytes via DMT1. Heme uptake is more complex. HCP1, now recognized as the PCFT,
was once proposed as the primary heme transporter; however, PCFT has higher affinity for
folate, making its physiological role in heme absorption limited. Intracellular heme is de-
graded by heme oxygenases (HO-1/HO-2) to release Fe?*, with HRG1 mediating lysosomal
heme transport and FLVCR1 exporting excess heme to prevent toxicity. Within enterocytes,
Fe?* is stored as ferritin or exported via ferroportin (FPN). Fe?" is exported through the
basolateral membrane by ferroportin (FPN) and oxidized primarily by hephaestin (HP)
and secondarily by ceruloplasmin (CP), allowing Fe?* to be loaded onto transferrin (Tf) in
plasma for systemic distribution. Tf-bound Fe®* is taken up by the target cells via transfer-
rin receptors (TfR1, TfR2); endosomal STEAP3 reduces Fe* to Fe?*, which exits through
DMT1. Systemic regulation is primarily controlled by hepcidin, which is synthesized in
hepatocytes and regulated by BMP/SMAD signaling involving BMP6, HJV, HFE, and
TFR2. Hepcidin inhibits iron export by inducing the degradation of FPN, thereby lowering
plasma iron levels. Macrophages recycle iron from senescent red blood cells, by storing
it as ferritin or exporting it via FPN, contributing to the circulating iron pool. Cellular
iron metabolism is further regulated by iron regulatory proteins (IRPs), which control the
expression of DMT1, FPN, ferritin, and TfR based on intracellular iron status. Additionally,
FLVCR exports excess intracellular heme, particularly in erythroid cells, to prevent heme-
induced toxicity. Together, these mechanisms coordinate dietary iron absorption, systemic
distribution, erythropoietic demand, inflammation, and storage to maintain iron balance
and prevent deficiency or overload. Abbreviations: BMP6, bone morphogenetic protein 6;
CP, ceruloplasmin; DCYTB, duodenal cytochrome B; DMT1, divalent metal transporter 1;
Fe?* /Fe3*, ferrous/ferric iron; FLVCR, feline leukemia virus subgroup C receptor; FPN,
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ferroportin; HAMP, hepcidin antimicrobial peptide; Hb, hemoglobin; HCP1, heme carrier
protein 1; HFE, hemochromatosis protein; HJV, hemojuvelin; HO-1, heme oxygenase-1; HP,
hephaestin; IRPs, iron regulatory proteins; PCFT, proton-coupled folate transporter; SMAD,
mothers against decapentaplegic homolog; Tf, transferrin; TfR1/2, transferrin receptor 1/2.

Iron homeostasis in mammalian cells is predominantly controlled by the iron regula-
tory protein (IRP)-iron responsive element (IRE) post-transcriptional system, which modu-
lates the translation and stability of mRNAs encoding key proteins involved in iron uptake,
storage, and export in response to fluctuations in intracellular iron levels [43,162,172-175].
Under low intracellular iron conditions, IRP1 and IRP2 bind to IRE stem-loop motifs lo-
cated in the untranslated regions (UTRs) of the target transcripts. Interaction with 5'-UTR
IREs inhibits the initiation of translation of mRNAs encoding ferritin, ferroportin, ALAS2,
and HIF-2«, thereby reducing iron storage and export. Conversely, binding to 3/-UTR
IREs stabilizes transcripts such as transferrin receptor 1 (TfR1) and divalent metal trans-
porter 1 (DMT1), prolonging their half-life and facilitating increased iron uptake [176-178].
Together, these actions enhance iron uptake and limit iron storage and export. When
intracellular is sufficient, IRP1 assembles a [4Fe—4S] cluster and adopts a cytosolic aconi-
tase function, resulting in a loss of RNA-binding activity [179,180], promoting ferritin
synthesis and ferroportin-mediated export while descreasing TfR1/DMT1 expression. In
contrast, IRP2, which lacks an Fe-S cluster, is degraded via FBXL5-mediated ubiquitination
in response to elevated intracellular iron [181].

At the interface of cellular and systemic iron regulation, ferroportin is the sole iden-
tified iron exporter, which is subject to dual control: translational repression via IRPs
and post-translational downregulation by the hepatic peptide hormone hepcidin [182].
Through its influence on intracellular iron pools and key iron-handling proteins, such
as TfR1 and HIF-2«, the IRP-IRE system indirectly modulates hepcidin transcription.
In duodenal enterocytes, HIF-2cx serves as a transcriptional activator of genes encoding
DMT1, duodenal cytochrome B, and ferroportin during dietary iron deficiency [183]. IRP1
attenuates this absorptive response by suppressing HIF-2cc translation, thereby fine-tuning
iron uptake [184,185]. Review of systemic and cellular homeostasis are published else-
where [43,158,160,174,175,186,187].

5.2. The Hepcidin—Ferroportin Axis and Systemic Control

Unlike other micronutrients, iron does not have a regulatory excretion mechanism
in humans. As a result, the iron balance throughout the body is maintained by a finely
tuned system that includes intestinal absorption, tissue storage, and macrophage-mediated
recycling of senescent erythrocytes [176]. Central to this regulatory network is the hepcidin—
ferroportin axis. Hepcidin, a 25 amino acid hepatic peptide, acts as a major hormonal
regulator of iron excretion by binding to ferroportin (FPN), the only known iron ex-
porter in mammals, and is encoded by SLC40A1 [188,189]. Binding to hepcidin initiates
the internalization and lysosomal degradation of FPN. The process limits the release of
iron from duodenal enterocytes, hepatocytes, and macrophages into the plasma compart-
ment [26,176,190,191]. Hepcidin regulation is multifactorial and responds to both systemic
and local factors. Hepcidin expression is upregulated by the bone morphogenetic protein
6-SMAD family member 1/5/8 (BMP6-SMAD1/5/8) signaling cascade in response to
systemic iron loading and is suppressed by an erythropoietic requirement via erythroferron
secreted by erythroblasts in the bone marrow [192]. Hypoxic conditions, which often occur
in metabolically stressed tissues, downregulate hepcidin via hypoxia-inducible factors
(HIFs), thereby increasing iron availability. Inflammatory signals, particularly interleukin-6
(IL-6), increase hepcidin transcription by activating the Janus kinase-signal transducer and
activator of the transcription 3 (JAK-STAT3) pathway [120,192,193].
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5.3. Pathological Dysregulation: Overload, Inflammation, and Metabolic Impact

Perturbations in these regulatory networks can result in iron accumulation or hyperfer-
remia. In primary or genetic iron overload, such as hereditary hemochromatosis, mutations
in HFE, HJV, TFR2, or SLC40A1 impair hepcidin signaling, leading to unregulated intesti-
nal iron absorption. As transferrin saturation exceeds 60%, NTBI, which is rich in Fe?+,
appears in circulation and bypasses transferrin-mediated uptake, accumulating in the liver,
pancreas, and heart muscle [160]. In secondary or acquired iron overload, repeated blood
transfusions (as in thalassemia or myelodysplasia), high-dose parenteral iron administra-
tion, or hemolytic anemias introduce excess iron into the bloodstream. Once transferrin
become saturated, labile Fe?* accumulates in the tissues leading to oxidative damage [194].
Dietary and gut barrier factors can further modulate systemic iron metabolism. Diets high
in carbohydrates and protein, as often observed in obesity and T2D, are associated with
increased intestinal permeability (“leaky gut”), which facilitates the translocation of bacte-
rial components such as lipopolysaccharide (LPS) into the bloodstream [195,196]. These
microbial components activate pattern recognition receptors such as Toll-like receptor 4
(TLR4) in adipose tissue macrophages, stimulating cytokine-mediated hepcidin production
and promoting intracellular iron sequestration [197-199]. The resulting increase in labile
Fe?*, combined with inflammatory signaling, amplifies oxidative stress and links dietary
patterns, gut permeability, and iron-driven inflammation in metabolic disease.

Pro-inflammatory cytokine signaling also contributes to hyperferritinemia indepen-
dent of true iron overload. Cytokines such as IL-6 and IL-1§3 induce ferritin expression as
part of the acute phase response, masking latent iron deficiency. Simultaneously, cytokine-
mediated suppression of ferroportin, through both hepcidin-dependent degradation and
transcriptional repression, limits iron efflux from enterocytes and macrophages, lead-
ing to hypoferremia and anemia of chronic disease [198,200]. During inflammation, iron
metabolism is actively reprogrammed as part of a host defense strategy known as “nu-
tritional immunity,” whereby iron is removed from the bloodstream to limit microbial
growth [200,201]. IL-6 serves as a key inflammatory mediator that drives hepcidin induc-
tion via the STAT3 signaling cascade, leading to transcriptional upregulation of hepcidin
antimicrobial peptide (HAMP) and increased iron storage [190]. IL-1f3 also exerts a po-
tent effect, particularly in metabolic tissues, where it activates the NF-«B and p38 MAPK
(mitogen-activated protein kinase) signaling pathways to induce hepcidin independent
of IL-6 [202,203]. Additional cytokines, including TNF-« and interferons, suppress ery-
thropoietin production and directly impair erythroid progenitor cell survival, further
exacerbating erythropoietic dysfunction [39]. Together, these in turn increase ferritin syn-
thesis, particularly in macrophages, independent of true iron sufficiency, thereby increasing
serum ferritin concentration and masking latent iron deficiency [204]. At the same time,
ferroportin expression is suppressed by hepcidin-dependent degradation and cytokine-
mediated transcriptional repression, resulting in reduced iron efflux from enterocytes and
macrophages [120]. While this iron-limiting phenotype is protective in acute infection, it
becomes maladaptive during chronic inflammation. In conditions like obesity and T2D, per-
sistent low-grade inflammation disrupts the hepcidin—ferroportin cycle, contributing to iron
misdistribution, functional iron deficiency, and anemia of chronic disease (ACD)/anemia
of inflammation (AI) [205]. Chronic inflammation also promotes iron sequestration into
multiple tissues including the liver, spleen, bone marrow, pancreas, and heart through
hepcidin-mediated ferroportin suppression and macrophage retention, leading to oxidative
stress, tissues dysfunction, functional deficiency, and ACD/AI [39,206]. This results in a
biochemical profile defined by low serum iron, decreased transferrin saturation, elevated
ferritin, and impaired erythropoiesis [120].
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Although these regulatory dynamics are well recognized in infections and autoim-
mune diseases, their importance in metabolic inflammation is increasingly appreciated. In
obesity, persistent low-grade inflammation interferes with the hepcidin—ferroportin cycle,
contributes to systemic iron maldistribution and impaired oxygen utilization in metaboli-
cally active tissues, and contributes to adipose tissue dysfunction and systemic metabolic
dysfunction [33]. The immunometabolic effects of iron dysregulation vary considerably
across cell types and adipose tissue depots. As summarized in Table 3, adipocytes, adipose
tissue macrophages (ATMs), hepatocytes, and insulin-sensitive tissues exhibit distinct iron-
handling characteristics that collectively shape tissue-specific outcomes of inflammation,
ferroptosis, and insulin resistance in obesity and T2D.

Table 3. Cell-type and tissue-specific mechanisms linking iron dysregulation to inflammation in
obesity and T2D.

Cell Type/Tissue

Mechanistic Insights References

Adipocytes

Primary sites of iron accumulation and sources of local

hepcidin production.

Iron suppresses insulin-sensitizing adiponectin (via FOXO1) and
leptin (via CREB), impairing endocrine function.

Alters metabolic and inflammatory gene expression, disrupts
mitochondrial dynamics, and predisposes to ferroptosis.

[32,77,165]

Adipose tissue
macrophages (ATMs)

Act as critical iron buffers in lean states (MFeM) but shift toward
pro-inflammatory M1/MMe phenotypes under obesity.

Exhibit impaired ferroportin expression and reduced

iron recycling.

ATM iron handling directly governs paracrine iron transfer to
adipocytes and the local inflammatory milieu.

[41,79-82]

Liver/hepatocytes

Central hub for systemic iron regulation through

inflammation-induced hepcidin synthesis.

Orchestrates whole-body iron homeostasis and storage. [84-86,207]
Responds to IL-6, BMP/SMAD, and iron-sensing pathways

altered in obesity and T2D.

Skeletal muscle and
pancreatic B-cells

Both tissues experience iron-driven oxidative stress and
mitochondrial dysfunction in obesity and insulin-resistant states.
Typically affected secondarily to adipose dysfunction but
contribute to impaired glucose handling.

[88]

Abbreviations: ATM, adipose tissue macrophage; BMP, bone morphogenetic protein; CREB, cAMP response
element-binding protein; FOXO1, forkhead box protein O1; IL-6, interleukin-6; M1, classically activated
macrophage; MFehi, iron-rich macrophage phenotype; MMe, metabolically activated macrophage; SMAD,
small mothers against decapentaplegic homolog; T2D, type 2 diabetes.

6. Depot-Specific Iron Signaling in Adipose Tissue

Adipose tissue has been shown to be an iron-sensitive metabolic organ that exhibits
different regulatory mechanisms and inflammatory reactions in different anatomical depots.
Both adipocytes and adipose tissue macrophages (ATMs) express core components of the
iron-processing machinery, including TfR1, DMT1, ferritin, FPN, and hepcidin. Under
normal conditions, this network coordinates iron uptake, sequestration, and export to
maintain redox homeostasis and cellular functions. However, in obesity and T2D, these
regulatory hubs are disrupted, primarily due to chronic low-grade inflammation and IL-
6—induced hepcidin upregulation, which promotes FPN degradation and the associated
intracellular iron binding, as described above. This shift in iron dynamics not only alters
systemic iron availability but also leads to depot-specific stress that exacerbates metabolic
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dysfunction. The dual regulation of hepcidin, systemic via hepatic signaling and local via
its expression in the adipose layer, further complicates regional iron trafficking and its
metabolic consequences.

Visceral adipose tissue (VAT) is particularly susceptible to iron loading and associated
inflammatory responses compared with subcutaneous white adipose tissue (iWAT) and
brown adipose tissue (BAT). Several modalities, such as histochemical staining, magnetic
resonance imaging, and atomic spectroscopy, consistently show higher levels of labile iron,
ferritin, and IL-1p in the VAT [5,145]. This regional enrichment corresponds to increased
immune cell infiltration and enhanced NLRP3 inflammasome activation, supporting the
role of VAT as a hotspot for metaflammation and insulin resistance [34,41]. While BAT
naturally contains more mitochondrial iron because of its oxidative requirements, under
physiological conditions, it is protected from oxidative stress by robust antioxidant systems,
such as uncoupling protein 1 (UCP1). Nevertheless, chronic iron overload impairs the ther-
mogenic function of BAT and stimulates inflammasome-related signaling, suggesting that
metabolically protective fat depots are not immune to iron-induced dysfunction [128,208].

Macrophage polarization also determines the pattern and outcome of depot-specific
iron processing. In a low-fat environment, iron-buffered macrophage ferritin-expressing
high iron (MFel) macrophages express high levels of CD163 and FPN, enabling efficient
removal of extracellular iron and suppression of oxidative damage [41,80]. In contrast,
obesity shifts the macrophage pool toward macrophage ferritin-expressing low iron (MFel®)
and metabolically activated macrophages (MMe) phenotypes, which are characterized by
decreased FPN expression and increased secretion of pro-inflammatory cytokines [32,209].
This phenotypic reprogramming increases iron transfer from macrophages to adipocytes
and exacerbates mitochondrial dysfunction and ROS production. These interactions create
a feedback loop in which impaired macrophage buffering capacity increases adipocyte iron
loading, further fueling redox stress and inflammation.

The accumulation of iron in adipocytes directly impairs endocrine and energy
metabolism. Mechanistically, excess iron downregulates adiponectin and leptin expression
through forkhead box protein O1 (FOXO1), C/EBP homologous protein (CHOP), and
cAMP response element-binding protein (CREB)-dependent transcriptional repression,
respectively [32,142]. In parallel, iron promotes ferroptosis, a regulated form of cell death
driven by lipid peroxidation and glutathione depletion, which leads to the release of
DAMPs that trigger NLRP3 activation [29,31,145]. Mouse models with adipocyte-specific
deletion of FPN or macrophage-specific CD163 deficiency exhibit exaggerated iron reten-
tion, increased IL-13 expression, and systemic insulin resistance [32,79,80]. In addition,
a high-fat diet (HFD) and exposure to lipopolysaccharide (LPS) induce local hepcidin
production in adipose tissues, which further drives FPN degradation and intracellular iron
storage [5,84].

Experimental evidence confirms these observations. In vitro co-cultures with isotope-
labeled iron show that obesity reduces the efficiency of iron buffering by macrophages,
while increasing iron uptake by adipocytes [81]. Importantly, both adipocytes and ATMs
contribute to local hepcidin expression, which explains the paradoxical coexistence of
systemic hypoferremia and adipose iron overload frequently observed in obesity and
T2D [85,87,210]. This local iron retention disrupts mitochondrial respiration not only in
adipose tissue but also in metabolically active organs, such as skeletal muscle and pancreatic
[-cells, which impair glucose oxidation and increase insulin resistance [128,145,211]. Thus,
regional dysregulation of iron balance is a central feature of obesity-related metabolic
disorders. To elucidate the complex interactions among iron trafficking, immune cell
behavior, and endocrine function, Table 4 presents a comparative summary of the major
mechanistic axes implicated in obesity-related metaflammation. These include adipocyte
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iron overload, ATM-adipocyte iron exchange, and inflammation-driven hepcidin signaling,
all of which are linked to discrete molecular mediators and metabolic consequences.

Table 4. Comparative summary of key mechanistic axes linking iron metabolism to inflammation
and insulin resistance.

Direct Evidence

Axis /Experimental Cell/T issue Key Mediators Pathophysiological References
. . Specificity [Pathways Outcome
Manipulation
Aoyt el ol (TN A ot hepidn, Pt
overload ey overoad acpose FOXO1, CREB P e o
iron chelation macrophages, liver resistance
Macrophage- Cong;%nii)iglfsglw' MFehi /MMe Ferroportin, AI;I;/Ii lrg): }[(;ss,
adipocyte iron LT macrophages, transferrin, IRE-IRP pocy [41,79,80,82]
systems, in vivo . overload, 1
flux . . adipocytes system . :
iron tracing inflammation
Iron sequestration,
Hepcidin Obese mouse models, Liver, adipocytes, IL-6. STAT3 intracellular
induction by human adipose/liver stromal vascular BMP—SM:AD s r;alin overload, [84-86]
IL-6 biopsy data fraction (SVF) & 8 functional
systemic deficiency
Iron-driven fron over- . Adipocytes, . Llplc.i perox1dét10n,
ROS and load /supplementation, hepatocytes Fenton chemistry, mitochondrial [128,166]
. chelation (DFO), 4 GPX4, NRF2, HIF1 dysfunction, 1 !
ferroptosis ‘ . skeletal muscle . . .
erroptosis modulators insulin resistance
. . Altered insulin
Transcriptomic and .
Molecular proteomic profiling Transferrin, ferritin sensitivity,
effects on gene IRE-regulated Adipocytes, ATMs DMTI, TfR1, hepcidin dls.rupted [84,86,89,90]
networks . adipokine
gene analysis .
secretion

Abbreviations: ATM, adipose tissue macrophage; BMP, bone morphogenetic protein; CD163, cluster of differentia-
tion 163; CREB, cAMP response element-binding protein; DMT1, divalent metal transporter 1; FPN, ferroportin;
FOXO1, forkhead box protein O1; GPX4, glutathione peroxidase 4; HIF1«, hypoxia-inducible factor 1-alpha; IL-6,
interleukin-6; KO, knockout; NRF2, nuclear factor erythroid 2 related factor 2; SMAD, small mothers against
decapentaplegic homolog; STAT3, signal transducer and activator of transcription 3; TfR1, transferrin receptor 1;
1, decrease; 1, increase.

7. Gaps in Knowledge and Future Direction

Although considerable progress has been made in mapping the interplay between
iron metabolism and lipid-driven inflammation via the NLRP3 inflammasome, the crucial
mechanistic, spatial, and temporal questions remain unresolved. Current evidence, largely
based on correlations, suggests that regional iron overload in adipose tissue contributes to
inflammasome activation and metabolic dysfunction. However, few studies have directly
manipulated iron flux to define causality or clarify whether iron promotes the priming or
activation phases of NLRP3 signaling. This limitation hampers translational potential and
underscores the need for more refined models and targeted biomarkers.

A major gap lies in the lack of depot- and cell-specific mechanistic studies. Most
studies rely on bulk tissue analysis, which obscures the heterogeneity of fat deposits, such
as VAT, subcutaneous adipose tissue (SAT), and BAT [32,42]. VAT appears to be particularly
susceptible to iron-induced inflammasome activity, but there are few comparative studies
on fat depots. Although macrophages are important mediators, other cell types including
adipocytes, endothelial cells, and fibroblasts also contribute to iron processing and inflam-
masome regulation. The lack of conditional knockouts targeting key genes such as Nlrp3,
Caspl, Hampl, or Slc40al in lipid-relevant cell types further limits the mechanistic clarity.
Technological advances such as spatial transcriptomics (e.g., CODEX, MIBI-TOF, Slide-seq),
single-cell iron mapping, and live-cell imaging can elucidate these spatial and temporal
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dynamics. Genetic models, such as Cd163—/—- or Nlrp3—/— mice, combined with interven-
tions, such as deferoxamine or deferasirox, in the presence of inflammasome triggers, can
clarify the sequence of immune activation and metabolic remodeling. Functional imaging
platforms (e.g., iron-sensitive MRI and radiotracers) can track iron flow in vivo and bridge
the gap between experimental systems and clinical applications.

However, its clinical implementation is challenging. Ferritin is widely used, but not
very specifically, because of its role as a reactant in the acute phase. Composite indices, such
as the hepcidin—ferritin ratio or sTfR/log (ferritin), are promising, but need to be validated.
In addition, the interaction between iron and inflammation in non-adipose tissues such as
skeletal muscle and pancreatic (3-cells remains poorly understood, although these tissues
are critical for glucose regulation and are susceptible to iron-induced stress.

To address these gaps, future research should prioritize systems relevant to humans,
including organoid platforms and adipose tissue biopsies from individuals with obesity
or T2D. Integrative multi-omics approaches, along with depot-specific therapeutic trials,
may identify actionable targets within the ATM-adipocyte axis and hepcidin—ferroportin
signaling network. Novel therapies including nanoparticle-based chelating agents, IL-
13 /NLRP3 inhibitors, and depot-specific hepcidin modulators offer promising avenues for
precision medicine. Unlocking the translational potential of the iron-inflammasome axis
requires interdisciplinary efforts that combine molecular biology, systems modeling, and
clinical investigations. Addressing these knowledge gaps is critical for the development of
targeted diagnostics and interventions to mitigate inflammation-induced insulin resistance
and metabolic disease progression.

8. Conclusions

The interplay between iron metabolism and NLRP3 inflammasome signaling repre-
sents a critical but poorly understood axis in the pathophysiology of obesity and type
2 diabetes (T2D). There is compelling evidence that impaired iron distribution, particu-
larly the intracellular accumulation of labile iron in adipose tissue, triggers a cascade of
sterile inflammatory responses. These responses are mediated by reactive oxygen species
(ROS), lipid peroxidation, and ferroptosis, culminating in the activation of IL-1f3 and the
broader inflammasome complex. These processes synergistically impair the endocrine
function of adipocytes, alter the immune cell composition, and lead to persistent insulin
resistance. Among fat depots, visceral adipose tissue (VAT) exhibits increased sensitivity
to iron-induced inflammatory stress owing to its rich immune environment and vascular
connection to systemic circulation, which exacerbates its metabolic effects.

Mechanistically, iron-induced oxidative stress promotes the formation of DAMPs and
oxidized mitochondrial DNA, both of which act as potent activators of the NLRP3 inflam-
masome. This activity is amplified by IL-6—-induced hepcidin expression, which suppresses
ferroportin (FPN) and facilitates further intracellular iron deposition, creating a vicious
cycle of metabolic inflammation. These processes are not uniformly distributed across fat
depots or cell types, emphasizing the need for spatially refined and temporally resolved
mechanistic studies. The interaction between adipocytes and adipose tissue macrophages
(ATMs), which is regulated by iron deficiency, modulates depot-specific outcomes and
underscores the role of the microenvironment in shaping disease progression.

Although therapeutic strategies targeting iron overload and inflammasome activity,
such as deferoxamine, IL-1 blockers, and NLRP3 inhibitors, have shown efficacy in preclini-
cal models, their translation into clinical practice remains limited by issues of specificity,
systemic side effects, and insufficient biomarker levels. The development of localized or
cell-type selective interventions is promising, but it requires validated diagnostic tools to
stratify patients based on iron-processing phenotypes and inflammatory profiles. Advances
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in single-cell omics, spatial transcriptomics, and noninvasive iron imaging have provided
powerful platforms to elucidate these mechanisms in human metabolic tissues, especially
when integrated with metabolic flux assays and inflammasome function measurements.

Translational advances also depend on the use of robust biomarker panels, such
as the hepcidin-to-ferritin ratio, soluble transferrin receptor levels, and BRINDA project
(biomarkers reflecting inflammation and nutritional determinants of anemia)-corrected iron
estimates, in metabolic disease studies. These indices, in combination with longitudinal
clinical data and intervention outcomes, can serve as a basis for the development of
precision strategies targeting iron-related metaflammation. In addition, new models, such
as adipose organoids, co-culture systems, and in vivo reporter mice, provide experimental
platforms to study depot-specific iron flux and immune-metabolic crosstalk.

Taken together, the iron—inflammasome axis represents a high-value target for mecha-
nism discovery and clinical innovation in metabolic diseases. By deciphering its molecular
circuitry and anatomical heterogeneity, future research may lead to stratified therapies that
address the dual burden of iron dysregulation and inflammation in obesity and T2D. This
paradigm shift from associative observations to mechanistically anchored tissue-specific
interventions may pave the way for novel diagnostic and therapeutic strategies with
far-reaching implications across the spectrum of immunometabolic disorders.
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4-HNE 4-Hydroxynonenal

ACD Anemia of chronic disease

Al Anemia of inflammation
AKT/PKB Protein kinase B

ALAS2 5'-Aminolevulinate synthase 2
AMPK AMP-activated protein kinase
ASC Apoptosis-associated speck-like protein containing a CARD
ATMs Adipose tissue macrophages
ATP Adenosine triphosphate

BAT Brown adipose tissue

BMP6 Bone morphogenetic protein 6

BRINDA Biomarkers reflecting inflammation and nutritional determinants of anemia
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C/EBP
Ca2+
CARD
CD11c*
CD163
CD4+ T cells
CHOP
Cl-
CLS
CODEX
CREB
DAMPs
Dcytb
DFO
DFP
DFX
DHA

FOXO1

FPN/Ferroportin

GPX4
GSDMD
H,0,

HAMP/HAMP1

HCD
HERC2
HFD

HFE
HIF-20
HIFs

HJV
HMGBI1
HO-1

IAPP

IL-18

IL-1p

IL-1R

IL-22

IL-6

iWAT
IRE/IREs
IRP/IRPs
IRS

IRS-1
JAK-STAT3
JNK/MAPK
LIP

LPS

CCAAT/enhancer-binding protein

Calcium ion

Caspase recruitment domain

Cluster of differentiation 11c positive

Cluster of differentiation 163

Cluster of differentiation 4 positive T lymphocytes
C/EBP homologous protein

Chloride ion

Crown-like structures

CO-Detection by indEXing

cAMP response element-binding protein
Damage-associated molecular patterns
Duodenal cytochrome b

Deferoxamine

Deferiprone

Deferasirox

Docosahexaenoic acid

Dysmetabolic iron overload syndrome
Deoxyribonucleic acid

Divalent metal transporter 1

Iron-sulfur cluster

Ferrous iron

Ferric iron

F-box and leucine-rich repeat protein 5
Forkhead box protein O1

Ferroportin (iron exporter), encoded by SLC40A1
Glutathione peroxidase 4

Gasdermin D

Hydrogen peroxide

Hepcidin antimicrobial peptide (gene)
High-carbohydrate diet

HECT and RLD domain-containing E3 ubiquitin protein ligase 2
High-fat diet

High Fe gene (homeostatic iron regulator)
Hypoxia-inducible factor 2 alpha
Hypoxia-inducible factors

Hemojuvelin

High mobility group box 1

Heme oxygenase-1

Islet amyloid polypeptide

Interleukin-18

Interleukin-1 beta

Interleukin-1 receptor

Interleukin-22

Interleukin-6

Inguinal white adipose tissue (subcutaneous)
Iron responsive element (s)

Iron regulatory protein (s)

Insulin receptor substrate

Insulin receptor substrate 1

Janus kinase-signal transducer and activator of transcription 3
c-Jun N-terminal kinase/mitogen-activated protein kinase
Labile iron pool

Lipopolysaccharide
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LRR Leucine-rich repeat
MAPK Mitogen-activated protein kinase
MAVS Mitochondrial antiviral signaling protein
MFehi Macrophage ferritin-expressing high iron phenotype
MFelo Macrophage ferritin-expressing low iron phenotype
MIBI-TOF Multiplexed ion beam imaging by time-of-flight
MMe Metabolically activated macrophage phenotype
MRI Magnetic resonance imaging
mTOR Mammalian (mechanistic) target of rapamycin
mtROS Mitochondria-derived reactive oxygen species
Na* Sodium ion
NCOA4 Nuclear receptor coactivator 4
NEK7 NIMA-related kinase 7
NF-«B Nuclear factor kappa-light-chain-enhancer of activated B cells
NLRP3 NOD-, LRR-, and pyrin domain-containing protein 3
NRF2 Nuclear factor erythroid 2-related factor 2
NTBI Non-transferrin-bound iron
PAMPs Pathogen-associated molecular patterns
PUFAs Polyunsaturated fatty acids
RAGE Receptor for advanced glycation end products
ROS Reactive oxygen species
SAT Subcutaneous adipose tissue
sTfR Soluble transferrin receptor
SLC40A1 Solute carrier family 40 member 1 (gene encoding ferroportin)
SOCS Suppressor of cytokine signaling
T2D Type 2 diabetes mellitus
Tf/TfR/T{R1 Transferrin/Transferrin receptor/ Transferrin receptor 1
THP-1 Human myelomonocytic cell line THP-1
TLR/TLR4 Toll-like receptor/Toll-like receptor 4
TNF-« Tumor necrosis factor alpha
TRX Thioredoxin
TXNIP Thioredoxin-interacting protein
UCP1 Uncoupling protein 1
UTR Untranslated region
VAT Visceral adipose tissue
vWAT Visceral white adipose tissue
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